
ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

i

ATSC Standard:
ATSC 3.0 Interactive Content

A/344:2017
18 December 2017

Advanced Television Systems Committee
1776 K Street, N.W.
Washington, D.C. 20006
202-872-9160

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

ii

The Advanced Television Systems Committee, Inc., is an international, non-profit organization
developing voluntary standards for digital television. The ATSC member organizations represent
the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable,
satellite, and semiconductor industries.

Specifically, ATSC is working to coordinate television standards among different
communications media focusing on digital television, interactive systems, and broadband
multimedia communications. ATSC is also developing digital television implementation strategies
and presenting educational seminars on the ATSC standards.

ATSC was formed in 1982 by the member organizations of the Joint Committee on
InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of
Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the
National Cable Telecommunications Association (NCTA), and the Society of Motion Picture and
Television Engineers (SMPTE). Currently, there are approximately 150 members representing the
broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite,
and semiconductor industries.

ATSC Digital TV Standards include digital high definition television (HDTV), standard
definition television (SDTV), data broadcasting, multichannel surround-sound audio, and satellite
direct-to-home broadcasting.

Note: The user's attention is called to the possibility that compliance with this standard may
require use of an invention covered by patent rights. By publication of this standard, no position
is taken with respect to the validity of this claim or of any patent rights in connection therewith.
One or more patent holders have, however, filed a statement regarding the terms on which such
patent holder(s) may be willing to grant a license under these rights to individuals or entities
desiring to obtain such a license. Details may be obtained from the ATSC Secretary and the patent
holder.

Revision History
Version Date
Candidate Standard approved 29 December 2016
Standard approved 18 December 2017

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

iii

Table of Contents
1. SCOPE ... 1

1.1 Introduction and Background 1
1.2 Organization 1

2. REFERENCES ... 2
2.1 Normative References 2
2.2 Informative References 4

3. DEFINITION OF TERMS .. 4
3.1 Compliance Notation 5
3.2 Treatment of Syntactic Elements 5

3.2.1 Reserved Elements 5
3.3 Acronyms and Abbreviations 5
3.4 Terms 6

4. OVERVIEW ... 7
4.1 Application Runtime Environment 7
4.2 Receiver Media Player Display 9

5. ATSC REFERENCE RECEIVER MODEL .. 10
5.1 Introduction 10
5.2 User Agent Definition 11

5.2.1 HTTP Protocols 11
5.2.2 Receiver WebSocket Server Protocol 11
5.2.3 Cascading Style Sheets (CSS) 11
5.2.4 HTML5 Presentation and Control: Image and Font Formats 12
5.2.5 JavaScript 12
5.2.6 2D Canvas Context 12
5.2.7 Web Workers 12
5.2.8 XMLHttpRequest (XHR) 12
5.2.9 Event Source 12
5.2.10 Web Storage 12
5.2.11 Cross-Origin Resource Sharing (CORS) 13
5.2.12 Mixed Content 13
5.2.13 Web Messaging 13
5.2.14 Opacity Property 13
5.2.15 Transparency 13
5.2.16 Full Screen 13
5.2.17 Media Source Extensions 13
5.2.18 Encrypted Media Extensions 13

5.3 Origin Considerations 13
6. BROADCASTER APPLICATION MANAGEMENT .. 16

6.1 Introduction 16
6.2 Application Context Cache Management 17

6.2.1 Signaling Intent for File Caching 17
6.2.1.1 Boundary Header HTTP Attribute Definition 18

6.2.2 Application Context Cache Hierarchy Definition 19
6.2.3 Active Service Application Context Cache Priority 20

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

iv

6.2.4 Cache Expiration Time 21
6.3 Broadcaster Application Signaling 21

6.3.1 Broadcaster Application Launch 22
6.3.2 Broadcaster Application Events (Static / Dynamic) 22

6.4 Broadcaster Application Delivery 22
6.4.1 Broadcaster Application Packages 23
6.4.2 Broadcaster Application Package Changes 23

6.5 Security Considerations 23
6.6 Companion Device Interactions 24

7. MEDIA PLAYER ... 24
7.1 Utilizing RMP 25

7.1.1 Broadcast or Hybrid Broadband and Broadcast Live Streaming 25
7.1.2 Broadband Media Streaming 25
7.1.3 Downloaded Media Content 25

7.2 Utilizing AMP 25
7.2.1 Broadcast or Hybrid Broadband and Broadcast Live Streaming 25
7.2.2 Broadband Media Streaming 25
7.2.3 Downloaded Media Content 26
7.2.4 AMP Utilizing the Pull Model 26
7.2.5 AMP Utilizing the Push Model 26

8. ATSC 3.0 WEB SOCKET INTERFACE ... 26
8.1 Introduction 26
8.2 Interface binding 27

8.2.1 WebSocket Servers 28
8.2.1.1 Initializing Pushed Media WebSocket Connections 29
8.2.1.2 Media WebSocket Connection Operation 29

8.3 Data Binding 29
8.3.1 Error handling 31

9. SUPPORTED METHODS ... 32
9.1 Receiver Query APIs 33

9.1.1 Query Content Advisory Rating API 34
9.1.2 Query Closed Captions Enabled/Disabled API 35
9.1.3 Query Service ID API 35
9.1.4 Query Language Preferences API 36
9.1.5 Query Caption Display Preferences API 37
9.1.6 Query Audio Accessibility Preferences API 39
9.1.7 Query MPD URL API 41
9.1.8 Query Receiver Web Server URI API 41
9.1.9 Query Alerting URL API 42

9.2 Asynchronous Notifications of Changes 44
9.2.1 Rating Change Notification API 45
9.2.2 Rating Block Change Notification API 46
9.2.3 Service Change Notification API 47
9.2.4 Caption State Change Notification API 47
9.2.5 Language Preference Change Notification API 48
9.2.6 Caption Display Preferences Change Notification API 49

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

v

9.2.6.1 IMSC1 Extensions 51
9.2.6.2 Manufacturer Private Extensions 52
9.2.6.3 Example 52

9.2.7 Audio Accessibility Preference Change Notification API 53
9.2.8 MPD Change Notification API 55
9.2.9 Alerting Change Notification API 55
9.2.10 Content Change Notification API 57

9.2.10.1 Advanced Emergency Alert Enhancement Content Considerations 58
9.3 Cache Request APIs 59

9.3.1 Cache Request API 59
9.3.2 Cache Request DASH API 62

9.4 Query Cache Usage API 67
9.5 Event Stream APIs 68

9.5.1 Event Stream Subscribe API 68
9.5.2 Event Stream Unsubscribe API 70
9.5.3 Event Stream Event API 71

9.6 Request Receiver Actions 73
9.6.1 Acquire Service API 73
9.6.2 Video Scaling and Positioning API 74
9.6.3 XLink Resolution API 76
9.6.4 Subscribe MPD Changes API 78
9.6.5 Unsubscribe MPD Changes API 78
9.6.6 Set RMP URL API 79
9.6.7 Audio Volume API 80
9.6.8 Subscribe Alerting Changes API 82
9.6.9 Unsubscribe Alerting Changes API 83
9.6.10 Subscribe Content Changes API 84
9.6.11 Unsubscribe Content Changes API 85
9.6.12 Subscribe RMP Media Time Change Notification API 85
9.6.13 Unsubscribe RMP Media Time Change Notification API 86
9.6.14 Subscribe RMP Playback State Change Notification API 87
9.6.15 Unsubscribe RMP Playback State Change Notification API 87
9.6.16 Subscribe RMP Playback Rate Change Notification API 88
9.6.17 Unsubscribe RMP Playback Rate Change Notification API 88

9.7 Media Track Selection API 89
9.8 Mark Unused API 90
9.9 Content Recovery APIs 91

9.9.1 Query Content Recovery State API 91
9.9.2 Query Display Override API 93
9.9.3 Query Recovered Component Info API 95
9.9.4 Content Recovery State Change Notification API 96
9.9.5 Display Override Change Notification API 98
9.9.6 Recovered Component Info Change Notification API 99

9.10 Filter Codes APIs 100
9.10.1 Get Filter Codes API 100
9.10.2 Set Filter Codes API 101

9.11 Keys APIs 102
9.11.1 Request Keys API 102

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

vi

9.11.2 Relinquish Keys API 104
9.11.3 Request Keys Timeout 105

9.12 Query Device Info API 106
9.13 RMP Content Synchronization APIs 108

9.13.1 Query RMP Media Time API 108
9.13.2 Query RMP Wall Clock API 110
9.13.3 Query RMP Playback State API 110
9.13.4 Query RMP Playback Rate API 111
9.13.5 RMP Media Time Change Notification API 112
9.13.6 RMP Playback State Change Notification API 113
9.13.7 RMP Playback Rate Change Notification API 114

ANNEX A : DASH AD INSERTION ... 115
A.1 Introduction 115
A.2 Dynamic Ad Insertion Principles 115
A.3 Overview of XLinks 116

ANNEX B : OBSCURING THE LOCATION OF AD AVAILS .. 118
B.1 Obscuring the Location of Ad Avails 118

ANNEX C : JSON-RPC 2.0 SPECIFICATION ... 121

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

vii

Index of Figures and Tables
Figure 4.1 Rendering model for application enhancements using RMP. 10
Figure 5.1 ATSC 3.0 Reference Receiver Model Logical Components. 11
Figure 5.2 Application Context Identifier Conceptual Model. 15
Figure 6.1 Receiver Conceptual Architecture. 16
Figure 6.2 Example Application Context Cache Hierachy. 20
Figure 8.1 Communication with ATSC 3.0 receiver. 27
Figure 9.1 RMP audio volume. 81
Figure A.2.1 Personalized ad periods. 116
Figure A.3.1 Example period with XLink. 116
Figure A.3.2 Example remote period. 116
Figure B.1.1 Public and private MPDs. 118
Figure B.1.2 Example public MPD. 118
Figure B.1.3 Example MPD equivalent. 119
Figure B.1.4 Example ad replacement. 120

Table 4.1 Application Actions and APIs 9
Table 6.1 ATSC-Defined Extension to the metadataEnvelope.item Element 18
Table 8.1 WebSocket Server Functions and URLs 28
Table 8.2 JSON-RPC ATSC Error Codes 31
Table 9.1 API Applicability 33
Table 9.2 Asynchronous Notifications 45

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

1

ATSC Standard:
ATSC 3.0 Interactive Content (A/344)

1. SCOPE
This document describes the interactive content environment provided by an ATSC 3.0 receiver.
This environment is comprised of a standard W3C User Agent with known characteristics, a
WebSocket interface for obtaining information from the receiver and controlling various receiver
functionality, and an HTTP interface for accessing files delivered over broadcast. This document
also specifies the life cycle of the interactive content when delivered over broadband or broadcast
or both.

ATSC 3.0 is a defining emission standard while the W3C User Agent defines a standard
environment for executing interactive content. In order to create the appropriate user experience
that aligns with the ATSC 3.0 delivery mechanisms, it is considered useful to specify a reference
architecture of an ATSC 3.0 receiver device, referred to in this document as the Reference Receiver
Model (RRM) or simply the Receiver, to define and/or verify the proper emission specifications
and to allow interactive content developers to target a known environment (see Section 5).

A decomposition of the functions and interfaces in the receiver enables the definition of proper
emission formats in order to verify that the distribution formats result in expected functionality to
fulfill the ATSC 3.0 system requirements.

By no means would such a reference receiver imply a normative implementation, as it would
only provide an example implementation to verify the adequacy of the delivery specification. The
RRM is expected to decompose the ATSC 3.0 receiver device into the relevant network interfaces,
device internal functions, interfaces to the Broadcaster Application and interfaces to the media
playout pipeline.

It should be noted that the word “shall” is used to describe how an interface or method is
expected to work. It is anticipated that if the receiver implements the interface or method, that the
resultant behavior is consistent with this specification. This allows interactive content developers
to implement to a well-defined application programming interface.

1.1 Introduction and Background
This document describes the environment and interfaces that can be used by interactive content to
provide an enhanced viewer experience on a supporting ATSC 3.0 receiver.

1.2 Organization
This document is organized as follows:

• Section 1 – The scope, introduction, and background of this specification
• Section 2 – Normative and informative references
• Section 3 – Compliance notation, definition of terms, and acronyms
• Section 4 – Overview of the interactive content environment from the system level
• Section 5 – Specification of the Reference Receiver Model
• Section 6 – Describes how the Broadcaster Application is managed
• Section 7 – Details of the various Media Players supported by this standard
• Section 8 – Overview of the WebSocket interface supported by the receiver
• Section 9 – Supported methods of the WebSocket interface

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

2

• Annex A – Principles of DASH ad insertion
• Annex B – Practical discussion of how to obscure advertising avails

2. REFERENCES
All referenced documents are subject to revision. Users of this Standard are cautioned that newer
editions might or might not be compatible.

2.1 Normative References
The following documents, in whole or in part, as referenced in this document, contain specific
provisions that are to be followed strictly in order to implement a provision of this Standard.
[1] ATSC: “ATSC Standard: Signaling, Delivery, Synchronization, and Error Protection,” Doc.

A/331:2017, Advanced Television Systems Committee, 6 December 2017.
[2] ATSC: “ATSC Standard: Content Recovery in Redistribution Scenarios (A/336),” Doc.

A/336:2017, Advanced Television Systems Committee, 5 June 2017.
[3] ATSC: “ATSC Candidate Standard: Application Signaling (A/337),” Doc. S33-337r3,

Advanced Television Systems Committee, 5 December. (work in process)
[4] ATSC: “ATSC Standard: Captions and Subtitles (A/343),” Doc. A/343:2017, Advanced

Television Systems Committee, 18 September 2017.
[5] ATSC: “ATSC Proposed Standard: ATSC 3.0 Security and Service Protection (A/360),”

Doc. S36-086r20, Advanced Television Systems Committee, 11 December 2017. (work in
process)

[6] IEEE: “Use of the International Systems of Units (SI): The Modern Metric System,” Doc. SI
10, Institute of Electrical and Electronics Engineers, New York, N.Y.

[7] IETF: “Augmented BNF for Syntax Specifications: ABNF,” RFC 5234, Internet Engineering
Task Force, January 2008. https://tools.ietf.org/html/rfc5234

[8] IETF: “Hypertext Transfer Protocol (HTTP/1.1): Authentication,” Doc. RFC 7235, Internet
Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7235

[9] IETF: “Hypertext Transfer Protocol (HTTP/1.1): Caching,” Doc. RFC 7234, Internet
Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7234

[10] IETF: “Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests,” Doc. RFC 7232,
Internet Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7232

[11] IETF: “Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing,” Doc. RFC
7230, Internet Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7230

[12] IETF: “Hypertext Transfer Protocol (HTTP/1.1): Range Requests,” Doc. RFC 7233, Internet
Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7233

[13] IETF: “Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content,” Doc. RFC 7231,
Internet Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7231

https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7231

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

3

[14] IETF: “Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies,” RFC 2045, Internet Engineering Task Force, November 1996.
https://tools.ietf.org/html/rfc2045

[15] IETF: “Tags for Identifying Languages,” RFC 5646, Internet Engineering Task Force,
September 2009. https://tools.ietf.org/html/rfc5646

[16] IETF: “The JavaScript Object Notation (JSON) Data Interchange Format,” RFC 7159,
Internet Engineering Task Force, March 2014. https://tools.ietf.org/html/rfc7159

[17] IETF: “The Web Origin Concept,” RFC 6454, Internet Engineering Task Force, December
2011. https://tools.ietf.org/html/rfc6454

[18] IETF: “The WebSocket Protocol,” RFC 6455, Internet Engineering Task Force, December
2011. https://tools.ietf.org/html/rfc6455

[19] IETF: “Uniform Resource Identifier (URI): Generic Syntax,” RFC 3986, Internet
Engineering Task Force, January 2005. https://tools.ietf.org/html/rfc3986

[20] ISO/IEC “Information technology – Coding of audio-visual objects – Part 22: Open Font
Format,” Doc. ISO/IEC 14496-22:2015, International Organization for Standardization,
Geneva, 1 October 2015; with Amd 1:2017, “Updates for font collections functionality.”

[21] ISO/IEC: ISO/IEC 23009-1:2014, “Information technology — Dynamic adaptive streaming
over HTTP (DASH) — Part 1: Media presentation description and segment formats,”
International Organization for Standardization, 15 May 2014.

[22] W3C: “CSS Backgrounds and Borders Module Level 3,” W3C Candidate Recommendation,
Worldwide Web Consortium, 9 September 2014. (work in process)
https://www.w3.org/TR/2014/CR-css3-background-20140909/

[23] W3C: “CSS Color Module Level 3,” W3C Recommendation. Worldwide Web Consortium,
7 June 2011. https://www.w3.org/TR/css3-color/

[24] W3C: “CSS Multi-column Layout Module,” W3C Candidate Recommendation, Worldwide
Web Consortium, 12 April 2011. (work in process)
http://www.w3.org/TR/2011/CR-css3-multicol-20110412/

[25] W3C: “CSS Namespaces Module Level 3,” W3C Recommendation, Worldwide Web
Consortium, 29 September 2011; edited in place 20 March 2014
http://www.w3.org/TR/2014/REC-css-namespaces-3-20140320/

[26] W3C: “CSS Text Module Level 3,” W3C Last Call Working Draft, Worldwide Web
Consortium, 10 October 2013. (work in process)
http://www.w3.org/TR/2013/WD-css-text-3-20131010/

[27] W3C: “CSS Transforms Module Level 1,” W3C Working Draft, Worldwide Web
Consortium, 26 November 2013. (work in process)
http://www.w3.org/TR/2013/WD-css-transforms-1-20131126/

[28] W3C: “CSS Writing Modes Level 3,” W3C Candidate Recommendation, Worldwide Web
Consortium, 15 December 2015. (work in process)
http://www.w3.org/TR/css-writing-modes-3/

[29] W3C: “Encrypted Media Extensions,” W3C Recommendation, World Wide Web
Consortium, 18 September 2017. http://www.w3.org/TR/encrypted-media/

[30] W3C: “HTML5: A vocabulary and associated APIs for HTML and XHTML,” W3C
Recommendation, World Wide Web Consortium, 28 October 2014.
 http://www.w3.org/TR/2014/REC-html5-20141028/

https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc3986
https://www.w3.org/TR/2014/CR-css3-background-20140909/
https://www.w3.org/TR/css3-color/
http://www.w3.org/TR/2011/CR-css3-multicol-20110412/
http://www.w3.org/TR/2014/REC-css-namespaces-3-20140320/
http://www.w3.org/TR/2013/WD-css-text-3-20131010/
http://www.w3.org/TR/2013/WD-css-transforms-1-20131126/
http://www.w3.org/TR/css-writing-modes-3/
http://www.w3.org/TR/encrypted-media/
http://www.w3.org/TR/2014/REC-html5-20141028/

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

4

[31] W3C: “UI Events KeyboardEvent key Values,” Section 3.18, Media Controller Keys, W3C
Candidate Recommendation, 1 June 2017, World Wide Web Consortium.
https://www.w3.org/TR/DOM-Level-3-Events-key/#keys-media-controller

[32] W3C: “Media Queries,” W3C Recommendation, Worldwide Web Consortium, 19 June
2012. http://www.w3.org/TR/2012/REC-css3-mediaqueries-20120619/

[33] W3C: “Media Source Extensions,” W3C Recommendation, World Wide Web Consortium,
17 November 2016. https://www.w3.org/TR/media-source/

[34] W3C: “Mixed Content,” W3C Candidate Recommendation, Worldwide Web Consortium, 2
August 2016. (work in process) http://www.w3.org/TR/mixed-content/

[35] W3C: “WOFF File Format 1.0,” W3C Recommendation, Worldwide Web Consortium, 13
December 2012.
http://www.w3.org/TR/2012/REC-WOFF-20121213/

[36] W3C: “XML Schema Part 2: Datatypes Second Edition” W3C Recommendation, Worldwide
Web Consortium, 28 October 2004. https://www.w3.org/TR/xmlschema-2/

2.2 Informative References
The following documents contain information that may be helpful in applying this Standard.
[37] ATSC: “ATSC Standard: Companion Device (A/338),” Doc. A/338:2017, Advanced

Television Systems Committee, 17 April 2017.
[38] CTA: “Digital Television (DTV) Closed Captioning,” Doc. CTA-708, Consumer

Technology Association, Arlington, VA.
[39] DASH-IF: “Guidelines for Implementation: DASH-IF Interoperability Point for ATSC 3.0,”

Version 1.0, DASH Industry Forum, 3 May 2017.
[40] IEEE: IEEE Registration Authority.

https://regauth.standards.ieee.org/standards-ra-web/pub/view.html
[41] JSON-RPC: “JSON-RPC 2.0 Specification,” JSON-RPC Working Group.

http://www.jsonrpc.org/specification
[42] JSON Schema: “JSON Schema: A Media Type for Describing JSON Documents,” Internet

Engineering Task Force, JSON-Schema Working Group, 12 April 2017.
http://json-schema.org/latest/json-schema-core.html (work in progress)

[43] W3C: “TTML Profiles for Internet Media Subtitles and Captions 1.0 (IMSC1),” W3C
Recommendation, Worldwide Web Consortium. http://www.w3.org/TR/ttml-imsc1

[44] W3C: “XML Linking Language (XLink),” Recommendation Version 1.1, Worldwide Web
Consortium, 6 May 2010. http://www.w3.org/TR/xlink11/

[45] WHATWG: “HTML Living Standard,” Section 9.3 “Web sockets,” Web Hypertext
Application Technology Working Group.
https://html.spec.whatwg.org/multipage/web-sockets.html

3. DEFINITION OF TERMS
With respect to definition of terms, abbreviations, and units, the practice of the Institute of
Electrical and Electronics Engineers (IEEE) as outlined in the Institute’s published standards [6]
shall be used. Where an abbreviation is not covered by IEEE practice or industry practice differs
from IEEE practice, the abbreviation in question is described in Section 3.3 of this document.

https://www.w3.org/TR/DOM-Level-3-Events-key/#keys-media-controller
http://www.w3.org/TR/2012/REC-css3-mediaqueries-20120619/
https://www.w3.org/TR/media-source/
http://www.w3.org/TR/mixed-content/
http://www.w3.org/TR/2012/REC-WOFF-20121213/
https://www.w3.org/TR/xmlschema-2/
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html
http://www.jsonrpc.org/specification
http://json-schema.org/latest/json-schema-core.html
http://www.w3.org/TR/ttml-imsc1
http://www.w3.org/TR/xlink11/
https://html.spec.whatwg.org/multipage/web-sockets.html

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

5

3.1 Compliance Notation
This section defines compliance terms for use by this document:
shall – This word indicates specific provisions that are to be followed strictly (no deviation is

permitted).
shall not – This phrase indicates specific provisions that are absolutely prohibited.
should – This word indicates that a certain course of action is preferred but not necessarily

required.
should not – This phrase means a certain possibility or course of action is undesirable but not

prohibited.

3.2 Treatment of Syntactic Elements
This document contains symbolic references to syntactic elements used in the audio, video, and
transport coding subsystems. These references are typographically distinguished by the use of a
different font (e.g., restricted), may contain the underscore character (e.g., sequence_end_code) and
may consist of character strings that are not English words (e.g., dynrng).
3.2.1 Reserved Elements
One or more reserved bits, symbols, fields, or ranges of values (i.e., elements) may be present in
this document. These are used primarily to enable adding new values to a syntactical structure
without altering its syntax or causing a problem with backwards compatibility, but they also can
be used for other reasons.

The ATSC default value for reserved bits is ‘1.’ There is no default value for other reserved
elements. Use of reserved elements except as defined in ATSC Standards or by an industry
standards setting body is not permitted. See individual element semantics for mandatory settings
and any additional use constraints. As currently-reserved elements may be assigned values and
meanings in future versions of this Standard, receiving devices built to this version are expected
to ignore all values appearing in currently-reserved elements to avoid possible future failure to
function as intended.

3.3 Acronyms and Abbreviations
The following acronyms and abbreviations are used within this document.
AEAT Advanced Emergency Alert Table
AMP Application Media Player
API Application Programming Interface
ATSC Advanced Television Systems Committee
CDN Content Delivery Network
CSS Cascading Style Sheets
DASH Dynamic Adaptive Streaming over HTTP
EME W3C Encrypted Media Extensions [29]
ESG Electronic Service Guide
HELD HTML Entry pages Location Description
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IPTV Internet Protocol Television
JSON JavaScript Object Notation

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

6

MPD Media Presentation Description
MSE W3C Media Source Extensions [33]
OSN On Screen message Notification
RMP Receiver Media Player
ROUTE Real-Time Object Delivery over Unidirectional Transport
RRM Reference Receiver Model
SSM Service Signaling Manager
URL Uniform Resource Locator
W3C Worldwide Web Consortium
XML eXtensible Markup Language

3.4 Terms
The following terms are used within this document.
Application Context Identifier – An Application Context Identifier is a unique URI that

determines which resources are provided to an associated Broadcaster Application by the
Receiver. Resources may be associated with multiple Application Context Identifiers but a
Broadcaster Application is only associated with a single Application Context Identifier. Details
of the Application Context Identifier syntax are specified in the HELD [3].

Base URI – The Base URI specifies the initial portion of a URL used by the Broadcaster
Application to access files within the Application Context Cache. The Base URL is prepended
to the relative URI path of a file to obtain the full URL of the file within the Application
Context Cache. The Base URI is uniquely generated by the Receiver based on the Application
Context Identifier defined for the Broadcaster Application.

Broadcaster Application – A Broadcaster Application is used herein to refer to the functionality
embodied in a collection of files comprised of an HTML5 document, known as the Entry Page
and other HTML5, CSS, JavaScript, image and multimedia resources referenced directly or
indirectly by that document, all provided by a broadcaster in an ATSC 3.0 service. The
Broadcaster Application refers to the client-side functionality of the broader Web Application
that provides the interactive service. The distinction is made because the broadcaster only
transmits the client-side documents and code. The server-side of this broader Web Application
is implemented by an ATSC 3.0 receiver and has a standardized API for all applications. No
server-side application code can be supplied by the broadcaster. The broadcaster may provide
Web-based documents and code that work in conjunction with the Broadcaster Application
over broadband making the Broadcaster Application a true Web Application. The collection
of files making up the Broadcaster Application can be delivered over the web in a standard
way or can be delivered over broadcast as packages via the ROUTE protocol.

Entry Page – The Entry Page is the initial HTML5 document referenced by application signaling
that should be loaded first into the User Agent. The Entry Page is one of the files in the Entry
Package.

Event Stream – An Event Stream is a series of messages, either static, in DASH signaling, or
dynamic, contained in defined messages within media segments. The events contained within
the Event Stream can initiate interactive actions on the part of a Broadcaster Application.

Entry Package – The Entry Package contains one or more files that comprise the functionality of
the Broadcaster Application. The Entry Package includes the Entry Page and perhaps
additional supporting files include JavaScript, CSS, image files and other content.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

7

Application Context Cache – The Application Context Cache is a conceptual storage area where
information from the broadcast is collected for retrieval through the Receiver Web Server. This
document refers to the Application Context Cache as if it were implemented as actual storage
though this is for convenience only. An Application Context Cache corresponds to the
Application Context Identifier associated with each Broadcaster Application. Files delivered
over ROUTE contain attributes that determine which Application Context Cache they will be
associated with.

Receiver – The Receiver described in this document refers to an entity that implements the
functions of the Reference Receiver Model.

Receiver Web Server – The Receiver Web Server is a conceptual component of a Receiver that
provides a means for a User Agent to gain access to files delivered over ROUTE that
conceptually reside in the Application Context Cache.

Receiver WebSocket Server – The Receiver WebSocket Server provides a means for a User
Agent to gain access to information about the Receiver and control various features provided
by the Receiver.

Reference Receiver Model – A conceptual receiver device that is capable of executing the APIs
and behavior specified in this document. This document specifies normative attributes of the
model, which are intended to inform actual receiver implementations.

reserved – Set aside for future use by a Standard.
User Agent – Software provided by the Receiver that retrieves and renders Web content. The User

Agent interprets HTML5, CSS, and JavaScript, renders media, text, and graphics, and can
create user interaction dialogs.

Web Application – A Web Application is a client/server program accessed via the web using
URLs. The client-side software is executed by a User Agent.

4. OVERVIEW

4.1 Application Runtime Environment
This specification defines the details of an environment that is required for a Broadcaster
Application to run. In the broadcast environment, the files associated with a Broadcaster
Application are delivered in ROUTE packages that are unpacked into a conceptual cache area. The
pages and resources of a Broadcaster Application are then made available to the User Agent
associated with the Receiver. In the broadband environment, launching an application behaves in
the same way as in a normal web environment with no specialized behavior or intervention from
the Receiver.

The Broadcaster Application executes inside a W3C-compliant User Agent accessing some of
the graphical elements of the Receiver to render the user interface or accessing some of the
resources or information provided by the Receiver. If a Broadcaster Application requires access to
resources such as information known to the Receiver, or if the Broadcaster Application requires
the Receiver to perform a specific action that is not defined by standard W3C User Agent APIs
that are widely implemented by browsers, then the Broadcaster Application sends a request to the
Receiver WebSocket Server utilizing the set of JSON-RPC messages, defined in this specification.

The JSON-RPC messages defined in this specification provide the APIs that are required by
the Broadcaster Application to access the resources that are otherwise not reachable. These JSON-
RPC messages allow the Broadcaster Application to query information that is gathered or collected

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

8

in the Receiver, to receive notifications via broadcast signaling, and to request performing of
actions that are not otherwise available via the standard JavaScript APIs.

There are noteworthy differences between an HTML5 application deployed in a normal web
environment and one deployed in an ATSC 3.0 broadcast environment. In the ATSC 3.0 broadcast
environment, a Broadcaster Application can:

• Access resources from broadcast or broadband;
• Request Receivers to perform certain functions that are not otherwise available via the

JavaScript APIs, such as:
o Utilizing the media player provided by the Receiver (called the Receiver Media Player)

to
 Stream media content via broadcast signaling delivery mechanism
 Stream media content (i.e. unicast) via broadband delivery mechanism
 Playback media content that has been downloaded via broadcast or broadband

delivery mechanisms;
o Utilizing MSE and EME to play media content streamed over broadcast or broadband

• Query information that is specific to the reception of TV services, for example, the status
of closed caption display and language references, and receive notifications of changes in
this information;

• Receive notifications of “stream events” that are embedded in the media content or
signaling, when that media content is being played by the Receiver Media Player.

Another noteworthy difference between the two models is that in the normal web environment,
the viewer is in direct control of launching an HTML5 application by specifying the URL of a
desired website. In the ATSC 3.0 environment, although the user still initiates the action by
selecting a Service, the actual application URL is not explicitly selected by the viewer and instead
is provided via broadcast signaling. In this case, it is the responsibility of the Receiver using its
User Agent to launch or terminate the Broadcaster Application referenced by a URL provided in
broadcast signaling.

The Broadcaster Application relies on a set of features that are provided via the User Agent.
Although it is beyond the scope of this specification to describe how the pages of a Broadcaster
Application are provided to the User Agent, it is recommended that standard web technologies
should be used to serve the pages.

Table 4.1 shows which type of API a broadcaster-provided application uses to access the
features provided by the Receiver.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

9

Table 4.1 Application Actions and APIs
Action Requested by the Application API Used by the Application
Requesting to download a media file from broadband W3C APIs provided via the user-agent
Query information related to user display and presentation

preferences, including languages, accessibility options, and closed
caption settings

Receiver WebSocket Server APIs, described
in this specification in Section 9.1

Requesting to stream downloaded media file from broadcast Via push or pull model, described in this
specification in Section Sections 9.1 and
9.5.2

Requesting to stream downloaded media file from broadband Via push or pull model, described in this
specification in Sections 9.1 and 9.5.2

Requesting the Receiver Media Player to play a broadband-
delivered media stream

Receiver WebSocket Server APIs, described
in this specification in Section 9.6.6

Subscribing (or un-subscribing) to stream event notifications that are
sent as part of ROUTE/DASH over broadcast

Receiver WebSocket Server APIs, described
in this specification in Section 9.5.1 and
9.5.2

Receiving stream event notifications that are sent as part of
ROUTE/DASH over broadcast

Receiver WebSocket Server APIs, described
in this specification in Section 9.5.3

Querying the Receiver to learn the identity of the currently-selected
broadcast service

Receiver WebSocket Server APIs, described
in this specification in Section 9.1.3

Receiving notice of changes to user display and presentation
preferences

Receiver WebSocket Server APIs, described
in this specification in Section 9.2.6

Requesting the Receiver to select a new broadcast service Receiver WebSocket Server APIs, described
in this specification in Section 9.6.1

4.2 Receiver Media Player Display
The RMP presents its video output behind any visible output from the Broadcaster Application.
Figure 4.1 illustrates the relationship and the composition function performed in the Receiver.

Figure 4.1 illustrates two examples. In the example on the left, the graphical output from the
Broadcaster Application is overlaid onto the full-screen video being rendered by the Receiver
Media Player. For the linear A/V service with application enhancement, the Broadcaster
Application may instruct the Receiver Media Player to scale the video, as it may wish to use more
area for graphics. A JSON-RPC message as described in Section 9.6.2 is used to instruct the RMP
to scale and position the video it renders. This scenario is illustrated in the example shown on the
right side of the figure. The Broadcaster Application will likely want to define the appearance of
the screen surrounding the video inset. It can do that by defining the background in such a way
that the rectangular area where the RMP video is placed is specified as transparent.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

10

Composited
Display

Broadcaster App
Graphics

Receiver Media
Player Video

(0%, 0%)

(100%, 100%) (100%, 100%)

(0%, 0%)

yPos

xPos

“div{left:25%:top:40%; width:50%; height:50%;
background-color:transparent}”

xPos=25%, yPos=40%, scaleFactor=50%

“body{background-color:transparent;}” “body{background-color:transparent;}”

mediafeature:width

aspect-ratio:16/9

xPos

yPos
Figure 4.1 Rendering model for application enhancements using RMP.

A Broadcaster Application can expect that the User Agent graphics window, 0,0 to a full 100%
in both axes, maps directly to the RMP logical video display window at its full dimensions. Since
most receiver user interfaces may not conveniently enable scroll bar manipulation, the Broadcaster
Application should consider disabling scroll bars using standard W3C mechanisms in most
situations. Note that the display of closed captioning is directly related to the current audio selected
and is expected to be presented on top of all other content and video. However, the display of
closed captioning is the responsibility of the Receiver.

5. ATSC REFERENCE RECEIVER MODEL

5.1 Introduction
An ATSC 3.0 Reference Receiver Model may be composed of several logical components, which
are described in this section. In practice, several of the given logical components can be combined
into one component or one logical component can be divided into multiple components. Figure
5.1 shows the logical components of an ATSC 3.0 Reference Receiver Model. Although the
software stack shows a layering architecture, it does not necessarily mean one module must use
the layer below to access other modules in the system, with the exception of the Broadcaster
Applications, which are run in the User Agent implementation provided by the Receiver, which
complies with the APIs specified in this specification.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

11

ATSC 3.0 Receiver-
Provided Player

Receiver Media Playback Module

User Agent

Receiver Graphics Engine

MSE/EME

Broadcaster-provided
applications

Receiver
WebSocket Server

Receiver Modules

ws

launch application utilizing receiver-specific APIs

Receiver
Web Server

resources downloaded by broadcast

Figure 5.1 ATSC 3.0 Reference Receiver Model Logical Components.

5.2 User Agent Definition
Receivers shall implement an HTML5 User Agent that complies with all normative requirements
in the W3C HTML5 Specification [30]. In addition, the features described in the following sections
shall be supported.
5.2.1 HTTP Protocols
The User Agent shall implement the HTTP protocols specified in RFC 7230 through RFC 7235,
references [8], [9], [10], [11], [12] and [13]. User Agents shall implement the Web Origin Concept
specification and the HTTP State Management Mechanism specification (Cookies) as well. These
are referenced in [30] as [HTTP], [ORIGIN], and [COOKIES].
5.2.2 Receiver WebSocket Server Protocol
The User Agent shall support the WebSocket protocol per RFC 6455 [18]. See Section 9.3 of the
WHATWG “HTML Living Standard” [45] for more information about the WebSocket protocol.
5.2.3 Cascading Style Sheets (CSS)
The User Agent shall support the text/css media type of the [CSS] reference as defined in [30]
as follows:

1) It must satisfy CSS Level 2 Revision 1 conformance requirements, and
2) If the Receiver implements the capability controls, or is capable of direct interface to a

screen, then it must support the screen CSS media type.
The User Agent shall support the features defined by the following CSS Level 3 modules:

• W3C CSS Background and Borders [22];
• W3C CSS Transforms [27]; and
• The [CSSUI], [CSSANIMATIONS], and [CSSTRANSITIONS] references as defined

in [30].
• CSS Image Values and Replaced Content [CSSIMAGES] in [30]
• CSS Multi-Column Layout [24]
• CSS Namespaces [25]
• CSS Selectors, referenced as [SELECTORS] in [30]
• CSS Text [26]

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

12

• CSS Values and Units [CSSVALUES] in [30]
• CSS Writing Modes [28]

The User Agent shall support the @font-face rule in the context of using the text/css media
type of the [CSSFONTS] in [30].

To allow the Broadcaster Application to adjust the document size to match the device screen
size, the User Agent shall implement CSS3 Media Queries [32], referenced as [MQ] in [30].
5.2.4 HTML5 Presentation and Control: Image and Font Formats
The User Agent shall support the following image formats:

• image/svg media type of the [SVG] reference as defined in [30]
• image/jpeg media type as defined by the [JPEG] reference as defined in [30]
• image/png media type as defined by the [PNG] reference as defined in [30]
• image/gif media type as defined by the [GIF] reference as defined in [30]
The User Agent shall support the application/font-woff media type as defined by W3C in

[35] for use with the @font-face rule, and, more specifically, shall support the OpenType font
format as defined by ISO/IEC 14496-22 [20] when encapsulated in a WOFF file.

The User Agent shall support the application/opentype media type as defined by ISO/IEC
14496-22 [20] for use with the @font-face rule; and, further, shall support any media resource in
such context regardless of its media type, if it can be determined that it (the media resource)
conforms to the OpenType font format defined by ISO/IEC 14496-22 [20].

User Agents are expected to implement reference fonts as specified by IMSC1 [43] Section
7.3. Broadcaster Applications developed with these same reference fonts are reasonably assured
of a consistent text flow without unexpected clipping.
5.2.5 JavaScript
The User Agent shall support JavaScript as defined in the [ECMA262] reference in [30].
5.2.6 2D Canvas Context
The User Agent shall support the “2d” canvas context type as defined by the [CANVAS2D]
reference in [30].
5.2.7 Web Workers
The User Agent shall support the SharedWorkerGlobalScope, DedicatedWorkerGlobalScope, and
related interfaces of the [WEBWORKERS] reference in [30].
5.2.8 XMLHttpRequest (XHR)
The User Agent shall support the XMLHttpRequest and related interfaces of the [XHR] reference
in [30]. In the case of an XHR request where the request URL identifies a broadcast resource, the
request is delivered to the Receiver Web Server, rather than to an Internet web server.
5.2.9 Event Source
The User Agent shall support the EventSource interface and related features of the
[EVENTSOURCE] reference in [30].
5.2.10 Web Storage
The User Agent shall support the WindowSessionStorage interface, WindowLocalStorage
interface, and related interfaces of the [WEBSTORAGE] reference in [30].

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

13

5.2.11 Cross-Origin Resource Sharing (CORS)
The User Agent shall support the [ORIGIN] specification referenced in [30].
5.2.12 Mixed Content
The User Agent shall handle fetching of content over unencrypted or unauthenticated connections
in the context of an encrypted and authenticated document according to the W3C Mixed Content
specification [34] though Broadcaster Applications are encouraged to only reference trusted
content. References to files within the Application Context Cache (see Section 5.3 below) shall be
considered to be “a priori authenticated” in the terminology of W3C Mixed Content. Any resource
accessed from the Application Context Cache shall be considered to have been accessed within a
secure context.
5.2.13 Web Messaging
The User Agent shall support the Web Messaging specification referenced as [WEBMSG] in [30].
5.2.14 Opacity Property
The User Agent shall support the opacity style property of the [CSSCOLOR] as defined in [30].
In addition, it must support the <color> property value type as defined therein in any context that
prescribes use of the CSS <color> property value type.
5.2.15 Transparency
The background of the User Agent’s drawing window is transparent by default. Thus, for example,
if any element in the web page (such as a table cell) includes a CSS style attribute "background-
color: transparent" then video content presented by the Receiver Media Player (see Section
4.2) can be visible. Note that certain areas can be specified as transparent while others are opaque.
5.2.16 Full Screen
As stated in Section 4.2, a Broadcaster Application can expect that the User Agent graphics
window, 0,0 to a full 100% in both axes, maps directly to the RMP logical video display window
at its full dimensions. The “width” media feature of CSS MediaQuery [33] shall align with the
width of the RMP logical video display window. In most viewing conditions, the RMP logical
video display window will fill the entire screen.
5.2.17 Media Source Extensions
The User Agent shall support Media Source Extensions [33].
5.2.18 Encrypted Media Extensions
The User Agent shall support Encrypted Media Extensions [29].

5.3 Origin Considerations
Each file that is delivered via broadband has the usual absolute URL associated with it. Each file
that is delivered via broadcast has a relative URL reference associated with it, signaled in the
broadcast, and it also has one or more Application Context Identifiers associated with it, signaled
in the broadcast. As specified below, Receivers assign to each broadcast file a Base URI that
converts the relative URL reference to one or more absolute URLs, taking its Application Context
Identifier(s) into account.

An Application Context Identifier is a unique URI that determines which resources are
provided to an associated Broadcaster Application by the Receiver. The Application Context
Identifier to be bound to the Broadcaster Application is signaled in the HELD [3]. An Application
Context Identifier may be associated with many Broadcaster Applications however each

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

14

Broadcaster Application shall be associated with a single Application Context Identifier. Each
Application Context Identifier forms a unique conceptual environment in which the Receiver is
expected to comingle resources for use by the associated Broadcaster Applications. This unique
conceptual environment is referred to herein as the Application Context Cache.

The origin of a web resource is defined in RFC 6454 [17]. While the technical description in
RFC 6454 is convoluted to cover the multitude of edge cases, the resultant URIs should be familiar
with a “scheme” portion (e.g., “http”) and an “authority,” typically an IP address or hostname, and
perhaps a port number (e.g., 10.2.12.45:8080). The algorithm used by an ATSC 3.0 receiver to
generate the portion of a URI that determines the origin of a broadcast file shall conform to the
restrictions specified below. Note that a resource from a broadband source has an origin defined
by the web server hosting the resource.

The URI provided by the Receiver shall have the following form for any resource within an
Application Context Cache:

<baseURI>/<pathToResource>
where:

<baseURI> is defined as <scheme>://<authority>[/<pathPrefix>]
<scheme> and <authority> are standard URI elements as defined in RFC 3986 [19],
<pathPrefix> is an optional path prefix prepended to the path; and
<pathToResource> is the relative path supplied by ROUTE (e.g., Content-Location

from the EFDT [1])

As described in Section 6, when delivered via broadcast, a Broadcaster Application is launched
with a URI defined by the Receiver. The Base URI portion of the URI, that is, the portion of the
URI prior to the relative path supplied by ROUTE transmission, shall uniquely correspond to the
Application Context Identifier.

The algorithm used to generate the Base URI for a given Application Context Identifier should
be consistent, that is, the algorithm should repeatedly produce the same URI over time. Thus, the
combination of scheme, authority and path prefix should always be unique. However, Broadcaster
Applications should not rely on the uniqueness by itself of either the origin or path prefix provided
by the Receiver as part of the Entry Page URL. The Broadcaster Application is expected to manage
a local name space for setting cookies and other local User Agent storage elements.

If the current Application Context Identifier remains the same, even though the Entry Page
may change, all of the associated resources shall continue to be available within the Application
Context Cache through the Receiver Web Server. Entry Page changes are signaled by application
signaling as described in Section 6.3.1.

If the Application Context Identifier changes, the Receiver may reuse the Application Context
Cache previously created for that Application Context Identifier or a new cache may be created.
The Receiver may elect to maintain any previous Application Context Cache, albeit unknown to
Broadcaster Applications with differing Application Context Identifiers, on the presumption that
these previous Application Context Caches may be needed soon. Alternatively, the Receiver can
free the resources associated with the previous Application Context Cache. If a file is not cached,
the Receiver Web Server may respond to the request by waiting for the next delivery of the file or
with an error code. File caching decisions are left entirely to the Receiver implementation,
however, attributes associated with Application Context Cache files are intended to provide
prioritization information to the Receiver caching mechanisms (see Section 6.2).

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

15

User Agent

EP2

EP1

EP

EP

Broadcaster
Application

(EP1)

Receiver Web Server

Application Context
Cache A

Application Context
Cache B Application Context

Cache C

Unique Path for
Application Context ID A

Figure 5.2 Application Context Identifier Conceptual Model.

Figure 5.2 provides a conceptual model of how Application Context Identifiers are related to
the Broadcaster Application and broadcast files. The diagram provides an example of how
resources (files and directories) are made available to a Broadcaster Application through the
Receiver Web Server using URIs unique to a given Application Context Identifier. In the figure,
the Broadcaster Application is shown operating in the User Agent having been launched using
Entry Page, EP1. At some point while EP1 is active, application signaling could launch the Entry
Page designated as EP2. In this case, the Application Context Cache A and access to it would
remain constant with the User Agent loaded with EP2. The Receiver may or may not provide
access to the other Application Context Caches corresponding to different Application Context
Identifiers. Broadcaster Applications should restrict access to resources within their own
Application Context Cache as provided by the Receiver, or to the Internet if broadband is available.

Broadcaster Applications delivered on services spanning multiple broadcasts may have the
same Application Context Identifier allowing Receivers with extended caching capabilities to
maintain resources across tuning events. This allows broad flexibility in delivering resources on
multiple broadcasts for related Broadcaster Applications.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

16

6. BROADCASTER APPLICATION MANAGEMENT

6.1 Introduction
A Broadcaster Application is a set of documents comprised of HTML5, JavaScript, CSS, XML,
image and multimedia files that may be delivered separately or together within one or more
packages.

This section describes, how a Broadcaster Application package is
• Downloaded,
• Signaled,
• Launched and
• Managed
Additionally, it describes how a Broadcaster Application can access the resources made

available by the Receiver.
Figure 6.1 diagrams the relationships between various concepts within a generalized reference

receiver architecture—whether distributed, i.e., the Receiver Web Server is in a separate physical
device from the User Agent, or not. It is not intended to define a particular receiver implementation
but to show relationships between the various elements discussed in this section.

ROUTE
Receipt

User Agent

Internet Broadcaster
Application

Broadcast

Application
Context
Cache

Receiver Web Server

Content
Requests

Content
Requests

Launch URL

From
Signaling

Broadband
Download

Figure 6.1 Receiver Conceptual Architecture.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

17

The Broadcaster Application is launched after the Receiver receives application signaling
information (see Section 6.3 below) and then forwards the launch URL to the User Agent, which,
in turn, loads the Broadcaster Application Entry Page from the URL. Note that the URL may point
to an Internet server or to the Receiver Web Server depending on how it is formatted in the service
application signaling, specifically, the HTMLEntryPage@bcastEntryPackageUrl or
HTMLEntryPage@bbandEntryPackageUrl attributes of the HELD [3]. The specific mechanism of
communicating the Broadcaster Application entry URL to the User Agent is a receiver
implementation detail. However, the entry URL has specific arguments that must be provided as
described in Section 8.2.

Once the main Broadcaster Application Entry Page has been loaded, it may begin requesting
content from various local or external URLs. This may be done through JavaScript or standard
HTML5 href requests in the W3C-compliant fashion. It is assumed that any content received over
broadcast via ROUTE file delivery is available through the Application Context Cache and
accessed using the Receiver Web Server. This specification makes no assertions as to how this is
done nor how any cache or storage is implemented. It does, however, describe how the Broadcaster
Application can access the resources using HTTP requests to the Receiver Web Server.

Note that the User Agent supports various local W3C storage mechanisms according to Section
5.2. The User Agent may also perform internal caching of content. The internal W3C-compatible
storage mechanisms implemented within the User Agent should not be confused with the
Application Context Cache shown separately in Figure 6.1. The Broadcaster Application can use
standard W3C interfaces to discover and use the various User Agent storage facilities.

6.2 Application Context Cache Management
6.2.1 Signaling Intent for File Caching
All files delivered over broadcast to the Application Context Cache are carried in multipart/signed
packages as described in A/331 [1] and required by Section 6.5 of this standard. From the ROUTE
standpoint, each package is an opaque file object so the subsequent File elements within the FDT-
Instance element of the EFDT describe only the multipart/signed package object.

A main header is defined within the multipart/signed package that describes various parameters
including the necessary boundary text that delineates files within the package. The file data resides
within these boundary-separated blocks which, in turn, include header elements, referred to herein
as a boundary header, prior to the individual file data, that can provide metadata specific to the file
within the package block.

 To provide a manifest for files contained within the package, a metadataEnvelope, as
defined in A/331 Section 7.1.6, shall be included as the first object in the package. Content shall
not be embedded in the metadataEnvelope; the “referenced” mode shall be used.

Within the metadataEvelope fragment, a metadataEnvelope.item element shall be present
corresponding to each file within the package. The metadataEnvelope.item attributes shall be
interpreted as follows:

• The required @metadataURI attribute shall provide the relative path of the file referenced
by this metadataEnvelope.item. The URI value shall match the relative path supplied in
the Content-Location parameter included as part of the boundary header for the
referenced file. This will provide the relative path of the file within the Application Context
Cache.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

18

• The @version attribute increments when a new version of the referenced file has been
provided in the package. The Receiver shall rely on the @validFrom attribute when
detecting file version changes and can safely ignore the @version attribute.

• The @validFrom attribute shall be required and shall indicate when the referenced file was
last modified. A new version of a file shall be signaled by updating this time stamp within
the metadataEnvelope.item associated with the file. This value shall be provided as the
Last-Modified HTTP header parameter supplied when accessing the file through the
Receiver Web Server unless the boundary header contains an ATSC-HTTP-Attributes
parameter as described in Section 6.2.1.1 that overrides this default. This value shall be
used when calculating the age of the file.

• The date and time supplied in the optional @validUntil attribute shall be used to indicate
when the file is no longer needed and can be released from the Application Context Cache.
The Broadcaster Application can read the expiration time of the file using the Expires
HTTP parameter supplied when accessing the file through the Receiver Web Server unless
the boundary header contains an ATSC-HTTP-Attributes parameter as described in
Section 6.2.1.1 that overrides this default.

• The required @contentType attribute shall provide the MIME type of the referenced file.
This attribute shall match the Content-Type value defined as part of the boundary header
within the package, if provided. Note that the EFDT.FDT-Instance.File also contains a
Content-Type definition but this should always be multipart/signed indicative of the
referenced package object. This value may be accessed through the Content-Type HTTP
header parameter supplied when accessing the file through the Receiver Web Server.

This specification defines an additional attribute that extends the metadataEnvelope.item
specification defined in A/331 [1]. Table 6.1 provides an informative definition of the ATSC
extended attribute when included within a signed package destined for the Application Context
Cache. The normative semantics of the attribute are provided below the table.

Table 6.1 ATSC-Defined Extension to the metadataEnvelope.item Element
Attribute Name Card-

inality
Data

Type
Description

@contentLength 0..1 long Provides the length in bytes of the referenced file. This value may be
accessed through the Content-Length HTTP attribute in a
response to a User Agent request.

@contentLength – The optional @contentLength attribute shall define the length in bytes of the
referenced file within the package. When defined, the length value shall be made available as
part of the Content-Length HTTP header element provided by the Receiver Web Server when
the referenced file is accessed.

6.2.1.1 Boundary Header HTTP Attribute Definition
A boundary header element, ATSC-HTTP-Attributes, may optionally be supplied in the boundary
header of a file within the multipart/signed package. This element provides a list of HTTP header
elements that shall be provided whenever the associated file is requested through the Receiver
Web Server. The syntax of this attribute shall be defined as follows:

attributes := "ATSC-HTTP-Attributes" ":" parameter[";" parameter]*

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

19

Where each parameter is an HTTP header field as described by RFC 7230 [11] except that
the colon, “:”, used by the HTTP header field shall be replaced with an equals sign, “=”, to comply
with constraints imposed by the multipart standard, RFC 2045 [14].
6.2.2 Application Context Cache Hierarchy Definition
All interactive content is carried in signed packages of files and transmitted via ROUTE (Section
6.4). All signed packages whose application signaling denotes a particular Application Context
Identifier shall be provided in a single hierarchy accessible to the Broadcast Application with a
unique Base URI. The Base URI concept and its semantics are described in Section 5.3.

The choice of whether a package or file is immediately stored to the Application Context Cache
on receipt within the ROUTE file stream or if the Receiver chooses to defer storage until the
particular broadcast data element is referenced is a Receiver implementation decision. However,
if the underlying Receiver Web Server cannot provide the requested content, an HTTP status code
within the 400-series Client Error or 500-series Server Error is returned indicating that some
error condition occurred [13]. Typically, this is either 404 Not Found, 408 Request Timeout or
504 Gateway Timeout error, however, Broadcaster Applications should be constructed to deal
with any HTTP status code when referencing resources not contained within their Entry Package.

Similarly, the present document does not specify how frequently packages needed for the
Broadcaster Application are transmitted nor how frequently application signaling metadata is sent.
These decisions depend on several factors such as what time the Broadcaster Application
functionality is actually needed during the program, how quickly the Receiver needs to access the
Broadcaster Application after the service is selected, and the overall bandwidth needed to carry
Broadcaster Application resources, to list a few. These and other factors are likely different for
every Broadcaster Application depending on its overall purpose. The Application Signaling
standard, A/337 [3], requires broadcast packages to be available when the HELD signals the
Broadcaster Application. In addition, A/337 also defines a Distribution Window Description
fragment (DWD) that provides a mechanism to signal when packages will be available in the
broadcast at times other than when the Broadcast Application is signaled in the HELD.

The broadcaster shall be responsible for defining and managing any hierarchy below the
Application Context Cache root directory through use of the directory and path mechanisms,
described in Section 6.2.1 above. Any hierarchy below the Application Context Cache Base URI
level is up to the broadcaster to define.

An example of how such a hierarchy could defined is described below. Figure 6.2 shows an
example of such a hierarchy for BaseURI B.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

20

Cache Root

BaseURI A BaseURI B BaseURI C

Major # 7
Major # 12

Major # 23

Minor # 1 Minor # 2 Minor # 3 Minor # 4

Figure 6.2 Example Application Context Cache Hierachy.

As an example, presume that the broadcaster transmitted the ROUTE data such that the
Broadcaster Application files are placed within the “Minor #2” directory in the hierarchy shown
in Figure 6.2. Further, assume that the Broadcaster Application Entry Page is called "main.html".
To launch the Broadcaster Application, the application signaling in this example provides the
relative URI of "12/2/main.html" in the HTMLEntryPage@bcastEntryPageUrl attribute of the
HELD [3]. Note that the local path is a convention defined by the broadcaster—it could just as
easily have been called "red/green". The actual URL of the Broadcast Application would be:

<BaseURI>/12/2/main.html

Note that the Receiver-created <BaseURI> portion of the URL is highlighted as bold. The
Broadcaster Application would be able to reference any directory corresponding to its
AppContextID hierarchy as designated by the green boxes in Figure 6.2 under the “BaseURI B” box.

The Receiver provides the Base URI information associated with the current Application
Context Identifier to the Broadcaster Application through a Receiver WebSocket Server API (see
Section 9.1.8). Note that this Base URI is available through the normal W3C document object
model (DOM) if the Broadcaster Application is sourced from broadcast. In this case, the
Broadcaster Application can simply access content using relative URLs or constructing full URLs
using Document.location. The WebSocket API is most applicable for Broadcaster Applications
hosted from broadband allowing them to gain access to resources received over broadcast.
6.2.3 Active Service Application Context Cache Priority
Once the packaged resources, known as the Entry Package, of the Broadcaster Application (see
Section 6.3) have been acquired and placed in the Application Context Cache, the Broadcaster
Application can assume that the Entry Package resources, that is, those files delivered along with
the Broadcaster Application Entry Page in a single package, shall remain available as long as the
Broadcaster Application is loaded in the User Agent. If the Receiver cannot provide the entire
Entry Package to the Broadcaster Application reliably, the Broadcaster Application shall not be
launched. This allows broadcasters to determine the required files of their Broadcaster Application
and send them all as one package thereby guaranteeing that those files will be available if the

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

21

Broadcaster Application has been launched. In addition, Receivers are expected to make every
effort to cache files delivered with a particular service for the Broadcaster Application(s)
associated with the current service Entry Package.

Note that the Receiver may have to release other portions of the cache that are not active to
accommodate files in the currently-active hierarchy. Indeed, it may be necessary for the Receiver
to purge the entire cache to accommodate the present active service. Since the user actively
selected the current service, the Receiver assumes that the current service content preempts all
other content from the user perspective.

A Broadcaster Application may limit the amount of cache required by using the Filter Codes
mechanism. Filter Codes provide a way to differentiate application content allowing a Broadcaster
Application to indicate which packages it wishes to be placed in the Application Context Cache
and which packages it wishes to ignore. A set of WebSocket APIs are provided to allow the
Broadcaster Application to manage the Filter Codes (see Section 9.10).

A Broadcaster Application can mark content as unused to hint to a receiver that the resources
are no longer needed. A WebSocket API is provided (see Section 9.8) that allows files or entire
directory hierarchies to be marked as unused. Subsequent access to resources that are marked as
unused shall result in an error. The HELD (A/337 [3]) also provides an attribute,
@clearAppContextCacheDate, associated with the Broadcaster Application that indicates that any
file in the Application Context Cache created before the specified date and time should be
removed. This enables older files present in an Application Context Cache to be marked as
obsolete.
6.2.4 Cache Expiration Time
The @validUntil attribute of a file, as defined in Section 6.2.1, shall indicate that the broadcaster
expects the file to remain in the Application Context Cache until the expiration time has been
reached regardless of whether the Broadcaster Application is currently loaded in the User Agent.
However, the storage requirements of the loaded Broadcaster Application take precedence over
the @validUntil attribute, so the Receiver may be forced to release files from other services prior
to their @validUntil time to provide storage to the current service. The Broadcaster Application
must be prepared to deal with the possibility that a resource may not be available. Receivers may
elect to leave the resource within the Application Context Cache or purge it whenever is convenient
after the @validUntil date and time has been passed, depending on other cache management
criteria.

Note that for resources that are part of the Entry Package, the Broadcaster Application can
assume that those files are available at startup and remain available if the Broadcaster Application
is running regardless of the @validUntil time as described in Section 6.2.3.

6.3 Broadcaster Application Signaling
The ATSC 3.0 Receiver is responsible for retrieving the Broadcaster Application files and
resources from the location and transport mechanism indicated by ATSC 3.0 application signaling
[3]. A service must be successfully selected and, for broadcast resources, where a relative URI is
supplied, the Entry Package shall be completely available within the Application Context Cache
(Section 6.2.2) for the ATSC 3.0 Receiver to launch the Broadcaster Application. For external
broadband references where a full URL is provided, the URL supplied in the
HTMLEntryPage@bbandEntryUrl attribute for the Broadcaster Application section of the HELD [3]
shall be launched directly.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

22

6.3.1 Broadcaster Application Launch
When a new service is selected and a Broadcaster Application entry URL is present in the
application signaling for that service, there are two possible conditions to consider:

1) No Current Broadcaster Application – when there is no Broadcaster Application
currently active in the User Agent, the Receiver shall launch the Broadcaster Application
specified by the relative URI in the application signaling for the new service once the
complete Entry Package has been received and the Application Context Cache is available
for access.

2) Current Broadcaster Application – when there is a Broadcaster Application previously
loaded, the URI and the AppContextID from the present service signaling matches, then
the same Broadcaster Application has been requested. The current Broadcaster Application
shall receive a notification that a new service has been selected via the API described in
Section 9.2.3. It is up to the Broadcaster Application design whether to reload its Entry
Page and restart or remain on the currently-active page.

If the Broadcaster Application URI or the AppContextID from the newly-selected service
application signaling does not match the presently-loaded Broadcaster Application URI or the
AppContextID, the new Broadcaster Application shall be launched as if no previous Broadcaster
Application was loaded.
6.3.2 Broadcaster Application Events (Static / Dynamic)
Actions to be taken by Broadcaster Applications can be initiated by notifications delivered via
broadcast or broadband or, in a redistribution setting, via watermarks. A/337 [3] uses the term
“Events” for such notifications.

Broadcast delivery of events is defined in Section 5.1 of A/337 [3] including delivery for
ROUTE/DASH-based services and MMT-based services.

Broadband delivery of events is defined in Section 5.2 and 5.5 of A/337 [3] including delivery
for ROUTE/DASH-based services and MMT-based services.

Both the broadcast and broadband delivery of events defined in A/337 [3] supports batch
(static) and incremental (dynamic) delivery.

In a redistribution setting, events can be also delivered via video and audio watermarks as
described in Section 5.3 of A/337 [3].

Detailed specification of the WebSocket APIs used to register for and receive event stream
notifications is provided in Section 9.2.9.

6.4 Broadcaster Application Delivery
The file delivery mechanism of ROUTE, described in A/331 [1], provides a means for delivering
a collection of files either separately or as a package over the ATSC 3.0 broadcast. The ROUTE-
delivered files are made available to the User Agent via a Receiver Web Server as described in
Section 6.2. The same collection of files can be made available for broadband delivery by
publishing to a receiver-accessible web server. Furthermore, the application signaling [3]
determines the source of the Broadcast Application Entry Page, and the location of any other files
and packages that are delivered by broadcast:

1) A relative Entry Page URI indicates that the source of the Broadcaster Application Entry
Page is broadcast ROUTE data,

2) An absolute Entry Page URL indicates that the Broadcaster Application Entry Page should
be sourced from broadband,

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

23

3) If any files or packages are delivered by broadcast, the application signaling identifies the
LCT channels that are used to deliver the files and/or packages.

Note that while the initial Entry Page may be sourced from either broadband or broadcast
according to the HTMLEntryPage@bbandEntryPackageUrl or
HTMLEntryPage@bcastEntryPackageUrl attributes in the HELD, there is no constraint regarding
using either broadcast or broadband resources within the Broadcaster Application itself. Hybrid
delivery of Broadcaster Application files is allowed and expected.
6.4.1 Broadcaster Application Packages
The file components comprising the Broadcaster Application shall be delivered within one or more
multi-part MIME packages using ROUTE or over broadband as individual files using HTTPS. All
files made available through the Receiver Web Server shall be delivered as signed packages as
described in A/331[1].

It is not required that all resources used by a Broadcaster Application be delivered in a single
ROUTE package when delivered over broadcast. The broadcaster may choose to send a relatively
small Entry Page in a signed Entry Package which then performs a bootstrapping operation to
determine what other resources have been delivered or are accessible via the broadcast delivery
path and, in turn, which resources need to be obtained using broadband requests. Since the Entry
Package containing the Entry Page shall be received in its entirety before launching the
Broadcaster Application (per Section 6.2.3), the Broadcaster Application can forgo any checks for
basic resources and perhaps speed the initial startup time. It is conceivable that Broadcaster
Applications may have incremental features based on the availability of resources on the Receiver.
In other words, the Broadcaster Application may add features and functions as more resources are
available. Control for selecting specific signed packages to be made available is provided using
the Filter Codes API (see Section 9.10).

In addition, the Broadcaster Application may request resources and content from or perform
other activities with broadband web servers making the Broadcaster Application a true Web
Application in the traditional sense. A Broadcaster Application should be aware that all Receivers
may not contain sufficient storage for all the necessary resources and may not have a broadband
connection.
6.4.2 Broadcaster Application Package Changes
Broadcaster Application resource files and packages may be updated at any time. Mechanisms for
determining that a new file or package is being delivered is defined in FLUTE which is the
underlying standard used by ROUTE [1]. The broadcaster may send an Event Stream notification
to let the Broadcaster Application know that something has been changed. The Broadcaster
Application determines how such changes should be addressed based on the Event Stream
notification.

6.5 Security Considerations
All Broadcaster Application files delivered over the broadcast shall be delivered using the ROUTE
Signed Package mechanism described in A/331 Section A.3.3.5 [1] and A/360 Section 5.2 [5].
A/331 describes the encapsulation of Broadcaster Application files in MIME multipart packages
while A/360 describes the encapsulation of that MIME multipart package into an S/MIME wrapper
to secure the Broadcaster Application files. Files are deemed to be part of the Broadcaster
Application if they will be accessible from the Application Context Cache through the Receiver

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

24

Web Server interface. For Receivers that support signing, it is expected that they will only make
content from correctly-signed packages available through the Receiver Web Server interface.

The Broadcaster Application files may be delivered over broadcast in as many signed packages
as desired – there is no restriction on dividing files among signed packages. In fact, it may be
typical that core functions of the Broadcaster Application are delivered in the Entry Package while
extended content and functionality are delivered in separate packages. In addition, the Filter Codes
mechanisms (see Section 9.10) can be used to select various packages as user preferences or other
selection criteria are discovered. Regardless of how files are partitioned into separate packages,
these packages must be signed per the requirement in the previous paragraph.

Broadcaster Application files delivered over broadband shall be secured using standard W3C
mechanisms. All connections to broadband servers shall use a secure connection as described in
A/360 Section 5.1 [5]. The content received over broadband using a secure connection shall be
considered trusted as if it had been received in a signed package over broadcast.

6.6 Companion Device Interactions
The ATSC 3.0 Companion Device standard (A/338 [37]) specifies how a separate device, known
as the Companion Device (CD), interacts with the Receiver, known as the Primary Device (PD) in
the A/338 standard. Like the present standard, the A/338 standard relies on different JSON object
formats over a WebSocket Interface for the CD Manager APIs that allow the Broadcaster
Application to discover and launch CD applications. These CD Manager APIs also provide a
mechanism for the Broadcaster Application to obtain service end points through a WebSocket
interface that allow CD applications to communicate with the Broadcaster Application. The
Broadcaster Application may support multiple connections by requesting multiple end points. To
use the CD Manager APIs, the Broadcaster Application can obtain the WebSocket URL with the
mechanism defined in Section 8.2.1.

Further details of the Companion Device Interactions regarding the discovery and launch of
Companion Device applications and the application-to-application WebSocket APIs can be found
in the ATSC 3.0 Companion Device standard (A/338 [37]).

7. MEDIA PLAYER
In the ATSC 3.0 Receiver environment, there are two software components that can play out media
content delivered via either broadcast or broadband. For the purposes of this specification, these
two logical components are referred to as Application Media Player (AMP) and Receiver Media
Player (RMP), and these are described further in this section. The AMP is JavaScript code (e.g.,
DASH.js), which is part of an HTML5 Broadcaster Application, while the RMP is receiver-
specific implementation. The AMP uses the video tag and MSE to play out media content
regardless of the content origination or delivery path. Details of the RMP design and
implementation are out of scope for this specification and any design descriptions provided in this
specification are only as informative reference. Whether AMP or RMP is used to play out a media
content, there are several use cases:

• Broadcast or Hybrid Broadband / Broadcast Live Streaming – The content segments
arrive either via broadband or broadcast.

• Broadband Media Streaming – Media content streaming over broadband (on-demand or
linear service).

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

25

• Downloaded Media Content – Media content downloaded over broadcast or broadband
ahead of time. Details of how media content is downloaded over broadband or broadcast
is described in Section 9.3 of this specification.

The type of media streams played depends on signaling in the MPD of live broadcast streams,
or specific Broadcaster Application logic.

The DASH Client specification [39] provides the expectations for behavior of such players and
is not further described here.

7.1 Utilizing RMP
The RMP can be triggered to play out media content streamed over broadcast by receiver logic or
by an explicit request from a Broadcaster Application. These distinctions are further described in
this section.
7.1.1 Broadcast or Hybrid Broadband and Broadcast Live Streaming
When tuned to a new service, the RMP determines whether to play out the media stream or whether
to wait for the Broadcaster Application to determine whether to play out the media stream. The
HTML Entry page Location Description (HELD) specified in A/337 [3] signals which entity
(AMP, RMP) is intended to play the media stream, however receiver logic can choose to play out
the media stream, regardless of what is signaled in HELD. The information in the MPD determines
whether the media stream segments are to be played out from broadcast or from a combination of
broadband and broadcast.
7.1.2 Broadband Media Streaming
The RMP can play out a service delivered by broadband media streaming if the service signaling
indicates a broadband MPD URL, or if the Broadcaster Application requests that the RMP play
out the stream. For the purposes of this document, there is no distinction between play out of live
broadband streaming vs. on-demand over broadband. The differentiation on how the MPD is
organized for these two use cases is described further in the DASH Client specification.
7.1.3 Downloaded Media Content
Depending on the request from the Broadcaster Application, the RMP can play out downloaded
media content that was delivered via broadband or broadcast. The Broadcaster Application can
make such a request using the Set RMP URL WebSocket API as described in Section 9.6.6.

7.2 Utilizing AMP
7.2.1 Broadcast or Hybrid Broadband and Broadcast Live Streaming
Although broadcast or hybrid live media streaming is typically played out by the RMP, it is
possible for the AMP to request playback of the content. A flag in the HELD indicates whether
the RMP can immediately play out the media content, or whether the service expects the AMP to
play out the live media streaming. The Receiver can ignore this signaled expectation, and in which
case the RMP can immediately play out the live media streaming. There are two possible methods
on how an AMP can play out a live media streaming: Pull and Push and they are described in
Sections 7.2.4 and 7.2.5.
7.2.2 Broadband Media Streaming
There is no special consideration for playing a broadband-only delivered media streams other than
what is provided in the DASH client specification.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

26

7.2.3 Downloaded Media Content
The AMP can play out broadband or broadcast downloaded media content. The Broadcaster
Application discovers the MPD URL of the downloaded media content, and initiates play out using
one of the two mechanisms described here and described in Section 9.6.6.
7.2.4 AMP Utilizing the Pull Model
The Pull model behaves the same as if the Receiver was a remote DASH Server. The DASH
specification describes the details on how a DASH server should be implemented.
7.2.5 AMP Utilizing the Push Model
In the push model, the AMP opens the binary WebSocket connections specified in Section 8.2.1.
Opening these WebSocket connections is an implicit request that the Receiver retrieve the
Initialization and Media Segments of the media content and pass them to the AMP via these
connections. The AMP then uses an HTML5 <video> tag in conjunction with MSE to pass the
media content to the Receiver’s decoders for decoding and presentation. In the broadcast case, the
media are retrieved from the broadcast via the ROUTE Client and pushed to the AMP via the
WebSocket server. In the broadband case, the media are retrieved from a remote HTTP server via
the HTTP Client and pushed to the AMP via the WebSocket server. In both cases, a DASH
Streaming Server acts as an intermediary to retrieve the media segments from the ROUTE Client
or HTTP Client and stream them to the Broadcaster App via the WebSocket connections.

8. ATSC 3.0 WEB SOCKET INTERFACE

8.1 Introduction
A Broadcaster Application on the Receiver may wish to exchange information with the Receiver
platform to:

• Retrieve user settings
• Receive an event from the Receiver to the Broadcaster Application

o Notification of change in a user setting
o DASH-style Event Stream event (from broadcaster)

• Request receiver actions
In order to support these functions, the Receiver includes a web server and exposes a set of

WebSocket RPC calls. These RPC calls can be used to exchange information between a
Broadcaster Application running on the Receiver and the Receiver platform. Figure 8.1 shows the
interaction between these components.

In the case of a centralized receiver architecture, the Receiver Web Server typically can be
accessed only from within the Receiver by Broadcaster Applications in the User Agent.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

27

Secure ATSC 3.0 Receiver Software Stack

WebSocket Server running on the ATSC 3.0 Reciever

Broadcaster's HTML application running in the user agent which is
part of the ATSC 3.0 Software Stack

Proprietary
Interface

WebSocket
Server
Interfaces

Registered
events

Asynchronous
request

Asynchronous
Response

Register event
Request

Figure 8.1 Communication with ATSC 3.0 receiver.

One or more ATSC 3.0 WebSocket interfaces are exposed by the Receiver. All Receivers
support a WebSocket interface used for command and control. Some Receivers also support three
additional WebSocket interfaces, one each for video, audio, and caption binary data. The
Broadcaster Application or companion devices can connect to the command and control interface
to retrieve state and settings from the Receiver and perform actions, such as change channels.

8.2 Interface binding
Since the APIs described here utilize a WebSocket interface, the Broadcaster Application can rely
on standard browser functionality to open the connection and no specific functionality needs to be
present in the Broadcaster Application.

In order to communicate with the WebSocket server provided by the Receiver, the Broadcaster
Application needs to know the URL of the WebSocket server. The WebSocket server location may
be different depending on the network topology (e.g., integrated vs. distributed architecture), or it
may be different depending on the Receiver implementation. In order to hide these differences
from the Broadcaster Application, the Broadcaster Application Entry Page URL is launched with
a query term parameter providing information regarding the location of the Receiver WebSocket
Server.

When an Entry Page of a Broadcast Application is loaded on the User Agent, the URL shall
include a query term providing the Base URI of the ATSC 3.0 WebSocket Interface supported by
receivers. Using the ABNF syntax, the query component shall be as defined below:

query = "wsURL=" ws-url

The ws-url is the base WebSocket URI and shall be as defined in RFC 6455 [18].

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

28

The following shows an example of how such a query string can be used in the Broadcaster
Application. In this example, if the Entry Page URL is

http://localhost/xbc.org/x.y.z/home.html

the Broadcaster Application is launched as follows:

http://localhost/xbc.org/x.y.z/home.html?wsURL=wss://localhost2:8000

The wsURL query parameter is added to load an entry page URL of a broadcast-delivered
application. It is expected that a broadband web server would ignore a wsURL query parameter in
the URL of an HTTP request if it were to appear.

The following shows sample JavaScript illustrating how the wsURL parameter can be extracted
from the query string:

function getWSurl () {
 var params = window.location.search.substring(1);
 var result = 'ws://localhost:8080'; // Default value if desired
 params.split("&").some(function (part) {
 var item = part.split("=");
 if (item[0] == 'wsURL') {
 result = decodeURIComponent(item[1]);
 return true;
 }
 })
 return result; // Returns 'wss://localhost:8000'
}

Once the URL of the WebSocket server is discovered in this way, it can be used to open a
connection to the WebSocket server.
8.2.1 WebSocket Servers
All Receivers shall support access to a WebSocket interface used for communication of the APIs
described in Section 9. Receivers which support push-mode delivery of binary media data (video,
audio, and captions) also support three additional WebSocket interfaces, one for each type of media
data. Receivers that support the A/338 Companion Device standard also provide an additional
WebSocket interface that allows communication with the CD Manager within the Receiver (see
Section 6.6). Table 8.1 describes the four interfaces. In the table, the term “WSPath” represents the
value of the wsURL parameter discovered in the procedure above.

Table 8.1 WebSocket Server Functions and URLs
WebSocket Interface Function URL Receiver Support
Command and Control WSPath/atscCmd Required

Video WSPath/atscVid Optional

Audio WSPath/atscAud Optional

Captions WSPath/atscCap Optional

Companion Device WSPath/atscCD Optional

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

29

If an optional WebSocket URL shown in Table 8.1 is not supported, the Receiver shall respond
with the HTTP status code “404 Not Found” when the Broadcaster Application attempts to
connect to the optional interface. Receipt of this status results in the failure of the WebSocket
connection to the particular WebSocket API.

The following shows sample code that implements a connection to the command and control
WebSocket server using the value passed in the wsURL parameter and the getWSurl() function
described above:

function setWebSocketConnection () {
 var wsURL = getWSurl()+'/atscCmd';
 myCmdSocket = new WebSocket(wsURL);
 // New WebSocket is created with URL = 'wsURL/atscCmd'
 // Note the default would be ‘wss://localhost:8080/atscCmd’
 myCmdSocket.onopen ...
}

In the push model, each MPEG DASH Media Segment file delivered via a
Video/Audio/Captions WebSocket interface is delivered in a binary frame of the WebSocket
protocol. The command and control interface uses text frame delivery.
8.2.1.1 Initializing Pushed Media WebSocket Connections
Upon establishment of any of the media WebSocket connections listed in Table 8.1 (atscVid,
atscAud, atscCap), it is expected that the first data sent by the broadcast receiver over such a
connection is a text message (opcode 0x1, as defined in Section 5.2 of IETF RFC 6455 [18]) with
the payload “IS” followed by an Initialization Segment. After the Initialization Segment, the
Receiver is expected to send another text message with payload “IS_end” followed by Media
Segments. If a new Initialization Segment is received after establishment of the media-delivery
WebSocket connection, then the broadcast receiver will send a text message over the same
WebSocket connection with the payload “IS” immediately after the last Media Segment associated
with the previous Initialization Segment. Then the broadcast receiver will send the new
Initialization Segment followed by the text message with payload “IS_end” and then ensuing
Media Segments.
8.2.1.2 Media WebSocket Connection Operation
When a Broadcaster Application requests a connection to a media WebSocket, the Receiver shall
begin sending the appropriate content once the connection is established. The data sent by the
Receiver over a media WebSocket connection is expected to be matched to the type of media
indicated by the WebSocket Interface Function as provided in Table 8.1. Therefore, video
compliant with formatting described in A/331 [1] shall be sent by the Receiver over the WebSocket
identified by the URL WSPath/atscVid. Similarly, audio compliant with formatting described in
A/331 [1] and captions compliant with formatting described in A/331 [1] shall be sent over
WSPath/atscAud and WSPath/atscCap WebSocket connections, respectively. For media
WebSocket connections that are currently open, content may not be sent at all times, for example,
if no captions are present at a given time.

8.3 Data Binding
Once the connection is established to the Receiver WebSocket command and control Server,
messages can be sent and received. However, since the WebSocket interface is just a plain

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

30

bidirectional interface with no structure other than message framing, a message format needs to be
defined. This section defines the basic formatting of messages, and the following section defines
the specific messages that are supported. The message syntax used in this document is defined in
the JSON Schema specification [42].

The WebSocket interface for command and control shall be the JSON-RPC 2.0 Specification
in Annex C. JSON-RPC provides RPC (remote procedure call) style messaging, including
unidirectional notifications and well-defined error handling using the JavaScript Object Notation
(JSON) data structure [16].

The data is always sent as a UTF-8 stringified JSON object. The Receiver shall parse the JSON
object and route the method to the right handler for further processing. Several types of data
messages are defined for the command and control WebSocket interface:

• Request message – used to request information or initiate an action
• Synchronous response – a definitive answer to a request provided immediately
• Asynchronous response – a definitive answer to the request provided asynchronously
• Error response – a definitive error to the request provided
• Notification – unidirectional notification, no synchronous or asynchronous response is

expected
The other three WebSocket interfaces are used for delivery of binary data from the Receiver

to the Broadcaster Application.
The notation used to describe the flow of data in this specification shall be as follows:

--> data sent to Receiver
<-- data sent to Broadcaster Application

Note: The interface is bidirectional, so requests, responses and notifications can be
initiated by either the Receiver or the Broadcaster Application.

Request/response example:

--> {"jsonrpc": "2.0",
 "method": "exampleMethod1",
 "params": 1,
 "id": 1
}

<-- {
 "jsonrpc": "2.0",
 "result": 1,
 "id": 1
}

Notification example:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

31

--> {
 "jsonrpc": "2.0",
 "method": "update",
 "params": [1,2,3,4,5]
}

Error example:

--> {
 "jsonrpc": "2.0",
 "method": "faultyMethod",
 "params": 1,
 "id": 6
}

<-- {
 "jsonrpc": "2.0",
 "error": {"code": -32601, "message": "Method not found"},
 "id": 6
}

8.3.1 Error handling
JSON-RPC 2.0 defines a set of reserved error codes. See the table in Annex C Section 5.1.

ATSC-defined error codes from the Receiver shall be as defined in Table 8.2.

Table 8.2 JSON-RPC ATSC Error Codes

Code Message Meaning

-1 Unauthorized Request cannot be honored due to domain restrictions.
-2 Not enough resources No resources available to honor the request.
-3 System in standby System is in standby. Request cannot be honored.
-4 Content not found Requested content cannot be found. For example, invalid URL.
-5 No broadband connection No broadband connection available to honor the request.
-6 Service not found The requested Service cannot be located.
-7 Service not authorized The requested Service was acquired but is not authorized for viewing

due to conditional access restrictions.
-8 Video scaling/position failed The request to scale and/or position the video did not succeed.
-9 XLink cannot be resolved The request to resolve an XLink has failed.
-10 Track cannot be selected The media track identified in the Media Track Selection API cannot be

found or selected.
-11 The indicated MPD cannot be

accessed
In response to the Set RMP URL API, the MPD referenced in the URL

provided cannot be accessed.
-12 The content cannot be played In response to the Set RMP URL API, the requested content cannot be

played.
-13 The requested offset cannot be

reached
In response to the Set RMP URL API, the offset indicated cannot be

reached (e.g. beyond the end of the file).

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

32

9. SUPPORTED METHODS
This chapter describes the methods that are supported on the command and control WebSocket
Interface. These APIs are based on JSON-RPC 2.0 over WebSockets as described in Section 8.
See above chapters for more information on the interface and data binding. All methods are in a
reverse domain notation separated with a dot “.”. All ATSC methods that are available over the
interface are prefixed with “org.atsc”, leaving room for other methods to be defined for new
receiver APIs in the future.

The Broadcaster Application is expected to gracefully ignore new keys and new values for
existing keys.

Table 9.1 lists the APIs and groups of APIs and indicates whether they are applicable to AMP
operation, RMP operation, or both.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

33

Table 9.1 API Applicability
WebSocket APIs Reference Applicability
Receiver Query APIs Section 9.1 Always
Asynchronous Notifications of Changes Section 9.2 Always
Cache Request APIs Section 9.3 Always
Query Cache Usage API Section 9.4 Always
Event Stream APIs Section 9.5 RMP
Acquire Service API Section 9.6.1 Always
Video Scaling and Positioning API Section 9.6.2 RMP
XLink Resolution API Section 9.6.3 RMP
Subscribe MPD Changes API Section 9.6.4 AMP
Unsubscribe MPD Changes API Section 9.6.5 AMP
Set RMP URL API Section 9.6.6 RMP
Audio Volume API Section 9.6.7 RMP
Subscribe Alerting Changes Section 9.6.8 Always
Unsubscribe Alerting Changes Section 9.6.9 Always
Subscribe Content Changes Section 9.6.10 Always
Unsubscribe Content Changes Section 9.6.11 Always
Subscribe RMP Media Time Change Notification Section 9.6.12 RMP
Unsubscribe RMP Media Time Change Notification Section 9.6.13 RMP
Subscribe RMP Playback State Change Notification Section 9.6.14 RMP
Unsubscribe RMP Playback State Change Notification Section 9.6.15 RMP
Subscribe RMP Playback Rate Change Notification Section 9.6.16 RMP
Unsubscribe RMP Playback Rate Change Notification Section 9.6.17 RMP
Media Track Selection API Section 9.7 RMP
Mark Unused API Section 9.8 Always
Content Recovery APIs Section 9.9 Always
Filter Code APIs Section 9.10 Always
Keys APIs Section 9.11 Always
Query Device Info API Section 9.12 Always
RMP Content Synchronization APIs Section 9.13 RMP

9.1 Receiver Query APIs
The Receiver software stack exposes a set of WebSocket APIs to the Broadcaster Application to
retrieve user settings and information, as described in the following sections.

If these settings are not available from the Receiver, the Broadcaster Application may use
default values based on its own business policy and logic. A Broadcaster Application may choose
to provide its own settings user interface and store the collected setting as cookies on the Receiver.

The following settings and information may be retrieved by a Broadcaster Application:
• Content Advisory Rating setting
• State of Closed Caption display (enabled/disabled)
• Current Service ID
• Language preferences (Audio, User Interface, Captions, etc.)
• Closed Caption Display Preferences (font sizes, styles, colors, etc.)
• Audio Accessibility preferences

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

34

• A URL the Broadcaster Application can use to fetch the current broadcast MPD
• Receiver Web Server URI to access the corresponding Application Context Cache
The following APIs are defined to allow Broadcaster Applications to retrieve these settings

and information.
9.1.1 Query Content Advisory Rating API
Broadcaster Applications may wish to know the highest content advisory rating the viewer has
unlocked on a receiver, in order to decide what applications, links or text within a page to make
available to the user. For example, the Broadcaster Application can use this rating to decide
whether a description of a program should be presented to the viewer. If the rating is changed on
the Receiver, the Receiver shall send an event notification to the Broadcaster Application,
indicating so, if the Receiver supports this setting. If the Receiver does not make this information
available, the Broadcaster Application may choose a default value based on its own business logic
and policy.

The Query Content Advisory Level API shall be defined as follows:
method: "org.atsc.query.ratingLevel"
params: Omitted

Response:
result: a JSON object containing a rating key/value pair
result JSON Schema:

{
 "type": "object",
 "properties": {
 "rating": {"type": "string"}
 },
 "required": ["rating"]
}

Rating – This required string shall provide the content advisory rating in string format, as defined
in A/331 [1], Section 7.3.
For example, consider the case that the rating setting is TV-PG-D-L for the US Rating Region

1. The Broadcaster Application can make a request:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.ratingLevel",
 "id": 37
}

The Receiver would respond with:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

35

<-- {
 "jsonrpc": "2.0",
 "result": {"rating": "1,'TV-PG-D-L', {0 'TV PG'}{1 'D'}{2 'L'}"},
 "id": 37
}

9.1.2 Query Closed Captions Enabled/Disabled API
The Broadcaster Application may wish to know whether the user has turned on closed captions, in
order to display its application graphics at a different location than where the closed caption is
typically presented. The Broadcaster Application requests the closed caption setting from the
Receiver via Receiver WebSocket Server interface.

The Receiver sends an event when the user enables or disabled the closed captioning to the
running Broadcaster Application.

The Query Closed Captions Enabled/Disabled API shall be defined as follows:
method: "org.atsc.query.cc"
params: Omitted

Response:
result: a JSON object containing a ccEnabled key/value pair.
result JSON Schema:

{
 "type": "object",
 "properties": {
 "ccEnabled": {"type": "boolean"}
 },
 "required": ["ccEnabled"]
}

ccEnabled – This required Boolean shall indicate true if closed captions are currently enabled by
the user and false otherwise
For example, if closed captions are currently enabled:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.cc",
 "id": 49
}

The Receiver would respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {"ccEnabled": true},
 "id": 49
}

9.1.3 Query Service ID API
Since the same application may be used for multiple services within the same broadcast family,
the Broadcaster Application may wish to know which exact Service has initiated the application.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

36

This allows the Broadcaster Application to adjust its user interface and provide additional features
that might be available on one service vs. another.

The Query Service ID API shall be defined as follows:
method: "org.atsc.query.service"
params: Omitted

Response:
result: a JSON object containing a service key/value pair.
result JSON Schema:

{
 "type": "object",
 "properties": {
 "service": {"type": "string","format": "uri"}},
 "required": ["service"]
}

service – This required key shall indicate the globally unique Service ID associated with the
currently selected service as given in the SLT in SLT.Service@globalServiceID. See A/331
[1] Section 6.3.
For example, if the globally unique Service ID for the currently selected services is

"http://xbc.tv/wxbc-4.2", and the Broadcaster Application issues a request to the Receiver:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.service",
 "id": 55
}

The Receiver would respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {"service": "http://xbc.tv/wxbc-4.2"},
 "id": 55
}

9.1.4 Query Language Preferences API
Broadcaster Application may wish to know the language settings in the Receiver, including the
language selected for audio output, user interface displays, and subtitles/captions. The Broadcaster
Application may use the Query Language Preferences API to determine these settings.

The Query Language Preferences API shall be defined as follows:
method: "org.atsc.query.languages"
params: Omitted

Response:
result: a JSON object containing an object with three key/value pairs as defined below.
result JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

37

{
 "type": "object",
 "properties": {
 "preferredAudioLang": {"type": "string"},
 "preferredUiLang": {"type": "string"},
 "preferredCaptionSubtitleLang": {"type": "string"}
 }
}

preferredAudioLang, preferredUiLang, preferredCaptionSubtitelLang – Each of these
strings indicates the currently set language preference of the respective item, coded according
to RFC 5646 [15].
For example, the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.languages",
 "id": 95
}

Moreover, if the user lives in the U.S. but has set his or her language preference for audio
tracks and caption/subtitles to Spanish, the Receiver might respond:

<-- {
 "jsonrpc": "2.0",
 "result": {
 "preferredAudioLang": "es",
 "preferredUiLang": "en",
 "preferredCaptionSubtitleLang": "es"
 },
 "id": 95
}

9.1.5 Query Caption Display Preferences API
The Broadcaster Application may wish to know the user's preferences for closed caption displays,
including font selection, color, opacity and size, background color and opacity, and other
characteristics. The Broadcaster Application may use the Query Caption Display Preferences API
to determine these settings.

The Query Caption Display Preferences API shall be defined as follows:
method: "org.atsc.query.captionDisplay"
params: Omitted

Response:
result: a JSON object containing an object with key/value pairs as defined below.
result JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

38

{
 "type": "object",
 "properties": {
 "708-characterColor": {"type": "string"},
 "708-characterOpacity": {"type": "number"},
 "708-characterSize": {"type": "integer"},
 "708-fontStyle": {"enum": [
 "Default",
 "MonospacedSerifs",
 "PropoortionalSerifs",
 "MonospacedNoSerifs",
 "ProportionalNoSerifs",
 "Casual",
 "Cursive",
 "SmallCaps"
]},
 "708-backgroundColor": {"type": "string"},
 "708-backgroundOpacity": {"type": "number"},
 "708-characterEdge": {"enum": [
 "None",
 "Raised",
 "Depressed",
 "Uniform",
 "LeftDropShadow",
 "RightDropShadow"
]},
 "708-characterEdgeColor": {"type": "string"},
 "708-windowColor": {"type": "string"},
 "708-windowOpacity": {"type": "number"}
 },
 "required": ["msgType"]
}

The semantics for the key/value pairs in the "properties" object shall be the same as for the
Caption Display Preferences Change Notification API in Section 9.2.6. In addition, IMSC1 [43]
and manufacturer private extensions as specified in Sections 9.2.6.1 and 9.2.6.2 may be included.

For example, if the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.captionDisplay",
 "id": 932
}

The Receiver might respond:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

39

<-- {
 "jsonrpc": "2.0",
 "result": {
 "msgType": "captionDisplayPrefs",
 "708-characterColor": "#F00000",
 "708-characterOpacity": 0.5,
 "708-characterSize": 80,
 "708-fontStyle": "MonospacedNoSerifs",
 "708-backgroundColor": "#808080",
 "708-backgroundOpacity": 0,
 "708-characterEdge": "None",
 "708-characterEdgeColor": "#000000",
 "708-windowColor": "#000000",
 "708-windowOpacity": 0,
 "imsc1-region-textAlign": "center",
 "imsc1-content-fontWeight": "bold",
 "x-F099BF-luminanceGain": "3.8"
 },
 "id": 932
}

9.1.6 Query Audio Accessibility Preferences API
The Broadcaster Application may wish to know the audio accessibility settings in the Receiver,
including whether the automatic rendering of the following is enabled: video description service,
audio/aural representation of emergency information and what are the corresponding language
preferences. The Broadcaster Application may use the Query Audio Accessibility Preferences API
to determine these settings.

The Query Audio Accessibility Preferences API shall be defined as follows:
method: "org.atsc.query.audioAccessibility"
params: Omitted

Response:
result: a JSON object containing an object as defined below.
result JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

40

{
 "type": "object",
 "properties": {
 "videoDescriptionService": {
 "type": "object",
 "properties": {
 "enabled": {"type": "boolean"},
 "language": {"type": "string"}
 }
 },
 "audioEIService": {
 "type": "object",
 "properties": {
 "enabled": {"type": "boolean"},
 "language": {"type": "string"}
 }
 }
 }
}

videoDescriptionService.enabled, audioEI.enabled – Each of these Boolean values
respectively indicate the currently state of automatic rendering preference of video description
service (VDS), audio/aural representation of emergency information.

videoDescriptionService.language – A string indicating the preferred language of VDS
rendering, coded according to RFC 5646 [15].

audioEI.language – A string indicating the preferred language of audio/aural representation of
emergency information rendering, coded according to RFC 5646 [15].
When a Receiver does not have the setting for videoDescriptionService.enabled,

videoDescriptionService.language, audioEI.enabled, audioEI.language then it is
expected that the response does not include the corresponding property.

For example, the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.audioAccessibility",
 "id": 90
}

In addition, if the user has set his or her automatic rendering preference setting of video
description service set to ON and the Receiver does not have rest of the settings, then the Receiver
might respond:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

41

<-- {
 "jsonrpc": "2.0",
 "result": {
 "videoDescriptionService": {
 "enabled": true
 }
 },
 "id": 90
}

9.1.7 Query MPD URL API
The Broadcaster Application may wish to access the current broadcast DASH MPD. The Query
MPD URL API returns a URL the Broadcaster Application can use to retrieve (for example, by
XHR) the MPD.

The Request MPD URL API shall be defined as follows:
method: "org.atsc.query.MPDUrl"
params: Omitted

Response:
result: a JSON object containing an object as defined below.
result JSON Schema:

{
 "type": "object",
 "properties": {
 "MPDUrl": {"type": "string"}
 },
 "required": ["MPDUrl"]
}

MPDUrl – A fully-qualified URL that can be used by the Receiver, for example in an XHR request,
to retrieve the current broadcast MPD.
For example, the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.MPDUrl",
 "id": 913
}

The Receiver might respond:

<-- {
 "jsonrpc": "2.0",
 "result": {"MPDUrl": "http://127.0.0.1:8080/10.4/MPD.mpd"},
 "id": 913
}

9.1.8 Query Receiver Web Server URI API
The Broadcaster Application may wish to access the location of the Application Context Cache
provided by the Receiver. This conceptual cache provides access to resources delivered under the

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

42

auspices of the Application Context Identifier defined for the currently-loaded Broadcaster
Application. These are made available through the Receiver Web Server using a Base URI (see
Section 5.3). This API provides access to that URI.

The Receiver Web Server URI API shall be defined as follows:
method: "org.atsc.query.baseURI"
params: Omitted

Response:
result: a JSON object containing an object as defined below.
result JSON Schema:

{
 "type": "object",
 "properties": {
 "baseURI": {"type": "string","format": "uri"}
 },
 "required": ["baseURI"]
}

rwsURI – This return parameter shall contain the URI where the resources associated with the
Application Context Identifier may be accessed.
For example, the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.baseURI",
 "id": 90
}

The Receiver responds with the URI of the Receiver Web Server for the Application Context
Cache defined for the current Application Context Identifier:

<-- {
 "jsonrpc": "2.0",
 "result": {
 "baseURI": "http://localhost:8080/contextA"
 },
 "id": 90
}

The resulting URI can be prepended to relative references to resources to access those
resources on the Receiver.
9.1.9 Query Alerting URL API
The Broadcaster Application may wish to access the various alerting metadata structures from the
current broadcast. The Query Alerting URL API returns a list of URLs the Broadcaster Application
can use to retrieve (for example, by XHR) the specific alerting metadata it has requested.

The Request Alerting URL API shall be defined as follows:
method: "org.atsc.query.alertingUrl"

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

43

params: A JSON object consisting of a key named alertingTypes with a list of
enumerated values. An empty list is equivalent to supplying all values.

params JSON Schema:

{
 "type": "object",
 "properties": {
 "alertingTypes": {
 "type": "array",
 "items": {"type": "string","enum": ["AEAT","OSN"]
 }
 }
 },
 "required": ["alertingTypes"]
}

alertingTypes – An array of one or both of the alerting types as follows:
AEAT – Requests a URL referencing the most recent AEAT.
OSN – Requests a URL referencing the most recent OSN.

Response:
result: a JSON object containing a list of references as defined below.
result JSON Schema:

{
 "type": "object",
 "properties": {
 "urlList": {"type": "array", "items": {
 "alertingType": {"type": "string", "enum": ["AEAT", "OSN"]},
 "alertingUrl": {"type": "string","format": "url"},
 "receiveTime": {"type": "string","format": "date-time"},
 "required": ["alertingType", "alertingUrl"] }
 }
 },
 "required": ["urlList"]
}

alertingType – One of the alerting types. The corresponding alertingUrl can be used to access
the data corresponding to the type of alerting metadata fragment indicated.

alertingUrl – A fully-qualified URL that can be used by the Broadcaster Application, for
example in an XHR request, to retrieve the current broadcast alerting metadata for the
associated alertingType. Alerting is delivered in XML fragments whose syntax is defined in
A/331 [1].

receiveTime – The date/time the alerting fragment was received. This value shall be provided
when the object is “OSN”. (Note: The OnscreenMessageNotification element includes a
KeepScreenClear@notificationDuration attribute which is the duration of the
KeepScreenClear message starting from the time the OSN was received. Thus, the time the

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

44

OSN was received is necessary for the Broadcaster Application to fully utilize the OSN
information.)
For example, the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.alertingUrl",
 "params": {
 "alertingTypes": ["AEAT", "OSN"]
 },
 "id": 913
}

The Receiver might respond:

<-- {
 "jsonrpc": "2.0",
 "result": {
 "urlList": [
 { "alertingType": "AEAT",
 "alertingUrl": "http://127.0.0.1:8080/.lls/AEAT.xml" },
 { "alertingType": "OSN",
 "alertingUrl": "http://127.0.0.1:8080/.lls/OSN.xml",
 "receiveTime": "2017-01-01T23:54:59.590Z" }
]
 },
 "id": 913
}

It should be noted that the AEAT.xml and OSN.xml files referenced contain the AEAT and
OSN XML fragments as described in A/331 [1], respectively. The Receiver shall extract the XML
fragment from the binary LLS table and GZIP encoding.

9.2 Asynchronous Notifications of Changes
The types of notifications that the Receiver shall provide to the Broadcaster Application through
the APIs defined in this section are as specified in Table 9.2. All use a method of
org.atsc.notify and include a parameter called "msgType" to indicate the type of notification.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

45

Table 9.2 Asynchronous Notifications
msgType Event Description Reference
ratingChange Parental Rating Level Change – a notification that is

provided whenever the user changes the parental blocking
level in the Receiver.

Sec. 9.2.1

ratingBlock Rating Block Change – a notification that is provided
whenever the user changes the parental blocking level in
the Receiver such that the currently decoding program
goes from blocked to unblocked, or unblocked to blocked.

Sec. 9.2.2

serviceChange Service Change – a notification that is provided if a different
service is acquired due to user action, and the new service
signals the URL of the same application.

Sec. 9.2.3

captionState Caption State – a notification that is provided whenever the
user changes the state of closed caption display (either off
to on, or on to off).

Sec. 9.2.4

languagePref Language Preference – a notification that is provided
whenever the user changes the preferred language.

Sec. 9.2.5

CCDisplayPref Closed Caption display properties preferences. Sec. 9.2.6
AudioAccessPref Audio Accessibilities preferences. Sec. 9.2.7
MPDChange Notification of a change to the broadcast MPD. Sec. 9.2.8
contentRecoveryStateChange Content Recovery State Change – a notification that is

provided whenever use of audio watermark, video
watermark, audio fingerprint, and/or video fingerprint for
content recovery changes.

Sec. 9.9.4

displayOverrideChange Display Override Change – a notification that is provided if
the display override state or the state of blocked
application access to certain resource changes.

Sec. 9.9.5

recoveredComponentInfoChange

Recovered Component Info Change – a notification that is
provided if a component of the service being received by
the Receiver changes at the upstream.

Sec. 9.9.6

rmpMediaTimeChange RMP Media Time Change – a notification that is provided
periodically during playback.

Sec.
9.13.5

rmpPlaybackStateChange RMP Playback State Change – a notification that is provided
if the playback state changes.

Sec.
9.13.6

rmpPlaybackRateChange RMP Playback Rate Change – a notification that is provided
if playback speed changes.

Sec.
9.13.7

9.2.1 Rating Change Notification API
The Rating Change Notification API shall be issued by the Receiver to the currently executing
Broadcaster Application if the user makes any change to the parental rating level in the Receiver.

The Rating Change Notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of a key named msgType with value "ratingChange"

and a key/value pair named "rating" representing the new rating value setting.
params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

46

{
 "type": "object",
 "properties": {
 "msgType": {"type": "string","enum": ["ratingChange"]},
 "rating": {"type": "string"}
 },
 "required": ["msgType","rating"]
}

No reply from the Broadcaster Application is expected from this notification, hence the "id"
term is omitted.

The rating string shall conform to the encoding specified in A/331 [1], Section 7.3.
As an example, if the user changes the rating to "TV-PG-D" in the US system (Rating Region

1), then the Receiver would issue a notification to the Broadcaster Application with the new rating
level as follows:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "ratingChange",
 "rating": "{1,'TV-PG-D', {0 'TV PG'}{1 'D'}"
 },
}

9.2.2 Rating Block Change Notification API
The Rating Block Change Notification API shall be issued by the Receiver to the currently
executing Broadcaster Application if the user makes a change to the parental blocking level in the
Receiver that results in a change to the rating blocking of the currently displayed service, either
from unblocked to blocked or vice versa.

The Rating Block Change Notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of a key named msgType with value "ratingBlock"

and a key named "blocked" with a Boolean value representing the state of blocking
after the user action.

params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {"type": "string","enum": ["ratingBlock"]},
 "blocked": {"type": "boolean"}
 },
 "required": ["msgType","blocked"]
}

No reply from the Broadcaster Application is expected from this notification, hence the "id"
term is omitted.

An example in which the state of program blocking has gone from unblocked to blocked:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

47

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "ratingBlock",
 "blocked": true,
 }
,}

9.2.3 Service Change Notification API
The Service Change Notification API shall be issued by the Receiver to the currently executing
Broadcaster Application if the user changes to another service also associated with the same
Broadcaster Application. Note that if the user changes to another service not associated with the
same Broadcaster Application, or the new service has no signaled Broadcaster Application, no
serviceChange event is fired.

The Service Change Notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of a key named msgType with value "serviceChange"

and a key named "service" with a string indicating URI of the new service.
params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {"type": "string","enum": ["serviceChange"]},
 "service": {"type": "string"}
 },
 "required": ["msgType","service"]
}

No reply from the Broadcaster Application is expected from this notification, hence the "id"
term is omitted.

The service string shall consist of the globally unique Service ID associated with the newly
selected service as given in SLT.Service@globalServiceID. See A/331 [1] Section 6.3.

In the following example, the user has caused a service change to a service with a globally
unique Service ID "http://xbc.tv/wxbc-4.2":

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "serviceChange",
 "service": "http://xbc.tv/wxbc-4.2"
 }
}

9.2.4 Caption State Change Notification API
The Caption State Change notification API shall be issued by the Receiver to the currently
executing Broadcaster Application if the user turns captions on or off.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

48

The Caption State Change notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of a key named msgType with value "captionState"

and a key named "captionDisplay" with a Boolean value representing the new state
of closed caption display.

params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {"type": "string", "enum": ["captionState"]},
 "captionDisplay": {"type": "boolean"}
 },
 "required": ["msgType","captionDisplay"]
}

No reply from the Broadcaster Application is expected from this notification, hence the "id"
term is omitted.

For example, the Receiver notifies the Broadcaster Application that caption display has been
turned on:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.event.notify",
 "params": {
 "msgType": "captionState",
 "captionDisplay": true
 }
}

9.2.5 Language Preference Change Notification API
The Language Preference Change notification API shall be issued by the Receiver to the currently
executing Broadcaster Application if the user changes the preferred language applicable to either
audio, user interfaces, or subtitles/captions.

The Language Preference Change notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of a key named msgType with value "langPref" and

one or more key/value pairs described below.
params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

49

{
 "type": "object",
 "properties": {
 "msgType": {"type": "string", "enum": ["langPref"]},
 "preferredAudioLang": {"type": "string"},
 "preferredUiLang": {"type": "string"},
 "preferredCaptionSubtitleLang": {"type": "string"}
 },
 "required": ["msgType"]
}

preferredAudioLang, preferredUiLang, preferredCaptionSubtitelLang – Each of these
strings indicate the preferred language of the respective item, coded according to RFC 5646
[15]. At least one key/value pair shall be present.
No reply from the Broadcaster Application is expected from this notification, hence the "id"

term is omitted.
For example, if the user has changed the preferred language of the captions to French as spoken

in Canada:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "langPref",
 "preferredCaptionSubtitleLang": "fr-CA"}
 }
}

9.2.6 Caption Display Preferences Change Notification API
The Caption Display Preferences Change notification API shall be issued by the Receiver to the
currently executing Broadcaster Application if there are changes in preferences for display of
closed captioning. The API syntax shall be as defined in the JSON schema specified in this section
with the addition of IMSC1 [43] attributes (as defined in A/343 [4]) and manufacturer-private
extensions as specified in Sections 9.2.6.1 and 9.2.6.2 respectively. Both are defined by prose in
subsections below but intended to be an integral part of the JSON Schema in this section within
the displayPrefs object.

The Caption Display Preferences Change notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of a key named msgType with value

"captionDisplayPrefs" and a number of keys describing various aspects of the
preferences, as defined below.

params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

50

{
 "type": "object",
 "properties": {
 "msgType": {"enum": ["captionDisplayPrefs"]},
 "displayPrefs": {
 "type": "object",
 "properties": {
 "708-characterColor": {"type": "string"},
 "708-characterOpacity": {"type": "number"},
 "708-characterSize": {"type": "integer"},
 "708-fontStyle": {"enum": [
 "Default",
 "MonospacedSerifs",
 "PropoortionalSerifs",
 "MonospacedNoSerifs",
 "ProportionalNoSerifs",
 "Casual",
 "Cursive",
 "SmallCaps"
]},
 "708-backgroundColor": {"type": "string"},
 "708-backgroundOpacity": {"type": "number"},
 "708-characterEdge": {"enum": [
 "None",
 "Raised",
 "Depressed",
 "Uniform",
 "LeftDropShadow",
 "RightDropShadow"
]},
 "708-characterEdgeColor": {"type": "string"},
 "708-windowColor": {"type": "string"},
 "708-windowOpacity": {"type": "number"}
 }
 }
 },
 "required": ["msgType","displayPrefs"]
}

displayPrefs – This required object shall provide one or more of the closed caption display
preferences to follow.

708-characterColor – This parameter is a string that shall represent the color of the characters.
The color value shall conform to the encoding for color as specified in the W3C
recommendation for CSS3 color [23] using the “#” 24-bit sRGB notation. For example, red is
represented as "#FF0000".

708-characterOpacity – This parameter is an integer or fixed-point number in the range 0 to 1
inclusive that shall represent the opacity of the characters. For example, a value of .33 shall
mean 33% opaque; a value of 0 shall mean completely transparent.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

51

708-characterSize – This parameter is a percentage multiplier of the default font size where 100
has no change, 50 is ½ size and 200 is double the size. The syntax and semantics are consistent
with IMSC1 as defined in A/343 [4].

708-fontStyle – This string shall indicate the style of the preferred caption font. The eight
possible choices are as specified in CTA-708 [38] Section 8.5.3:
• "Default" (undefined)
• "MonospacedSerifs" – Monospaced with serifs (similar to Courier)
• "ProportionalSerifs" – Proportionally spaced with serifs (similar to Times New Roman)
• "MonospacedNoSerifs" – Monospaced without serifs (similar to Helvetica Monospaced)
• "ProportionalNoSerifs" – Proportionally spaced without serifs (similar to Arial and Swiss)
• "Casual" – Casual font type (similar to Dom and Impress)
• "Cursive" – Cursive font type (similar to Coronet and Marigold)
• "SmallCaps" – Small capitals (similar to Engravers Gothic)

708-backgroundColor – This parameter represents the color of the character background, given
in the same CSS-compatible format as 708-characterColor.

708-backgroundOpacity – This parameter is an integer or fixed-point number in the range 0 to 1
that shall represent the opacity of the character background. A value of 1 shall mean 100%
opaque; a value of 0 shall mean completely transparent.

708-characterEdge – This parameter shall indicate the preferred display format for character
edges. The preferred color of the edges (or outlines) of the characters are as given in
708-characterEdgeColor. Edge opacities have the same attribute as the character foreground
opacities. The choices and their effects on the character display are as specified in CTA-708
[38] Section 8.5.8: "None", "Raised", "Depressed", "Uniform", "LeftDropShadow", and "RightDropShadow".

708-characterEdgeColor – This parameter represents the color of the character edges, if
applicable, given in the same format as 708-characterColor.

708-windowColor – This parameter represents the color of the caption window background, given
in the same format as 708-characterColor.

708-windowOpacity – This parameter is a number in the range 0 to 1 that shall represent the
opacity of the caption window. A value of 1 shall mean 100% opaque; a value of 0 shall mean
completely transparent.
No reply from the Broadcaster Application is expected from this notification, hence the "id"

term is omitted.
9.2.6.1 IMSC1 Extensions
The key/value pairs defined in this section provide a means to represent any IMSC1 (as defined in
A/343 [4]) attribute preference beyond the 708 preferences.

The key/value pairs for IMSC1 preferences shall take the form:

"<imsc1-key>": "<imcs1-value>"

The syntax of the <imsc1-key> shall be as specified below using the Augmented Backus-Naur
Form (ABNF) grammar defined in RFC 5234 [7]:

<imsc1-key> = "imsc1-" + ("region-" / "content-") + imsc1-attribute

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

52

imsc1-attribute – This part shall be the name of any IMSC1-defined attribute.
<imsc1-value> – The value data type range of values and their encodings shall be those supported

by IMSC1 for the attribute named in imsc1-attribute.
The second part of <imsc1-key> shall indicate "region-" when the <imsc1-value> applies

to regions, and "content-" when it applies to content (text).
Valid examples of <imsc1-key> are "imsc1-region-backgroundColor" and

"imsc1-content-backgroundColor" indicating the background color of either a region or of
content (text), respectively.
9.2.6.2 Manufacturer Private Extensions
The key/value pairs defined in this section define a means to represent any manufacturer-defined
extension.

The key/value pairs for manufacturer private extensions shall take the form:

"<manufacturer-key>": "<manufacturer-value>"

The syntax of the <manufacturer-key> shall be as specified below using the Augmented
Backus-Naur Form (ABNF) grammar defined in RFC 5234 [7]:

<manufacturer-key> = "x-" + manufacturer-OUI + "-" private-string

manufacturer-OUI – This part shall be the manufacturer’s 24-bit IEEE OUI (see IEEE
Registration Authority [40]) encoded in hexadecimal, without colon separators.

private-string – A manufacturer-defined string. The value data type, range and encoding is
manufacturer-defined.
An example key for a manufacturer that owns the OUI "FO:99:BF" is

"x-F099BF-luminanceGain" which could, for example, provide a value to alter the relative
brightness of (sRGB) caption text over HDR video, something not yet supported by IMSC1.
9.2.6.3 Example
For example, the Receiver notifies the Broadcaster Application that the user has changed their
caption display preferences to red text on gray background. All the available 708 parameters are
provided, and two IMSC1 parameters and one manufacturer private parameter are included in this
example:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

53

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.event.notify",
 "params": {
 "msgType": "captionDisplayPrefs",
 "displayPrefs": {
 "708-characterColor": "#FF0000",
 "708-characterOpacity": 0.5,
 "708-characterSize": 100,
 "708-fontStyle": "MonospacedSerifs",
 "708-backgroundColor": "#808080",
 "708-backgroundOpacity": 0.25,
 "708-characterEdge": "Raised",
 "708-characterEdgeColor": "#000000",
 "708-windowColor": "#000000",
 "708-windowOpacity": 0,
 "imsc1-region-textAlign": "center",
 "imsc1-content-fontWeight": "bold",
 "x-F099BF-luminanceGain": "3.8"
 }
}

9.2.7 Audio Accessibility Preference Change Notification API
The Audio Accessibility Preference Change notification API shall be issued by the Receiver to the
currently executing Broadcaster Application if the user changes accessibility settings for either
video description service and/or audio/aural representation of emergency information (EI).

The Accessibility Preference Change notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of a key named msgType with value

"audioAccessibilityPref" as described below.
params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

54

{
 "type": "object",
 "properties": {
 "msgType": {"type": "string", "enum": ["audioAccessibilityPref"]},
 "videoDescriptionService": {
 "type": "object",
 "properties": {
 "enabled": {"type": "boolean"},
 "language": {"type": "string"}
 },
 "required": ["enabled"]
 },
 "audioEIService": {
 "type": "object",
 "properties": {
 "enabled": {"type": "boolean"},
 "language": {"type": "string"}
 },
 "required": ["enabled"]
 }
 },
 "required": ["msgType"], "minProperties": 2
}

videoDescriptionService.enabled – A Boolean value representing the new state of video
description service (VDS) rendering.

videoDescriptionService.language – A string indicating the preferred language of VDS
rendering, coded according to RFC 5646 [15]. This property shall be present in the notification
when videoDescriptionService.enabled is equal to true and the preferred language of
VDS rendering is available at the Receiver.

audioEIService.enabled – A Boolean value representing the new state of audio/aural
representation of emergency information rendering.

audioEIService.language – A string indicating the preferred language of audio/aural
representation of emergency information rendering, coded according to RFC 5646 [15]. This
property shall be present in the notification when audioEIService.enabled is equal to true
and the preferred language of audio/aural representation of emergency information rendering
is available at the Receiver.
No reply from the Broadcaster Application is expected for this notification, hence the "id"

term is omitted.
For example, if the user has changed the video description service’s accessibility preference to

ON, the Receiver notifies the Broadcaster Application the current state of video description service
and the VDS language preference (when present) as shown below:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

55

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "audioAccessibilityPref",
 "videoDescriptionService": {
 "enabled": true,
 "language": "en"
 }
 }
}

9.2.8 MPD Change Notification API
The MPD Change notification API shall be issued by the Receiver to the currently executing
Broadcaster Application if there is a change to the version of the broadcast MPD and the
Broadcaster Application has subscribed to receive such notifications via the API specified in
Section 9.6.4. The Broadcaster Application may respond to the notification of a change to the MPD
by using the MPD URL discovered using the Query MPD URL API specified in Section 9.1.7 to
fetch a new copy.

The MPD Change notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of a key named msgType with value "MPDChange".
params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {"type": "string","enum": ["MPDChange"]},
 },
 "required": ["msgType"]
}

No reply from the Broadcaster Application is expected from this notification, hence the "id"
term is omitted.

For example, the Receiver may indicate that a new MPD is available by issuing this JSON-
RPC command:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "MPDChange"
 }
}

9.2.9 Alerting Change Notification API
The Alerting Change Notification API shall be issued by the Receiver to the currently executing
Broadcaster Application if there is a change to the version of the AEAT or OSN alerting data
structure and the Broadcaster Application has subscribed to receive such notifications via the API

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

56

specified in Section 9.6.8. Note that the receipt of a new alerting object without a previous receipt
is considered a version change.

The notification message contains a list of URLs referencing the new or updated alerting
fragments.

The Alerting Change Notification API shall be defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of a key named msgType key with a value

"alertingChange" and a key named urlList which is an array of items containing an
alertingType as defined in the enumerated list, a URL to the metadata fragments and
a receiveTime if the URL points to an OSN fragment.

params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {
 "type": "string",
 "enum": ["alertingChange"]
 },
 "urlList": {
 "type": "array",
 "items": {
 "alertingType": {"type": "string", "enum": ["AEAT","OSN"]},
 "alertingUrl": {"type": "string","format": "url"},
 "receiveTime": {"type": "string","format": "date-time"}
 }
 }
 },
 "required": ["msgType","urlList"]
}

No reply from the Broadcaster Application is expected from this notification, hence the "id"
term is omitted.
alertingType – One of "AEAT" or "OSN", required. The corresponding alertingUrl can be used

to access the XML fragment corresponding to the alertingType.
alertingUrl – A required fully-qualified URL that can be used by the Broadcaster Application,

for example in an XHR request, to retrieve the current alerting XML fragment for the
associated alertingType.

receiveTime – The date/time the OSN fragment was received, optional. This value shall be
presented when the alertingType is “OSN”. (Note: The OSN table includes a Notification
Duration field which is the duration of the KeepScreenClear message starting from the time
the OSN was received. Thus, the time the OSN was received is necessary for the Broadcaster
Application to fully utilize the OSN information.)
For example, the Receiver may indicate that a new AEAT has been received by issuing this

JSON-RPC command:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

57

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "alertingChange",
 "urlList": [
 { "alertingType": "AEAT",
 "alertingUrl": " http://127.0.0.1:8080/.lls/aeat.xml" }
]
 }
}

As a further example, the Receiver may indicate that a new AEAT and OSN have been received
by issuing this JSON-RPC command:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "alertingChange",
 "urlList": [
 { "alertingType": "AEAT",
 "alertingUrl": "http://127.0.0.1:8080/.lls/AEAT.xml" },
 { "alertingType": "OSN",
 "alertingUrl": "http://127.0.0.1:8080/.lls/OSN.xml",
 "receiveTime": "2017-01-01T23:54:59.590Z" }
]
 }
}

Note that the AEAT.xml file referenced contains the AEAT XML fragment extracted from the
LLS table as described in A/331 [1] while OSN.xml contains the OSN XML fragment defined in
the same referenced document. Further, the prefix shown in these examples are informative only.
The Receiver implementation may provide access to the fragments through the Application
Context Cache hierarchy or completely outside of it. The Broadcaster Application should make no
assumptions regarding the path and simply use it to access the fragment data directly.
9.2.10 Content Change Notification API
The Content Change Notification API shall be issued by the Receiver to the currently executing
Broadcaster Application if a new or new version of a signed package has been received and the
Broadcaster Application has subscribed to receive such notifications via the API specified in
Section 9.4.10. Note that a signed package is considered “received” if the contained files are
available through the Receiver Web Server.
The notification message contains a list of URLs referencing the received packages.

The Content Change Notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of a key named msgType key with a value

"contentChange" and a key named urlList which is an array of packageLocation
URLs obtained from the EFDT.FDT-Instance.File@Content-Location attribute
associated with each package.

mailto:EFDT.FDT-Instance.File@Content-Location

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

58

params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {"type": "string", "enum": ["contentChange"]}},
 "packageList": {
 "type": "array",
 "items": {"type": "string","format": "url"}
 },
 "required": ["msgType", "packageList"]
}

No reply from the Broadcaster Application is expected from this notification, hence the "id"
term is omitted.
packageList – An array of package URLs whose contents have been received, checked for

signing and are now available for Broadcaster Application access. The package URL of a
specific package delivered over ROUTE is signaled in the EFDT.FDT-

Instance.File@Content-Location attribute according to A/331 [1]. Broadcaster Applications
may use these package URLs to determine which collection of files have been received or
updated.
For example, to notify the Broadcaster Application that new versions of various content files

from a particular package have been received, the content signing has been verified and the files
are now available through the Receiver Web Server, the Receiver may issue the following JSON-
RPC command:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "contentChange",
 "packageList": ["items/zz/content"]
 }
}

The Broadcaster Application may elect to reload itself or any portion of itself when such a
notification is received.
9.2.10.1 Advanced Emergency Alert Enhancement Content Considerations
The AEAT may reference AEA enhancement content through URLs. This content is delivered
either in the broadcast as a separate ROUTE stream, in which case the referencing URL will be
relative, or over broadband where a fully-qualified URL will be provided.

In the broadcast case, the broadcaster is responsible for providing the Application Context Id
of any Broadcaster Applications that need to access the AEA enhancement content as part of the
EFDT fragment describing the signed package containing the AEA enhancement content. The
Receiver shall treat this content as it would normal ROUTE-delivered content by making it
available in the Application Context Caches corresponding to the listed Application Context IDs.
Note that since the AEA enhancement content will occupy the same hierarchy as other ROUTE-

mailto:EFDT.FDT-Instance.File@Content-Location
mailto:EFDT.FDT-Instance.File@Content-Location

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

59

delivered data, the broadcaster must assure that no conflicts occur when defining the corresponding
file hierarchies.

9.3 Cache Request APIs
The Cache Request APIs may be used by the currently executing Broadcaster Application to
request that the Receiver download one or more objects from a broadband server and place them
into a specified location in the Application Context Cache. Files may be identified individually by
URL, or a DASH MPD or Period may be specified, in which case all the media files referenced by
the MPD or Period are requested.
9.3.1 Cache Request API
The Broadcaster Application can use the Cache Request API to request that the Receiver download
one or more indicated files. The Broadcaster Application might request to download ad content
via broadband before the time of an ad replacement to avoid playback problems that might occur
due to network congestion if the ad were to be streamed in real time. Note that retrieval and storage
of broadcast-delivered NRT personalized content may be managed by the Filter Codes APIs (see
Section 9.10). The Cache Request API includes Filter Codes as well to aid in the Receiver’s
management of objects in the Application Context Cache.

The Receiver’s response to the Cache Request API indicates whether or not the indicated files
are already present in the Application Context Cache, thus the API may also be used to check
whether or not the one or more indicated files are present in the Application Context Cache. The
status check function works for files that might have arrived by either the broadcast or the
broadband delivery path.

As stated in Section 6.2, storage capability and management of the Application Context Cache
are receiver-specific, so that files requested via this API might or might not be stored, depending
on the status of the Application Context Cache. However, the Broadcaster Application can use the
Query Cache Usage API defined in Section 9.4 to check how much storage quota of Application
Context Cache is assigned for the Application Context ID. The Mark Unused API defined in
Section 9.8 can be used to indicate to the Application Context Cache system that cached file(s) are
unused. If the currently-executing Broadcaster Application is terminated, the Receiver may cancel
all in-progress file retrieval processes and release all cached files requested by this API.

The Cache Request API shall be defined as follows;
method: "org.atsc.CacheRequest"
params: A JSON object containing the parameters of the method;
params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

60

{
 "type": "object",
 "properties": {
 "sourceURL": {"type": "string", "format": "uri"},
 "targetURL": {"type": "string", "format": "uri" },
 "URLs": {"type": "array", "items": {"type": "string", "format":"uri"}},
 "filters": {
 "type": "array",
 "items": {"type": "integer"}
 }
 },
 "required": ["URLs"]
}

sourceURL – When sourceURL is present, this API requests the Receiver to retrieve the files
referenced in the provided URLs array, where sourceURL is the base URL of each. When
sourceURL is present, it shall include the https protocol identifier. When sourceURL is absent,
the API shall indicate a request for the Receiver to return information about the presence or
absence of the identified files within the Application Context Cache.

targetURL – This relative URL shall indicate the location within the Application Context Cache
relative to its base that the files are to be placed. When sourceURL is not present, the
targetURL shall indicate the location within the Application Context Cache relative to its base
that the Receiver should look for the files given in the URLs array and reply with an indication
of whether or not all the files are present. When sourceURL is present and targetURL is not
present, the files shall be stored under each URL relative to the root of the Application Context
Cache.

URLs – When sourceURL is present, the URLs array represents an array of one or more strings
which contain relative URLs of files to be retrieved and stored in the Application Context
Cache. Each URL string in URLs shall be a relative URL. The effective URL for retrieval of
the file from the broadband server shall be a concatenation of the sourceURL and the URL
string of the file. When sourceURL is not present, each URL string shall refer to a file that may
be present in the Application Context Cache as the concatenation of the targetURL and the
URL of the file, and the response to the API indicates whether or not all referenced files are
present in the cache.

filters – An array of one or more unsigned integers associated with personalization categories
as determined by the broadcaster. It is the broadcaster’s responsibility to maintain a scope of
uniqueness of Filter Codes to be within an AppContextID.
The response of the Cache Request API shall be defined as follows;

result JSON Schema:

{
 "type": "object",
 "properties": {
 "cached": {"type": "boolean"},
 "required": ["cached"]
}

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

61

cached – This required Boolean result shall indicate, when “true” that all the files referenced in
the URLs are present in the Application Context Cache and that none are expired. When “false,”
cached shall indicate that one or more files are not present or are expired.

error: The following error codes may be returned:
 -15: The URL format specified in sourceURL or targetURL of the request is illegal.
 -16: The URL format specified in one or more URLs of the request is illegal.

For example, the Broadcaster Application may wish to request the download of three PNG
files from a broadband server at http://foo.com/service1 and to store these files in the Application
Context Cache in specified subdirectories at or below an images/ subdirectory. The Filter Codes
to be associated with the files are 1007 and 1009. The source and destinations for each of these
three files are as follows:

1. File 1:
 Source: http://foo.com/service1/A/big-image1.png
 Target location in App Context Cache: images/A/big-image1.png

2. File 2:
 Source: http://foo.com/service1/B/big-image2.png
 Target location in App Context Cache: images/B/big-image2.png

3. File 3:
 Source: http://foo.com/service1/C/big-image3.png
 Target location in App Context Cache: images/C/big-image3.png

To accomplish the download, the Broadcaster Application could issue the following API:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.cacheRequest",
 "params": {
 "sourceURL": "https://foo.com/service1/",
 "targetURL": "images/",
 "URLs":["A/big-image1.png","B/big-image2.png","C/big-image3.png"],
 "filters": [1007, 1009]},
 "id": 37
 }

In this example, the first PNG file is fetched using the URL
https://foo.com/service1/A/big-image1.png and placed into the Application Context
Cache at a subdirectory images/A/big-image1.png.

Upon successfully beginning the retrieval process, if the files had not been retrieved
previously, the Receiver would respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {"cached": "false"},
 "id": 37
 }

Note that cached is “false”, indicating that these files are not already present. If all the files
had already been present in the Application Context Cache and none had expired, cached would

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

62

have returned “true”, otherwise the Receiver would begin to re-download the files. If the
Broadcaster Application wishes later to check to see whether or not the first two of these files have
been successfully downloaded, it could issue the following API to the Receiver:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.cacheRequest",
 "params" {
 "targetURL": "images/",
 "URLs":["A/big-image1.png","B/big-image2.png"]},
 "id": 38
 }

If both of the indicated files are present and not expired, the Receiver may respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {"cached": "true"},
 "id": 38
}

9.3.2 Cache Request DASH API
The Cache Request DASH API may be used by the currently-executing Broadcaster Application
to indicate to the Receiver that certain files should be retrieved via broadband and stored in the
Application Context Cache. Instead of listing each URL individually, using this API, files are
specified either in an MPEG DASH Period XML fragment or in a complete DASH MPD. If a
complete DASH MPD is specified, the MPD file and the MPEG DASH segments specified in the
MPD file shall be retrieved via broadband and stored. The URL of each MPEG DASH segment
file shall be generated according to the MPEG DASH specification [21]. In response to the XLink
Resolution API, the Broadcaster Application can provide the same DASH Period XML fragment.

The Cache Request DASH API may also be used to check whether or not the files indicated in
the DASH Period or MPD are present in the Application Context Cache and not expired. The status
check function works for files that might have arrived by either the broadcast or the broadband
delivery path.

The Cache Request DASH API shall be defined as follows;
method: "org.atsc.CacheRequestDASH"
params: A JSON object containing the parameters of the method;
params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

63

{
 "type": "object",
 "oneOf": [
 {
 "properties": {
 "sourceURL": {"type": "string","format": "uri"},
 "targetURL": {"type": "string","format": "uri"},
 "Period": {"type": "string","format": "xml"},
 "filters": {"type": "array","items": {"type": "integer"}}
 },
 "required": ["targetURL","Period"]
 },
 {
 "properties": {
 "sourceURL": {"type": "string","format": "uri"},
 "targetURL": {"type": "string","format": "uri"},
 "mpdFileName": {"type": "string"},
 "filters": {"type": "array","items": {"type": "integer"}}
 },
 "required": ["mpdFileName"]
 }
]
}

When the API is used with a DASH Period:
sourceURL: When sourceURL is present, this API requests the Receiver to retrieve the

media files referenced in the provided DASH Period, where sourceURL is the base
URL of the files specified in the URLs in the Period. When sourceURL is present, it
shall include the https protocol identifier. When sourceURL is absent, the API shall
indicate a request for the Receiver to return information about the presence or absence
of the identified files within the Application Context Cache.

targetURL: This relative URL shall indicate the location within the Application Context
Cache relative to its base that the files are to be placed. When sourceURL is not present,
the targetURL shall indicate the location within the Application Context Cache relative
to its base that the Receiver should look for the files referenced by the Period and reply
with an indication of whether or not all the files are present and not expired. When
sourceURL is present and targetURL is not present, the files shall be stored under each
URL relative to the root of the Application Context Cache.

Period: The Period shall represent an XML segment defined as a Period of MPEG DASH
compliant with A/331 [1]. Each Media Segment and Initialization Segment URL are
constructed using the processing rules of MPEG DASH [21] subclause 5.6. The Period
shall use only relative URL references. The Period@duration attribute shall be present.
When sourceURL is included, the URLs in the Period shall resolve to media files
present on the referenced broadband server.

filters: An array of one or more unsigned integers associated with personalization
categories as determined by the broadcaster. It is the broadcaster’s responsibility to
maintain a scope of uniqueness of Filter Codes to be within an AppContextID.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

64

When the API is used with a DASH MPD:
sourceURL: This API requests the Receiver to retrieve the media files referenced in the

DASH MPD identified by mpdFileName, where sourceURL is the URL of the
broadband server from which the MPD may be retrieved. When sourceURL is present,
it shall include the https protocol identifier. When sourceURL is absent, the API shall
indicate a request for the Receiver to return information about the availability of the
files identified by the referenced MPD within the Application Context Cache. When
sourceURL is absent, the response to the request shall indicate "cached":"false" if
the MPD itself is not present in the Application Context Cache, or if any of the files it
references are not present or are expired.

targetURL: When sourceURL is present, the API requests the Receiver to retrieve and
place the files associated with the indicated MPD, and the MPD itself, into the
Application Context Cache. In that case, the targetURL shall indicate the location
within the Application Context Cache relative to its base that the files are to be placed.
The Receiver shall also retrieve the MPD and place it at the location in the Application
Context Cache given by targetURL. When sourceURL is not present, the targetURL
shall indicate the location within the Application Context Cache relative to its base that
the Receiver should look for the MPD and the files referenced by the MPD and reply
with an indication of whether or not the MPD and all the files it references are present
and not expired. When sourceURL is present and targetURL is not present, the files
shall be stored under each URL relative to the root of the Application Context Cache.

mpdFileName: The required mpdFileName shall represent the filename of an MPEG DASH
MPD that is compliant with A/331 [1]. The URL of each Media Segment and
Initialization Segment referenced in the indicated MPD are constructed using the
processing rules of MPEG DASH [21] subclause 5.6. The referenced MPD shall
include only relative URLs. When sourceURL is included, the URLs in the MPD shall
resolve to media files present on the referenced broadband server, and the MPD itself
shall be present at the server location indicated in sourceURL with the filename given
in mpdFileName.

filters: An array of one or more unsigned integers associated with personalization
categories as determined by the broadcaster. It is the broadcaster’s responsibility to
maintain a scope of uniqueness of Filter Codes to be within an AppContextID.

According to MPEG DASH [21] subclause 5.6.4, “URLs at each level of the MPD are resolved
according to RFC 3986 with respect to the BaseURL element specified at that level of the document
or the level above in the case of resolving base URLs themselves (the document ‘base URI’ as
defined in RFC 3986 [19] Section 5.1 is considered to be the level above the MPD level).” For this
API, the sourceURL is the document “base URI” on the broadband server, and the targetURL is
the document “base URI” in the Application Context Cache.

The response of the Cache Request DASH API shall be defined as follows;
result JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

65

{
 "type": "object",
 "properties": {
 "cached": {"type": "boolean"},
 "required": ["cached"]
}

Cached – This Boolean result shall indicate, when “true” that all the files referenced in the Period
or MPD are present in the Application Context Cache at the indicated location and that none
are expired. When “false,” cached shall indicate that one or more files are expired or not
present. When sourceURL is present in the request, a result of “true” shall be returned in the
case that the indicated files are already present in the Application Context Cache and none are
expired.

error: The following error codes may be returned:
 -15: The URL format specified in sourceURL or targetURL of the request is illegal.
 -17: The format of the MPEG DASH fragment specified in the Period is illegal.
 -18: The referenced MPD file cannot be found.

For example, if the Broadcaster Application wishes to request from a broadband server the
fetching of MPEG DASH media segment files corresponding to one Period from a broadband
server at https://wxyz.com/svc4.4/content/, associate them with Filter Codes 1007 and 1009,
and place them into the Application Context Cache at advertising1/ it could issue the following
API:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

66

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.CacheRequestDASH",
 "params": {
 "sourceURL": "https://wxyz.com/svc4.4/content/",
 "targetURL": "advertising1/",
 "Period": "<Period start='PT9H' duration='PT30S'>
 <AdaptationSet mimeType='video/mp4'/>
 <SegmentTemplate timescale='9000' media='video/xbc$Number$.mp4v'
 duration='90000' startNumber='32401' /><Representation id='v2'
 width='1920' height='1080'/></Period>,
 "filters": [1007, 1009],
 "id": 38
 }
 }

The resulting video Media Segment files would be retrieved and stored in the Application
Context Cache in the advertising1/video/ subdirectory. Upon successfully beginning the
retrieval process, if the files had not been retrieved previously the Receiver would respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {"cached": "false"},
 "id": 38
 }

The cached value of “false” in the response indicates that the requested files are not all already
present in the cache. If all the files had already been present in the Application Context Cache and
none were expired, cached would have returned “true”, otherwise the Receiver would begin to re-
download the files.

If the Broadcaster Application wishes later to check to see whether or not the files associated
with the indicated DASH Period have been successfully downloaded, it could issue the following
API to the Receiver:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.CacheRequestDASH",
 "params": {
 "targetURL": "advertising1/",
 "Period": "<Period start='PT9H' duration='PT30S'>
 <AdaptationSet mimeType='video/mp4'/>
 <SegmentTemplate timescale='9000' media='video/xbc$Number$.mp4v'
 duration='90000' startNumber='32401' />
 <Representation id='v2' width='1920' height='1080'/></Period>,
 "id": 37
 }
 }

If all of the indicated Media Segment files are present, including Initialization Segments, the
Receiver may respond with:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

67

<-- {
 "jsonrpc": "2.0",
 "result": {"cached": "true"},
 "id": 37
}

If any of the indicated Media Segment files or Initialization Segments are missing, the Receiver
may respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {"cached": "false"},
 "id": 37
}

9.4 Query Cache Usage API
If the Broadcaster Application wishes to know the total quota size of the cache assigned to the
Application Context ID with which it is associated and the total current usage of the cache in the
Application Context ID hierarchy, the Query Cache Usage API can be used.

The Query Cache Usage API shall be defined as follows:
method: "org.atsc.query.cacheUsage"
params: none

The Receiver’s response to the Query Cache Usage API shall be defined as follows;
result: a JSON object containing the result of the method.
result JSON Schema:

{
 "type": "object",
 "properties": {
 "usageSize": {"type": "integer"},
 "quotaSize": {"type": "integer"}
 },
 "required": ["usageSize","quotaSize"]
}

usageSize: The total usage byte size of the cache associated with the Application Context ID of
the broadcaster application.

quotaSize: The total size in bytes of the quota allocated for the Application Context ID of the
Broadcaster Application.
For example, if the Broadcaster Application wishes to query the status of cache usage, it could

do as follows:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

68

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.cacheUsage",
 "id": 39
}

If the usage size of cache equals 8,475,337 bytes and the quota size available to the Application
Context ID equals 209,715,200 bytes, the Receiver might respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {
 "usageSize": 8475337,
 "quotaSize": 209715200
 },
 "id": 39
}

9.5 Event Stream APIs
Events intended for Broadcast Applications can be encountered in broadcast media, either as Event
Message ('emsg' or 'evti') Boxes in band with the media, or as static EventStream elements at
the Period level in a DASH MPD. These Events may initiate interactive actions on the part of a
Broadcat Application, or they may indicate that new versions of files are being delivered, or
various other things.

In the case of AMP media playback, parsing and processing of Events is expected to be
performed by the Broadcaster Application. In the case of RMP media playback, three APIs are
needed to support this function:

• Subscribe to an Event Stream
• Unsubscribe from an Event Stream
• Receive an Event from a subscribed Event Stream

9.5.1 Event Stream Subscribe API
A Broadcaster Application that is currently subscribed to Event Stream notifications shall be
notified when certain Event Stream events are encountered during RMP playback in the MPD or
the Media Segments. For MPEG DASH, the Event Message Box ('emsg') box contains in-band
events, and the MPD may include static events in an EventStream element at the Period level.
Events in MMT-based Services may be carried in 'evti' boxes in MPUs. A Broadcaster
Application that wishes to be notified when a particular type of event occurs may register for that
type of event using a schemeIdUri and optionally an accompanying value parameter.

The Event Stream Subscribe API (sent from the Broadcaster Application to Receiver) shall be
defined as follows:

method: "org.atsc.eventStream.subscribe"
params: A JSON object containing a schemeIdUri and optionally an accompanying

@value.
params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

69

{
 "type": "object",
 "properties": {
 "schemeIdUri": {"type": "string","format": "uri"},
 "value": {"type": "string"}
 },
 "required": ["schemeIdUri"]
}

schemeIdUri – The schemeIdUri URI string associated with the Event Stream event of interest to
the Broadcaster Application.

value – An optional string used to identify a particular Event Stream event.
For example, if the Broadcaster Application wishes to register for Event Stream events

associated with schemeIdUri "urn:uuid:9a04f079-9840-4286", it could subscribe as follows:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.eventStream.subscribe",
 "params": {"schemeIdUri": "urn:uuid:9a04f079-9840-4286"},
 "id": 22
}

The Receiver might respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 22
}

The Receiver would then be set to communicate any Event Stream events tagged with
schemeIdUri "urn:uuid:9a04f079-9840-4286" to the Broadcaster Application using the Event
Stream Event API defined in Section 9.5.3 below.

If the Broadcaster Application were only interested in Event Stream events associated with this
schemeIdUri when the accompanying value = "17", it could subscribe while including the value
parameter:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.eventStream.subscribe",
 "params": {
 "schemeIdUri": "urn:uuid:9a04f079-9840-4286",
 "value": "17"}
 },
 "id": 23
}

The Receiver might respond with:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

70

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 23
}

The Receiver would then be set to communicate any Event Stream event tagged with
schemeIdUri "urn:uuid:9a04f079-9840-4286" and value = "17" to the Broadcaster
Application using the notification API defined in Section 9.5.3 below. The Broadcaster
Application would not be notified of Event Stream events tagged with unsubscribed values of
schemeIdUri or those with a subscribed schemeIdUri but not matching any specified value.

The Broadcaster Application may subscribe to multiple different Event Stream events (with
different schemeIdUri values, or different schemeIdUri/value combinations).

Once subscribed, the Broadcaster Application may unsubscribe using the API described in
Section 9.5.2.
9.5.2 Event Stream Unsubscribe API
If a Broadcaster Application has subscribed to an Event Stream using the Event Stream Subscribe
API defined in Section 9.5.1, it can use the Event Stream Unsubscribe API defined here to request
that the Receiver discontinue notifications pertaining to the identified event.

method: "org.atsc.eventStream.unsubscribe"
params: A JSON object containing a schemeIdUri and optionally an accompanying

@value.
params JSON Schema:

{
 "type": "object",
 "properties": {
 "schemeIdUri": {"type": "string","format": "uri"},
 "value": {"type": "string"}
 },
 "required": ["schemeIdUri"]
}

schemeIdUri – The schemeIdUri URI string associated with the Event Stream event for which
the Broadcaster Application would like to remove the subscription.

value – An optional string used to identify a particular Event Stream event.
For example, if the Broadcaster Application wishes to unsubscribe to all Event Stream events

associated with schemeIdUri "urn:uuid:9a04f079-9840-4286", regardless of the value of the
value parameter, it could use the following API:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

71

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.eventStream.unsubscribe",
 "params": {"schemeIdUri": "urn:uuid:9a04f079-9840-4286"},
 "id": 26
}

If the operation was successful, the Receiver would respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 26
}

If the Broadcaster Application had subscribed to this same schemeIdUri using value="47" and
value="48", and now wished to unsubscribe to the latter, it could use the following API:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.eventStream.unsubscribe",
 "params": {
 "schemeIdUri": "urn:uuid:9a04f079-9840-4286",
 "value": "48"
 },
 "id": 29
}

If the operation were successful, the Receiver would respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 29
}

9.5.3 Event Stream Event API
The Event Stream Event API shall be issued by the Receiver to the currently executing Broadcaster
Application during RMP playback if an event is encountered in the content of the currently selected
Service or currently playing content that matches the value of schemeIdUri (and accompanying
value, if it was provided in the subscription) provided in a prior Event Stream Subscription.

The Event Stream Event API shall be as defined below:
method: "org.atsc.eventStream.event"
params: A JSON object conforming to the JSON Schema defined below.
params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

72

{
 "type": "object",
 "properties": {
 "schemeIdUri": {
 "type": "string",
 "format": "uri"
 },
 "value": {"type": "string"},
 "eventTime": {
 "type": "number",
 "minimum": 0
 }
 "duration": {
 "type": "number",
 "minimum": 0
 },
 "id": {
 "type": "integer",
 "minimum": 0,
 "maximum": 4294967295
 },
 "data": {"oneOf": [
 {"type": "string"},
 {"type": "object"}
]}
 },
 "required": ["schemeIdUri","eventTime"]
}

schemeIdUri – A required string identifying the Event Stream with which the Event is associated.
value – An optional string with semantic as defined by the owners of the Event Stream scheme

identified by schemeIdUri.
eventTime – A required floating-point number representing the presentation time at which the

event starts on the RMP media presentation timeline, expressed as an offset in seconds from
the startDate (as specified in Query RMP Media Time API, section 9.13.1).

duration – An optional floating-point number representing the duration of the event in seconds.
No reply from the Broadcaster Application is expected from this notification, hence the "id"

term is omitted. The start time of the event on the RMP presentation timeline is when currentTime
(as provided in Query RMP MediaTime API, section 9.13.1) is equal to eventTime of the Event.

An example Event Stream notification message that might occur if the Broadcaster Application
had registered for Event Stream events using a schemeIdUri of tag:xyz.org:evt:xyz.aaa.9:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

73

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.eventStream.event",
 "params": {
 "schemeIdUri": "tag:xyz.org:evt:xyz.aaa.9",
 "value": "ev47",
 "eventTime": 1450.6,
 "id": 60,
 "data": "d8a0c98fs08-d9df0809s"
 }
}

Note in this example that if the Broadcaster Application had included a value parameter in the
subscription, and that parameter had not been "ev47", this particular event would not be forwarded
to the Broadcaster Application.

9.6 Request Receiver Actions
9.6.1 Acquire Service API
The current service may be changed by two entities, the Broadcaster Application via request to the
Receiver, or the user via the Receiver directly. Depending on the information sent in the
Broadcaster Application signaling, the Receiver does one of the following when a new service is
successfully selected:

• If the Broadcaster Application signaling indicates that the same Broadcaster Application
should be launched for the new service, then the Receiver allows the Broadcaster
Application to continue to run, and sends the Broadcaster Application a service change
notification. (This is also what would happen if the service were changed by the user
directly, and the Broadcaster Application signaling indicated that the same Broadcaster
Application should be launched for the new service.)

• If the Broadcaster Application signaling indicates that no Broadcaster Application or a
different Broadcaster Application should be launched for the new service, then the
Receiver will terminate the current Broadcaster Application, if appropriate.

The reason why a Broadcaster Application might request the Receiver to change the service
selection might be to jump to another service of the same broadcaster for content that might be of
interest to the user. This request is an asynchronous request. The Receiver processes the request
and if it can, it changes the service selection.

The Acquire Service API shall be defined as follows:
method: "org.atsc.acquire.service"
params: the globally unique Service ID of the service to be acquired.
params JSON Schema:

{
 "type": "object",
 "properties": {
 "svcToAcquire": {"type": "string"}
 },
 "required": ["svcToAcquire"]
}

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

74

svcToAcquire – This required string shall correspond to the globally unique Service ID (as
defined in SLT.Service@globalServiceID; see A/331 [1] Section 6.3) of the service to
acquire.
Response:
If the acquisition is successful, the Receiver shall respond with a JSON-RPC response object

with a null result object. If the acquisition is not successful, the Receiver shall respond with a
JSON-RPC response object including one of the following error objects (See Table 8.2):

"error": {"code": -6, "message": "Service not found"}
"error": {"code": -7, "message": "Service not authorized"}

For example, if the Broadcaster Application requests access to a service represented by
globally unique Service ID "http://xbc.tv/wxbc-4.3", it can issue this request to the Receiver:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.acquire.service",
 "params": {"svcToAcquire": "http://xbc.tv/wxbc-4.3"},
 "id": 59
}

The Receiver would respond, if acquisition were successful with:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 59
}

If globally unique Service ID "http://xbc.tv/wxbc-4.3" is unknown to the Receiver, the
response would be:

<-- {
 "jsonrpc": "2.0",
 "error": {"code": -6, "message": "Service not found"},
 "id": 59
}

9.6.2 Video Scaling and Positioning API
A Broadcaster Application in an application-enhanced Service (e.g. playing within the video plane
that is positioned on top of the video produced by the Receiver Media Player) can use the video
scaling and positioning JSON-RPC method to request that the RMP render its video at less than
full-scale (full screen), and to position it at a specified location within the display window.

The Video Scaling and Positioning API shall be defined as follows:
method: "org.atsc.scale-position"
params: the scaling factor and the X/Y coordinates of the upper left corner of the scaled

window.
params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

75

{
 "type": "object",
 "properties": {
 "scaleFactor": {
 "type": "integer",
 "minimum": 10,
 "maximum": 100
 },
 "xPos": {
 "type": "integer",
 "minimum": 0,
 "maximum": 100
 },
 "yPos": {
 "type": "integer",
 "minimum": 0,
 "maximum": 100
 }
 },
 "required": ["scaleFactor","xPos","yPos"]
}

scaleFactor – This required integer in the range 10 to 100 shall represent the video scaling
parameter, where 100 represents full-screen (no scaling);

xPos – This required integer in the range 0 to 100 shall represent the X-axis location of the left
side of the RMP’s video window, represented as a percentage of the full width of the screen.
A value of 0 indicates the left side of the video window is aligned with the left side of the
display window. A value of 50 indicates the left side of the video window is aligned with the
vertical centerline of the display window, etc.

yPos – This required integer in the range 0 to 100 shall represent the Y-axis location of the top of
the RMP’s video window, represented as a percentage of the full height of the screen. A value
of 0 indicates the top of the video window is aligned with the top of the display window. A
value of 50 indicates the top of the video window is aligned with the horizontal centerline of
the display window, etc.
The zero axis of the coordinate system shall be the upper left corner, as with CSS.
The parameter values shall be set such that no portion of the video window would be rendered

outside the display window.
For example, if the Broadcaster Application wished to scale the displayed video to 25% of full

screen, and position the left edge of the display horizontally 10% of the screen width and the top
edge of the display vertically 15% of the screen height, it would issue this JSON-RPC API to the
Receiver:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

76

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.scale-position",
 "params": {
 "scaleFactor": 25,
 "xPos": 10,
 "yPos": 15
 },
 "id": 589
}

If scaling/positioning were successful, the Receiver would respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 589
}

If scaling/positioning were not successful, the Receiver would respond with a JSON object
including an "error" object:

<-- {
 "jsonrpc": "2.0",
 "error": {"code": -8, "message": "Video scaling/position failed"},
 "id": 589
}

9.6.3 XLink Resolution API
An XLink Resolution request shall be issued by the Receiver to the currently executing
Broadcaster Application when in the MPD the Receiver Media Player (RMP) encounters a
Period@xlink:href attribute in the form of a tag URI beginning with tag:atsc.org,2016:xlink.
Any XLinks not beginning with this URI are expected to be disregarded or processed in a
proprietary manner. For XLinks beginning with tag:atsc.org,2016:xlink, the Receiver shall
request that the Broadcaster Application resolve the XLink, using the XLink Resolution API to
return one or more Period elements to be used by the RMP to replace the Period element in which
the XLink appeared. The Receiver may not let the RMP replace the Period in the MPD with the
resolved period elements if it recognizes that it cannot replace all segments in the Period.
Especially, if the resolved period elements in the response specify segment files in the Application
Context Cache but they are not present in the Application Context Cache, then the Receiver shall
not let the RMP replace the Period in the MPD.

The XLink Resolution API shall be defined as follows:
method: "org.atsc.xlinkResolution"
params: A JSON object consisting of a key named xlink and a string representing the

contents of the "xlink:href" element.
params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

77

{
 "type": "object",
 "properties": {"xlink": {"type": "string"}},
 "required": ["xlink"]
}

xlink – This required string shall be the XLink value from the xlink:href attribute in the MPD
Period element.
Response:

result: A JSON object containing a "resolution" key whose string value represents one or
more Period elements. The BaseURL of the Period elements shall be considered to be
the root of the Application Context Cache. If a segment file specified in the Period
elements has a relative URL, then Receiver shall use the segments file with the relative
URL under the Application Context Cache. If a segment file specified in the Period
elements has an absolute URL, it shall be the URL of the broadband server from which
the segment file may be retrieved. The URL includes the “https” protocol identifier.

result JSON Schema:

{
 "type": "object",
 "properties": {"resolution": {"type": "string",}},
 "required": ["resolution"]
}

For example, the Receiver notifies the Broadcaster Application of an XLink:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.xlinkResolution",
 "params": {"xlink": "urn:xbc 4399FB77-3939EA47"},
 "id": 5
}

Upon success, the Broadcaster Application might respond:

--> {
 "jsonrpc": "2.0",
 "result": {"resolution":"<Period start='PT9H'> <AdaptationSet
 mimeType='video/mp4' /> <SegmentTemplate timescale='90000'
 media='xbc-$Number$.mp4v' duration='90000' startNumber='32401' />
 <Representation id='v2' width='1920' height='1080' />"},
 "id": 5
}

Note the use of single quotes for all attributes in the Period (required for proper JSON value
syntax).

If the Broadcaster Application is unable to resolve the XLink, it can respond with an error code
-9:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

78

--> {
 "jsonrpc": "2.0",
 "error": {"code": -9, "message": "XLink cannot be resolved"},
 "id": 59
}

9.6.4 Subscribe MPD Changes API
The Subscribe MPD Changes API can be used by a Broadcaster Application to be notified
whenever the version of the broadcast MPD currently in use by the RMP changes. Once
subscribed, the Receiver notifies the Broadcaster Application when any version change occurs by
issuing the MPD Change Notification API specified in Section 9.2.8. Notifications continue until
an Unsubscribe MPD Changes API (Section 9.6.5) is issued, or until the Service is changed.

The Subscribe MPD Changes API shall be defined as follows:
method: "org.atsc.subscribeMPDChange"
params: none.

For example, the Broadcaster Application can subscribe to MPD changes by issuing:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.subscribeMPDChange",
 "id": 55
}

Upon success, the Broadcaster Application would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 55
}

9.6.5 Unsubscribe MPD Changes API
The Unsubscribe MPD Changes API can be issued by a Broadcaster Application to stop receiving
notifications of MPD changes.

The Unsubscribe MPD Changes API shall be defined as follows:
method: "org.atsc.unsubscribeMPDChange"
params: none.

For example, the Broadcaster Application can subscribe to MPD changes by issuing:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.unsubscribeMPDChange",
 "id": 56
}

Upon success, the Receiver would respond:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

79

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 56
}

9.6.6 Set RMP URL API
The Broadcaster Application may choose to use the Receiver Media Player (RMP) to play video
content originated from an alternate source (e.g. broadband or locally cached content) instead of
the broadcast-delivered content. In this way, the Broadcaster Application can take advantage of an
optimized media player provided by the Receiver. The Broadcaster Application may use the Set
RMP URL API to request the Receiver to use its RMP to play content originated from a URL
provided by the Broadcaster Application. Once the Receiver is notified to play content from the
application-provided URL, the RMP stops rendering the broadcast content (or the content being
rendered at the time of the request) and begins rendering the content referenced by the new URL.

The content presented via the specified MPD is considered to be a part of the currently selected
Service. The effects of changing this URL are temporary and if the Service is re-selected (e.g. by
the Broadcaster Application via the Acquire Service API) or if playback of the MPD specified
through the Set RMP URL API is stopped or reaches its end, the RMP should return to playing the
MPD defined in the service-level signaling.

The Broadcaster Application specifies the content to be played by the RMP by providing the
URL of an MPD. The MPD shall be constructed in accordance with A/331 [1].

The URL may include an MPD Anchor identifying the entry point on the media presentation
timeline (e.g. an offset from the start of the MPD, an offset from the start of a named period, a
UTC time, or the “live edge”) at which the RMP should begin playback. MPD Anchor shall be as
defined in MPEG DASH [21]. This allows flexibility for many use cases including bookmarking.
If the playback position indicated by a specified MPD Anchor is not available to the RMP, the
RMP shall not play the MPD at the given URL and an error code shall be returned.

The SET RMP URL API shall be defined as follows:
method: "org.atsc.setRMPURL"
params: A JSON object consisting of a key named rmpurl.
params JSON Schema:

{
 "type": "object",
 "properties": {
 "rmpurl": {"type": "string"},
 },
 "required": ["rmpurl"]
}

rmpurl – This required string shall be a URL referencing an MPD to be played by the RMP. The
URL shall be accessible to the Receiver.

Response:
result: A null object upon success.
error: The following error codes may be returned:
 -11: The indicated MPD cannot be accessed

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

80

 -12: The content cannot be played
 -13: The requested MPD Anchor cannot be reached

For example, if the Broadcaster Application requests the RMP to play content from a
broadband source at a DASH server located at http://stream.wxyz.com/33/program.mpd, it
can issue a command to the Receiver as follows:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.setRMPURL",
 "params": {"rmpurl": "http://stream.wxyz.com/33/program.mpd"},
 "id": 104
}

Upon success, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 104
}

If the Receiver’s RMP cannot play the content, the Receiver might respond:

<-- {
 "jsonrpc": "2.0",
 "error": { "code": -12, "message": "The content cannot be played"},
 "id": 104
}

9.6.7 Audio Volume API
By default, the audio output of the Receiver Media Player and that of the User Agent are mixed.
The Broadcaster Application may set and get the volume of the HTML media element using the
.volume property. It may wish to set and get the audio volume of the Receiver Media Player. For
example, the Broadcaster Application might mute the audio output of broadcast service when the
user chooses to watch broadband content rendered with an HTML media element. The Audio
Volume API may be used for such a case.

Figure 9.1 illustrates audio processing in an example receiver in which the audio output of the
User Agent is mixed with the audio output of the Receiver Media Player for presentation to the
user. The Broadcaster Application controls the volume of its output using the .volume property of
the HTMLMediaElement. Analogously, the Audio Volume API defined here may be used to set the
volume of the Receiver Media Player, shown as “V1” in the figure. Note that the API changes only
the RMP volume (“V1”).

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

81

User Agent

RMP

Mix

HTMLMediaElement.volume

V1

Receiver
Volume
Control

TV
Speakers

Figure 9.1 RMP audio volume.

This request is an asynchronous request. If a volume element is provided in the request, the
Receiver processes the request to set the RMP volume. The Receiver’s response provides the
current volume in either case.

The Audio Volume API shall be defined as follows:
method: "org.atsc.audioVolume"
params JSON Schema:

{
 "type": "object",
 "properties": {
 "audioVolume": {"type": "number"},
 }
}

audioVolume – This optional floating-point number in the range 0 to 1, when present, shall
correspond to a value of audio volume to be set in the Receiver Media Player. The value of
shall be from 0.0 (minimum or muted) to 1.0 (full volume). The encoding is the same as the
.volume property of the HTML media element. If volume is not specified in the request, the
volume is not changed by this request. This can be used to determine the current volume setting.
Response:

result: A JSON object containing an audioVolume key whose value represents the current
audio level from 0.0 (minimum or muted) to 1.0 (full volume).

result JSON Schema:

{
 "type": "object",
 "properties": {"audioVolume": {
 "type": "number",
 }},
 "required": ["audioVolume"]
}

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

82

audioVolume – This floating-point number in the range 0 to 1 shall indicate the current audio
volume of the Receiver Media Player, where 0 indicates minimum volume or muted, and 1.0
indicates full volume.
For example, if the Broadcaster Application wishes for the Receiver Media Player set the audio

volume to half volume (50%):

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.audioVolume ",
 "params": {"audioVolume ": 0.5},
 "id": 239
}

If the request is processed successfully, the Receiver might respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {"audioVolume ": 0.5},
 "id": 239
}

9.6.8 Subscribe Alerting Changes API
The Subscribe Alerting Changes API can be used by a Broadcaster Application to be notified
whenever new or new versions of alerting metadata, specifically AEAT and OSN LLS fragments,
are received. Once subscribed, the Receiver shall notify the Broadcaster Application when any
addition or version change occurs by issuing the Alerting Change Notification API specified in
Section 9.2.9. A notification is also issued if an AEAT or OSN table is currently available avoiding
the need for the Broadcaster Application to issue a query (Section 9.1.9) immediately after
subscribing to notifications. Notifications shall continue until an Unsubscribe Alerting Changes
API (Section 9.6.5) is issued, or until the Broadcaster Application is no longer active.

The Subscribe Alerting Changes API shall be defined as follows:
method: "org.atsc.subscribeAlertingChange"
params: A JSON object consisting of a key named alertingTypes with a list of

enumerated values shown. An empty list is equivalent to supplying all values.
params JSON Schema:

{
 "type": "object",
 "properties": {"alertingTypes": {
 "type": "array",
 "items": {"type": "string","enum": ["AEAT","OSN"]
 }
 }},
 "required": ["alertingTypes"]
}

alertingTypes – An array of alerting object names as follows:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

83

AEAT – Requests that the Broadcaster Application be notified if a new or updated AEAT is
received. A notification shall be immediately issued if an AEAT is currently available. If
an executing Broadcaster Application has been suspended while a receiver-native user
interface is being presented, the notification should be issued as soon as the Broadcaster
Application is re-launched, if the alert is still active.

OSN – Requests that the Broadcaster Application be notified if a new or updated OSN is
received. A notification shall be immediately issued if an OSN is currently active.
For example, the Broadcaster Application can subscribe to alerting changes by issuing:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.subscribeAlertingChange",
 "params": {
 "alertingTypes": ["AEAT", "OSN"]
 },
 "id": 55
}

Upon success, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 55
}

The Receiver would then notify the Broadcaster Application whenever new or updated AEAT
or OSN was received or if either fragment is currently present.
9.6.9 Unsubscribe Alerting Changes API
The Unsubscribe Alerting Changes API can be issued by a Broadcaster Application to stop
receiving notifications of alerting updates and additions.

The Unsubscribe Alerting Changes API shall be defined as follows:
method: "org.atsc.unsubscribeAlertingChange"
params: A JSON object consisting of a key named alertingTypes with a list of

enumerated values shown. An empty list shall indicate that the Broadcaster Application
is unsubscribing from all current alerting notification subscriptions.

params JSON Schema:

{
 "type": "object",
 "properties": {"alertingTypes": {
 "type": "array",
 "items": {"type": "string","enum": ["AEAT","OSN"]
 },
 "required": ["alertingTypes"]
 }}
}

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

84

alertingTypes – An array of alerting metadata types. An empty array shall indicate all alerting
metadata types.
For example, the Broadcaster Application can unsubscribe from AEAT alerting changes by

issuing:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.unsubscribeAlertingChange",
 "params": {
 "alertingTypes": ["AEAT"]
 },
 "id": 56
}

Upon success, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 56
}

In this example, assuming the Broadcaster Application had subscribed to both alerting types,
then the unsubscribe operation only applies to the AEAT notifications. Notifications of the OSN
receipt will continue.

To unsubscribe from all alerting notifications, the Broadcaster Application can issue the
following request:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.unsubscribeAlertingChange",
 "params": {
 "alertingTypes": []
 },
 "id": 312
}

9.6.10 Subscribe Content Changes API
The Subscribe Content Changes API can be used by a Broadcaster Application to be notified
whenever a new package or new version of a package is received. Once subscribed, the Receiver
notifies the Broadcaster Application when a new or updated package has been received by issuing
the Content Change Notification API specified in Section 9.2.10. Notifications continue until an
Unsubscribe Content Changes API (Section 9.6.11) is issued, or until the Broadcaster Application
is no longer active.

The Subscribe Content Changes API shall be defined as follows:
method: "org.atsc.subscribeContentChange"
params: none.

For example, the Broadcaster Application can subscribe to content changes by issuing:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

85

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.subscribeContentChange",
 "id": 58
}

Upon success, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 58
}

The Receiver would then notify the Broadcaster Application whenever new packages are
received resulting in changes to files in the Application Context Cache. Note that this notification
only occurs after the files within the listed packages have been made available to the Broadcaster
Application through the Receiver Web Server having matched the Application Context ID and any
defined Filter Codes. In other words, the Broadcaster Application can immediately start using the
files associated with the notified packages.
9.6.11 Unsubscribe Content Changes API
The Unsubscribe Content Changes API can be issued by a Broadcaster Application to stop
receiving notifications of content updates and additions.

The Unsubscribe Content Changes API shall be defined as follows:
method: "org.atsc.unsubscribeContentChange"
params: none.

For example, the Broadcaster Application can unsubscribe from content changes by issuing:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.unsubscribeContentChange",
 "id": 72
}

Upon success, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 72
}

9.6.12 Subscribe RMP Media Time Change Notification API
The Subscribe RMP Media Time Change Notification API can be used by a Broadcaster
Application to be notified whenever the current playback position of the content being presented
by the RMP changed. Once subscribed, the Receiver notifies the Broadcaster Application
whenever the current playback position of the content being presented by the RMP changed by
issuing the RMP Media Time Change Notification API specified in Section 9.13.5. Notifications

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

86

continue until an Unsubscribe RMP Media Time Change Notification API (Section 9.6.13) is
issued, or until the Broadcaster Application is no longer active.

The Subscribe RMP Media Time Change Notification API shall be defined as follows:
method: "org.atsc.subscribeRmpMediaTimeChange"
params: none.

For example, the Broadcaster Application can subscribe to RMP media time changes by
issuing:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.subscribeRmpMediaTimeChange",
 "id": 358
}

Upon success, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 358
}

The Receiver would then notify the Broadcaster Application whenever the current playback
position of the content being presented by the RMP changed.
9.6.13 Unsubscribe RMP Media Time Change Notification API
The Unsubscribe RMP Media Time Change Notification API can be issued by a Broadcaster
Application to stop receiving notifications of changes to the current playback position of content
being presented by the RMP.

The Unsubscribe RMP Media Time Change Notification API shall be defined as follows:
method: "org.atsc.unsubscribeRmpMediaTimeChange"
params: none.

For example, the Broadcaster Application can unsubscribe from notifications of changes to the
RMP media time by issuing:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.unsubscribeRmpMediaTimeChange",
 "id": 372
}

Upon success, the Receiver would respond:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

87

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 372
}

9.6.14 Subscribe RMP Playback State Change Notification API
The Subscribe RMP Playback State Change Notification API can be used by a Broadcaster
Application to be notified whenever the current playback state of the content being presented by
the RMP changed. Once subscribed, the Receiver notifies the Broadcaster Application whenever
the current playback state of the content being presented by the RMP changed by issuing the RMP
Playback State Change Notification API specified in Section 9.13.6. Notifications continue until
an Unsubscribe RMP Playback State Change Notification API (Section 9.6.15) is issued, or until
the Broadcaster Application is no longer active.

The Subscribe RMP Playback State Change Notification API shall be defined as follows:
method: "org.atsc.subscribeRmpPlaybackStateChange"
params: none.

For example, the Broadcaster Application can subscribe to RMP playback state changes by
issuing:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.subscribeRmpPlaybackStateChange",
 "id": 359
}

Upon success, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 359
}

The Receiver would then notify the Broadcaster Application whenever the playback state of
the content being presented by the RMP changed.
9.6.15 Unsubscribe RMP Playback State Change Notification API
The Unsubscribe RMP Playback State Change Notification API can be issued by a Broadcaster
Application to stop receiving notifications of changes to the current playback state of content being
presented by the RMP.

The Unsubscribe RMP Playback State Change Notification API shall be defined as follows:
method: "org.atsc.unsubscribeRmpPlaybackStateChange"
params: none.

For example, the Broadcaster Application can unsubscribe from notifications of changes to the
RMP playback state by issuing:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

88

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.unsubscribeRmpPlaybackStateChange",
 "id": 373
}

Upon success, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 373
}

9.6.16 Subscribe RMP Playback Rate Change Notification API
The Subscribe RMP Playback Rate Change Notification API can be used by a Broadcaster
Application to be notified whenever the current playback rate of the content being presented by
the RMP changed. Once subscribed, the Receiver notifies the Broadcaster Application whenever
the current playback rate of the content being presented by the RMP changed by issuing the RMP
Playback Rate Change Notification API specified in Section 9.13.7. Notifications continue until
an Unsubscribe RMP Playback Rate Change Notification API (Section 9.6.17) is issued, or until
the Broadcaster Application is no longer active.

The Subscribe RMP Playback Rate Change Notification API shall be defined as follows:
method: "org.atsc.subscribeRmpPlaybackRateChange"
params: none.

For example, the Broadcaster Application can subscribe to RMP playback rate changes by
issuing:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.subscribeRmpPlaybackRateChange",
 "id": 379
}

Upon success, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 379
}

The Receiver would then notify the Broadcaster Application whenever the playback Rate of
the content being presented by the RMP changed.
9.6.17 Unsubscribe RMP Playback Rate Change Notification API
The Unsubscribe RMP Playback Rate Change Notification API can be issued by a Broadcaster
Application to stop receiving notifications of changes to the current playback rate of content being
presented by the RMP.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

89

The Unsubscribe RMP Playback Rate Change Notification API shall be defined as follows:
method: "org.atsc.unsubscribeRmpPlaybackRateChange"
params: none.

For example, the Broadcaster Application can unsubscribe from notifications of changes to the
RMP playback rate by issuing:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.unsubscribeRmpPlaybackRateChange",
 "id": 373
}

Upon success, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 373
}

9.7 Media Track Selection API
The Broadcaster Application may request the Receiver’s Receiver Media Player to select a
particular video stream available in the Service, for example an alternate camera angle.
Alternatively, it might request the Receiver Media Player to select an audio presentation other than
the one it would have chosen based on the user’s preferences. The Media Track Selection API may
be used for these cases.

This request is an asynchronous request. The Receiver processes the request and if it can, it
changes the selection.

The Media Track Selection API shall be defined as follows:
method: "org.atsc.track.selection"
params: an id value associated with the DASH Period.AdaptationSet element to be

selected, or alternatively, for complex audio presentations involving pre-selection, the
DASH Period.Preselection@id value. For unambiguous selection of one track or
audio presentation, all id values within the Period should be unique.

params JSON Schema:

{
 "type": "object",
 "properties": {
 "selectionId": {"type": "integer"},
 "required": ["selectionId"]
 }
}

selectedId – This required integer shall correspond to a value of @id attribute in either an
AdaptationSet in the current Period, or an @id attribute in a Preselection element in the
current Period.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

90

For example, if the Broadcaster Application wishes for the Receiver Media Player to find and
select a video AdaptationSet with an id value of 5506, it could send the following WebSocket
message:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.track.selection",
 "params": {"selectionId": 5506},
 "id": 29
}

If the requested AdaptationSet was successfully selected, the Receiver would respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 329
}

If the requested track cannot be selected, the Receiver shall respond with error code -10:

<-- {
 "jsonrpc": "2.0",
 "error": {"code": -10, "message": "Track cannot be selected"},
 "id": 329
}

9.8 Mark Unused API
The Mark Unused API can be used by the currently-executing Broadcaster Application to indicate
to the Application Context Cache that an element within the cache is unused. The Receiver may
then perform the appropriate actions to reclaim the resources used by the unused element.

The Mark Unused API is defined as follows:
method: "org.atsc.cache.markUnused"
params: A JSON object consisting of a key named elementUri with the URI of the

element that should be marked unused as follows:
params JSON Schema:

{
 "type": "object",
 "properties": {
 "elementUri": {"type": "string","format": "uri"}
 },
 "required": ["elementUri"]
}

For example, the Broadcaster Application may wish to indicate that a particular replacement
ad was not needed anymore after it had been used. The Broadcaster Application would mark the
MPD file as unused indicating the underlying resources could be reclaimed, perhaps for another
replacement ad. Similarly, the Broadcaster Application would also mark all Segments referenced

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

91

by the MPD as unused as well. Alternatively, it could mark the entire directory, “ads”, unused if
the directory only contained the replacement ad MPD and its associated Segments.

The RPC request would be formatted as follows:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.cache.markUnused",
 "params": {
 "elementUri":"http://192.168.0.42:4488/2/ads/replacement.ad.mpd"
 },
 "id": 42
}

The Receiver might respond with the following on success:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 42
}

Standard HTTP failure codes shall be used to indicate issues with the formation of the URI
and that the file or directory referenced could not be marked as unused. If an element is
successfully marked as unused, future attempts to access that element have indeterminate results
in that some Receivers may not have made the element unavailable and respond positively to the
request while others may immediately respond with an error status.

9.9 Content Recovery APIs
9.9.1 Query Content Recovery State API
A Broadcaster Application may wish to know whether it is being managed using content recovery
via watermarking and/or fingerprinting as specified in A/336 [2]. This allows the Broadcaster
Application to offer different functionality in content recovery scenarios than may be offered when
broadcast signaling is present and, in content recovery scenarios, it allows the application to
identify the presence of modifications that may be introduced by an upstream STB as discussed in
Annex A of A/336 [2] on an ongoing basis during its execution and alter its behavior accordingly.

The Query Content Recovery State API shall be defined as follows:
method: "org.atsc.query.contentRecoveryState"
params: Omitted

Response:
result: A JSON object containing four key/value pairs.
result JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

92

{
 "type": "object",
 "properties": {
 "audioWatermark": {
 "type": "integer",
 "minimum": 0, "maximum": 2
 },
 "videoWatermark": {
 "type": "integer",
 "minimum": 0, "maximum": 2
 },
 "audioFingerprint": {
 "type": "integer",
 "minimum": 0, "maximum": 2
 },
 "videoFingerprint": {
 "type": "integer",
 "minimum": 0, "maximum": 2
 }
 }
}

audioWatermark: This integer value shall be:
0: if the Receiver does not support application management using application signaling

recovered via audio watermarking as specified in A/336;
1: if the Receiver supports application management using application signaling recovered

via audio watermarking as specified in A/336 and the Receiver is not currently
detecting a VP1 Audio Watermark Segment as defined in A/336; and

2: if the Receiver supports application management using application signaling recovered
via audio watermarking as specified in A/336 and the Receiver is currently detecting a
VP1 Audio Watermark Segment as defined in A/336.

videoWatermark: This integer value shall be:
0: if the Receiver does not support application management using application signaling

recovered via video watermarking as specified in A/336;
1: if the Receiver supports application management using application signaling recovered

via video watermarking as specified in A/336 and the Receiver is not currently
detecting a VP1 Video Watermark Segment or any other video watermark message as
defined in A/336; and

2: if the Receiver supports application management using application signaling recovered
via video watermarking as specified in A/336 and the Receiver is currently detecting a
VP1 Video Watermark Segment or any other video watermark message as defined in
A/336.

audioFingerprint: This integer value shall be:
0: if the Receiver does not support application management using application signaling

recovered via audio fingerprinting as specified in A/336;

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

93

1: if the Receiver supports application management using application signaling recovered
via audio fingerprinting as specified in A/336 and the Receiver is not currently
recognizing an audio fingerprint;

2: if the Receiver supports application management using application signaling recovered
via audio fingerprinting as specified in A/336 and the Receiver is currently recognizing
an audio fingerprint.

videoFingerprint: This integer value shall be:
0: if the Receiver does not support application management using application signaling

recovered via video fingerprinting as specified in A/336;
1: if the Receiver supports application management using application signaling recovered

via video fingerprinting as specified in A/336 and the Receiver is not currently
recognizing an video fingerprint;

2: if the Receiver supports application management using application signaling recovered
via video fingerprinting as specified in A/336 and the Receiver is currently recognizing
a video fingerprint.

If a key/value pair is absent in the result, it indicates that the value of the key/value pair is 0
(i.e., the associated capability is not supported by the Receiver).

For example, the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.contentRecoveryState",
 "id": 122
}

If the Receiver supports application management using application signaling recovered from
both audio and video watermarks as specified in A/336 and both are currently being detected, the
Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {
 "audioWatermark": 2,
 "videoWatermark": 2
 },
 "id": 122
}

9.9.2 Query Display Override API
A Broadcaster Application may wish to know if the Receiver is receiving “display override”
signaling obtained via watermarking (as defined in A/336 [2]) indicating that modification of the
video and audio presentation should not be performed, and whether the Receiver is actively
enforcing that signaling by suppressing access by the Broadcaster Application to presentation
resources (“resource blocking”).

This information may be employed by the Broadcaster Application, for example, to:
• Ensure efficient utilization of Receiver and network resources (e.g. it may choose to not

request resources from a broadband server when those resources cannot be presented to the
user);

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

94

• Preserve an accurate representation of the user experience (e.g. to accurately report the
viewability of a dynamically inserted advertisement as may be required by an ad
viewability standard); or

• Comply with the requirements of the display override state, for example by halting any
audio or video modification, in the event that the Receiver is not performing resource
blocking.

The Query Display Override API shall be defined as follows:
method: "org.atsc.query.displayOverride"
params: Omitted

Response:
result: A JSON object containing a resourceBlocking key/value pair and a

displayOverride key/value.
result JSON Schema:

{
 "type": "object",
 "properties": {
 "resourceBlocking": {"type": "boolean"},
 "displayOverride": {"type": "boolean"}
 }
}

resourceBlocking: – This required Boolean value indicates if the Receiver is blocking the
Broadcast Application from presenting video and audio pursuant to an active display override
state as defined in A/336 [2].

displayOverride: – This required Boolean value shall be true if a display override condition is
currently in effect per a video watermark Display Override Message as specified in section
5.1.9 of A/336 [2] or per an audio watermark display override indication as specified in section
5.2.4 and 5.4.2 of A/336 [2]. Otherwise, the value shall be false.
If a key/value pair is absent in the result, it indicates that the value of the key/value pair is false.
For example, the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.resourceBlocking",
 "id": 62
}

And if the display override condition is currently indicated via audio watermark as specified
in Section 5.2.4 of A/336 [2] and the Receiver is blocking the Broadcaster Application from
presenting video and audio, the Receiver would respond:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

95

<-- {
 "jsonrpc": "2.0",
 "result": {
 "resourceBlocking": true,
 "displayOverride": true
 },
 "id": 62
}

9.9.3 Query Recovered Component Info API
When content recovery via watermarking or fingerprinting is employed, it is useful for the
Broadcaster Application to be able to determine which video or audio components of a service are
being received by the Receiver (e.g. as a result of selection by the user on an upstream device).
This can enable the Broadcaster Application to modify the on-screen placement or the language of
overlaid graphics or audio to conform to the characteristics of the received component.

During content recovery via watermarking or fingerprinting, the Receiver receives component
descriptors in a recovery file specified in section 5.4.2 of A/336 [2]. This API provides a means
for the descriptors to be accessed by the Broadcaster Application.

The Query Recovered Component Info API is defined as follows:
method: "org.atsc.query.recoveredComponentInfo"
params: omitted.

Response:
result: A JSON object containing one or more component objects as defined below.
result JSON Schema:

{
"component": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "mediaType": {
 "type": "string",
 "enum": ["audio","video","both"]
 },
 "componentID": {"type": "string"},
 "descriptor": {"type": "string"}
 },
 "required": ["mediaType"]
 }},
 "minItems": 1
}

mediaType, componentID and descriptor are the data values associated with the media
components received by the Receiver, as given in the fields of the same name in a
componentDescription element of a recovery file as specified in Table 5.29 of A/336 [2].
For example, the Broadcaster Application makes a query:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

96

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.recoveredComponentInfo",
 "id": 39
}

If a componentDescription element of the recovery file lists an audio component with the
componentID value “1” and the descriptor value “component descriptor string 1”, and a video
component with the componentID value “2” and the descriptor value “component descriptor
string 2” associated with the components received by the Receiver, the Receiver might respond:

--> {
 "jsonrpc": "2.0",
 "result": {"component": [
 {
 "mediaType": "audio",
 "componentID": "1",
 "descriptor": "component descriptor string 1"
 },
 {
 "mediaType": "video",
 "componentID": "2",
 "descriptor": "component descriptor string 2"
 }
]},
 "id": 39
}

9.9.4 Content Recovery State Change Notification API
The Content Recovery State Change notification API shall be issued by the Receiver to the
currently executing Broadcaster Application if the content recovery state as defined in Query
Content Recovery State API in Section 9.9.1 changes from one state to another different state in
which at least one property value changes.

The Content Recovery State Change notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object containing four key/value pairs representing the new content

recovery state.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

97

params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {
 "type": "string",
 "enum": ["contentRecoveryStateChange"]
 },
 "audioWatermark": {
 "type": "integer",
 "minimum": 0,
 "maximum": 2
 },
 "videoWatermark": {
 "type": "integer",
 "minimum": 0,
 "maximum": 2
 },
 "audioFingerprint": {
 "type": "integer",
 "minimum": 0,
 "maximum": 2
 },
 "videoFingerprint": {
 "type": "integer",
 "minimum": 0,
 "maximum": 2
 }
 },
 "required": ["msgType"]
}

audioWatermark, videoWatermark, audioFingerprint and videoFingerprint are defined in
Query Content Recovery State API in Section 9.9.1.
If a key/value pair is absent in the params, it indicates that the value of the key/value pair is 0.
For example, if the user changes from an un-watermarked service to a new service marked

with both audio and video watermarks and both audio and video watermarks are detected and being
used for content recovery in the Receiver, the Receiver notifies the Broadcaster Application the
content recovery state change as shown below:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

98

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "contentRecoveryStateChange",
 "audioWatermark": 2,
 "videoWatermark": 2
 }
}

9.9.5 Display Override Change Notification API
The Display Override Change notification API shall be issued by the Receiver to the currently
executing Broadcaster Application if the display override state or resource blocking state as
defined in Query Display Override API in Section 9.9.2 changes from one state to another different
state.

The Display Override Change notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of a key/value named msgType with value

"displayOverrideChange", a resourceBlocking key/value pair, and a
displayOverride key/value pair.

params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {
 "type": "string",
 "enum": ["displayOverrideChange"]
 },
 "resourceBlocking": {"type": "boolean"},
 "displayOverride": {"type": "boolean"}
 },
 "required": ["msgType"]
}

resourceBlocking and displayOverride are defined in Query Display Override API in
Section 9.9.2.

If a key/value pair is absent in the params, it indicates that the value of the key/value pair is
false.

For example, if the display override state changes from inactive to active and the Receiver is
blocking the currently executing Broadcaster Application from presenting video and audio, the
Receiver notifies the Broadcaster Application the Display Override change as shown below:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

99

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify ",
 "params": {
 "msgType": "displayOverrideChange",
 "resourceBlocking": true,
 "displayOverride": true
 }
}

9.9.6 Recovered Component Info Change Notification API
The Recovered Component Info Change notification API shall be issued by the Receiver to the
currently executing Broadcaster Application if the video or audio components of a service being
received by the Receiver changes (e.g. as a result of selection by the user on an upstream device).

The Recovered Component Info Change notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting a key named msgType with value

"recoveredComponentInfoChange" and two key/value pairs describing the new
component of the service.

params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {
 "type": "string",
 "enum": ["recoveredComponentInfoChange"]
 },
 "mediaType": {
 "type": "string",
 "enum": ["audio","video","both"]
 },
 "componentID": {"type": "string"},
 "descriptor": {"type": "string"}
 },
 "required": ["msgType","mediaType"]
}

mediaType, componentID and descriptor are defined Query Recovered Component Info API
in Section 9.9.3.
For example, if the user at an upstream device of the Receiver changed from Spanish to English

audio track described by the componentID value “1” and descriptor value “component
description string 3”, the Receiver notifies the Broadcaster Application the recovered
component change as shown below:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

100

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "recoveredComponentInfoChange",
 "mediaType": "audio",
 "componentID": "1",
 "descriptor": "component description string 3"
 }
}

9.10 Filter Codes APIs
The Receiver may use Filter Codes to selectively download NRT data files by comparing the stored
Filter Codes with the Filter Codes associated with the NRT data files in the EFDT.

Note that a Broadcaster Application cannot predict how long a Receiver will retain a set of
Filter Codes. Thus, it is recommended and expected that the Set Filter Codes API always provides
all the Filter Codes that apply to a given Receiver. In this way, the same API is used to create a
new Filter Codes definition and to update a Filter Codes definition. Each Set Filter Codes operation
completely replaces the old definition in the Receiver. It is further possible to delete previously
defined Filter Code values by setting a null set of Filter Codes using the Set Filter Codes API.

If the Receiver has downloaded one or more files based on a particular Filter Code value and
a new Filter Codes definition is received that does not include that value, the Receiver can be
expected to use this information as a caching hint, and thus may choose to delete those files.
9.10.1 Get Filter Codes API
The Get Filter Codes API can be used by a Receiver to discover filtering terms that the Receiver
can use to determine which files to download on behalf of an application.

The Get Filter Codes API shall be defined as follows:
method: "org.atsc.getFilterCodes"
params: Omitted.

Response:
result: A JSON object containing an object with key/value pairs as defined below.
result JSON Schema:

{
 "type": "object",
 "properties": {"filters": {
 "type": "array",
 "items": {
 "filterCode": {"type": "integer"},
 "expires": {"type": "string","format": "date-time"},
 "required": ["filterCode"]
 }
 }},
 "required": ["filters"]
}

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

101

filters – A required array of objects, each containing a required Filter Code and an optional
expiration time.

filterCode – A required unsigned integer associated with personalization categories as
determined by the broadcaster. It is the broadcaster’s responsibility to maintain a scope of
uniqueness of Filter Codes to be within an AppContextID.

expires – This string shall be represented by the xs:dateTime XML data type as defined in the W3C
XML Schema [36] to indicate the expiry of the Filter Code. Filter Codes are not expected to
be used after expiry. If the value is omitted, then no expiration is indicated.
For example, the Receiver can request Filter Codes from a Broadcaster Application by issuing:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.getFilterCodes",
 "id": 57
}

Upon success, the Broadcaster Application might respond:

--> {
 "jsonrpc": "2.0",
 "result": {
 "filters": [
 { "filterCode": 101, "expires": "2016-07-17T09:30:47" },
 { "filterCode": 102, "expires": "2016-07-17T09:30:47" },
 { "filterCode": 103 }]
 },
 "id": 57
}

9.10.2 Set Filter Codes API
The Set Filter Codes API can be issued by a Broadcaster Application to notify the Receiver to
store the specified Filter Codes.

The Set Filter Codes API shall be defined as follows:
method: "org.atsc.setFilterCodes"
params: A JSON object containing an object with key/value pairs as defined below.
params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

102

{
 "type": "object",
 "properties": {"filters": {
 "type": "array",
 "items": {
 "filterCode": {"type": "integer"},
 "expires": {"type": "string","format": "date-time"},
 "required": ["filterCode"]
 },
 "required": ["filters"]
 }}
}

filterCode – An unsigned integer associated with personalization categories as determined by
the broadcaster. It is the broadcaster’s responsibility to maintain a scope of uniqueness of Filter
Codes to be within an AppContextID.

expires – This string shall be represented by the xs:dateTime XML data type as defined in the W3C
XML Schema [36] to indicate the expiry of a Filter Code. Filter Codes are not expected to be
used after expiry. If the value is omitted, then no expiration is indicated.
In the following example, the Broadcaster Application provides three filter codes for the

Receiver to use:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.setFilterCodes",
 "params": {
 "filters": [
 {"filterCode": 101, "expires": "2016-07-17T09:30:47" },
 {"filterCode": 102, "expires": "2016-07-17T09:30:47" },
 {"filterCode": 103 }]
 },
 "id": 57
}

Upon success, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 57
}

9.11 Keys APIs
The APIs in this section allow the Broadcaster Application, with the Receiver’s permission, to
access certain specified remote control keys.
9.11.1 Request Keys API
A Broadcaster Application can request to receive keypresses that are typically used and processed
by Receivers. For example, numeric keypresses on the remote control are typically used by the
underlying Receiver to direct-tune to a specific channel. However, the Broadcaster Application

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

103

may wish to present a data entry UI to accept numeric data from the user in order to perform a
specific action or to solicit input from the viewer. In this case, the Broadcaster Application can
request the Receiver to temporarily re-route numeric keypresses to itself. Based on the Receiver
manufacturer, the Receiver may reject this request, in which case, the Broadcaster Application
may choose to display a soft keyboard on the TV screen or resort to using other types of device
input.

The Request Keys API shall be defined as follows:
method: "org.atsc.request.keys"
params: a JSON object indicating the type of keys requested
params JSON Schema:

{
 "type": "object",
 "properties": {
 "keys": {
 "type": "array",
 "items": {
 "type": "string",
 "enum": ["Numeric",<other>]
 }
 },
 "required": ["keys"]
 }
}

keys – This parameter shall be an array of strings, each representing a particular remote control
key or type of key the Broadcaster Application would like the Receiver to forward.
• "Numeric" – Indicates the numeric keys 0-9.
• <other> – Indicates any of the strings in W3C “UI Events KeyboardEvent key Values,”

Section 3.18, Media Controller Keys [31].
Response:
The Receiver shall respond with a JSON-RPC response object including a result object. The

result object includes a string array indicating the keys for which the request was successful. It can
be assumed that any requested keys that are not included in the "accepted" array were not
accepted.

result JSON schema:

{
 "type": "object",
 "properties": {
 "accepted": {
 "type": "array",
 "items": {"type": "string"}
 },
 "required": ["accepted"]
 }
}

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

104

For example, if the Broadcaster Application requests receipt of numeric keys and Channel Up
and Channel Down arrows, it can issue this request to the Receiver:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.request.keys ",
 "params": {"keys": ["Numeric","ChannelUp","ChannelDown"]},
 "id": 43
}

If the Receiver grants the numeric keypresses but not the Channel Up and Channel Down
keypresses, the Receiver could respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {"accepted": ["Numeric"]},
 "id": 43
}

9.11.2 Relinquish Keys API
A Broadcaster Application can relinquish previous requests for keypresses. This would be used
after a request made via the Request Keys API (Section 9.11.1) to return the handling of keypresses
to a normal state.

The Relinquish Keys API shall be defined as follows:
method: "org.atsc.relinquish.keys"
params: optional, includes optional "keys" string array, indicating which keys to

relinquish. If absent (or if "keys" is absent or is an empty string), all keys will be
relinquished.

params JSON Schema:

{
 "type": "object",
 "properties": {
 "keys": {
 "type": "array",
 "items": {"type": "string","enum": ["Numeric", <other>]}
 }
 }
}

keys – This parameter is an array of strings, each representing a particular remote control key or
type of key the Broadcaster Application would like the Receiver to relinquish.
• "Numeric" – Indicates the numeric keys 0-9.
• <other> – Indicates any of the strings in W3C “UI Events KeyboardEvent key Values,”

Section 3.18, Media Controller Keys [31]].
Response:

The Receiver shall respond with a JSON-RPC response object with a null result object.
For example, the Broadcaster Application can issue this request to the Receiver:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

105

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.relinquish.keys",
 "params": {
 "keys": ["ChannelUp", "ChannelDown"]
 },
 "id": 44}

The Receiver might respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {},
 "id": 44
}

9.11.3 Request Keys Timeout
To help to avoid application misbehavior, the Receiver may force keypress requests to be
relinquished after a certain amount of time, defined by each manufacturer. This is referred to as a
request key timeout. Prior to the request key timeout, the Receiver sends a warning notification to
the Broadcaster Application to provide the application time to respond to the timeout. The
Broadcaster Application may, at this point, choose to issue another Request Keys API or it may
allow the key request(s) to time out. If another request key API is issued, it may or may not be
accepted by the Receiver.

The Request Key Timeout Notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object including a key named msgType with the value

"requestKeyTimeout". The params object also includes a timeout array that identifies
each key that is nearing timeout along with the number of seconds until timeout occurs.

params JSON Schema:
{
 "type": "object",
 "properties": {
 "msgType": {"type": "string", "enum": ["requestKeyTimeout"]},
 "timeout": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "key": {"type": "string"},
 "time": {"type": "integer"}
 }
 },
 "minItems": 1
 }
 },
 "required": ["msgType","timeout"]
}

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

106

key – This parameter is a string representing a particular remote control key or type of key about
which the Receiver wishes to notify the Broadcaster Application.
• "Numeric" – Indicates the numeric keys 0-9.
• <other> – Indicates any of the strings in W3C “UI Events KeyboardEvent key Values,”

Section 3.18, Media Controller Keys [31]].
key – An integer number of seconds indicating the timeout for the given key or type of key.

No reply from the Broadcaster Application is expected from this notification, hence the "id"
term is omitted.

For example, the Receiver may send the following notification to indicate that Channel Up and
Channel Down key requests will time out in 3 seconds:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "requestKeyTimeout",
 "timeout": [
 {"key": "ChannelUp","time": 3},
 {"key": "ChannelDown","time": 3}
]
 }
}

9.12 Query Device Info API
The Query Device Info API provides an interface between a Broadcaster Application and the
Receiver to retrieve device-specific information. It is a generic conduit between the Receiver and
the Broadcaster Application to provide basic device information including make and model of
device, along with optional additional key/value pair information about the device. The format and
definition of the optional additional key/value pairs are manufacturer-specific and not specified
here. Specific parameters may be defined as part of a business relationship between a broadcaster
and a device manufacturer.

The Query Device Info API request params object is optional. If params is omitted (or if
deviceInfoProperties is omitted or is an empty array), the Receiver shall respond with only the
device make and model. The Broadcaster Application can then use the device make and model to
determine which additional properties to query. The deviceInfoProperties is an array of desired
properties, and the Receiver provides the values of these properties in the response.

The Query Device Info API shall be defined as follows:
method: "org.atsc.query.deviceInfo"
params: An optional JSON object.
params JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

107

{
 "type": "object",
 "properties": {"deviceInfoProperties": {
 "type": "array",
 "items": {"type": "string"}
 }}
}

deviceInfoProperties – This parameter is an array of strings, each representing a particular
aspect of the device about which the Broadcaster Application is interested.
Response:

result: a JSON object containing the device make and model and optionally a request for
additional information about a given device make/model.

result JSON Schema:

{
 "type": "object",
 "properties": {
 "deviceMake": {"type": "string"},
 "deviceModel": {"type": "string"},
 "deviceInfo": {"type": "object"}
 },
 "required": ["deviceMake","deviceModel"]
}

deviceMake: – This required string indicates the manufacturer of the Receiver.
deviceModel: – This required string indicates the model of the Receiver.
deviceInfo: – This optional object includes key/value pairs. The deviceInfo is included in the

response if the request included one or more deviceInfoProperties strings corresponding
to information the Receiver can supply.
For example, a query from the Broadcaster Application may look like this:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.deviceInfo",
 "id": 91
}

A Receiver manufactured by the “Acme” company with model number “A300” might respond
with:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

108

<-- {
 "jsonrpc": "2.0",
 "result": {
 "deviceMake": "Acme",
 "deviceModel": "A300"
 },
 "id": 92
}

If the Broadcaster Application recognizes this make and model, it might know that additional
information about this Receiver may be retrieved by indicating specific device properties in the
request. Note that not all Receivers would be expected to recognize the deviceInfoProperties
strings given in this example:

<-- {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.deviceInfo",
 "params": {"deviceInfoProperties": ["numberOfTuners","yearOfMfr"]},
 "id": 93
}

This Receiver might respond with:

<-- {
 "jsonrpc": "2.0",
 "result": {
 "deviceMake": "Acme",
 "deviceModel": "A300",
 "deviceInfo": {
 "numberOfTuners": 1,
 "yearOfMfr": 2017
 }
 },
 "id": 93
}

9.13 RMP Content Synchronization APIs
9.13.1 Query RMP Media Time API
A Broadcaster Application may wish to know the current presentation time of the broadcast
content being presented by Receiver. This enables the Broadcaster Application to present
supplemental content that is synchronized to the content. For example, a Broadcaster Application
may display a graphical overlay at a particular moment in a program.

The Query RMP Media Time API shall be defined as follows:
method: "org.atsc.query.rmpMediaTime"
params: Omitted

Response:
result: A JSON object containing two key/value pairs.
result JSON Schema:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

109

{
 "type": "object",
 "properties": {
 "currentTime":{"type": "number", "minimum": 0},
 "startDate": {"type": "string", "format": "date-time"}
 },
 "required": ["currentTime"]
}

currentTime: This required floating-point number value shall represent the current presentation
time of the content being presented by the RMP, expressed as an offset, in seconds, to
startDate. It shall have the same meaning as the @currentTime attribute of the
HTMLMediaElement given in [30] that represents the official playback position of the content.

startDate: This optional xs:date-time value represents an absolute time reference for the start (i.e.,
the zero time) of the media timeline of the content being presented by the RMP. It has the same
meaning as the @startDate attribute of the HTMLMediaElement given in [30].
When the RMP is presenting content compliant with [39], the following requirements apply to

the reported values of startDate and currentTime:
• The value of startDate represents the sum of MPD@availablilityStartTime in the MPD

that was in use by the RMP when it began playing or recording the presentation and the
time offset on the DASH Media Presentation timeline at which the RMP began playing or
recording the presentation. When content delivered via broadband allows the RMP to seek
to a position in the presentation earlier than the time at which RMP began playing or
recording the content (e.g. live time-shift), the time offset on the DASH Media Presentation
timeline shall be the earliest seekable time offset in the content. Note that the media format
of the recorded content is receiver-specific.

• When recorded content is being presented, startDate and currentTime shall have the
same values as applied to presentation of the live version of the recorded content.

If no explicit date and time is available for the content being present (e.g., the downloaded
content), startDate shall be absent in the response. Otherwise, startDate shall be present in the
response.

For example, if the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.rmpMediaTime",
 "id": 61
}

The Receiver might respond:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

110

<-- {
 "jsonrpc": "2.0",
 "result": {"currentTime": 3600.033,
 "startDate": "2016-01-01T23:59:59.590Z"
 },
 "id": 61
}

9.13.2 Query RMP Wall Clock API
A Broadcaster Application may wish to know the wall clock time, which is synchronized to the
PTP Time signaled in the broadcast physical layer protocol. The wall clock can be used to query
the current UTC time instead of the JavaScript API, e.g. Date.now() of the User Agent.

The Query RMP Wall Clock Time API shall be defined as follows:
method: "org.atsc.query.rmpWallClockTime"
params: Omitted

Response:
result: A JSON object containing one key/value pair.
result JSON Schema:

{
 "type": "object",
 "properties": {
 "wallClock": {"type": "string","format": "date-time"}
 },
 "required": ["wallClock"]
}

wallClock: This required date-time value shall represent the wall clock time, which is synchronized
to the PTP Time signaled in the broadcast physical layer protocol.
For example, if the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.rmpWallClockTime",
 "id": 62
}

The Receiver might respond:

<-- {
 "jsonrpc": "2.0",
 "result": {"wallClock": "2017-01-01T23:59:56.320Z"},
 "id": 62
}

9.13.3 Query RMP Playback State API
A Broadcaster Application may wish to know the playback state of the content being presented or
prepared for presentation by RMP. This allows the application to make adjustments in presenting
supplemental content based on playback state of the content. For example, the application may

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

111

suspend presentation of supplemental content if playback of the presentation is paused due to
content buffer underflow (“buffering”) or user input or stopped due to reaching the end of a VOD
program stream.

The Query RMP Playback State API shall be defined as follows:
method: "org.atsc.query.rmpPlaybackState"
params: Omitted

Response:
result: A JSON object containing a playbackState key/value pair.
result JSON Schema:

{
 "type": "object",
 "properties": {"playbackState": {"type": "integer","minimum": 0,"maximum": 2}},
 "required": ["playbackState"]
}

playbackState: This integer value shall indicate one of the following playback states of the RMP.
The states have the same meanings of playing, waiting and ended playback states, respectively,
as specified in HTMLMediaElement as given in [30].
• 0 if the content is actively playing;
• 1 if the playback paused;
• 2 if the playback reached the end of the content.
For example, the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.rmpPlaybackState",
 "id": 63
}

And if the RMP is playing back content, the Receiver would respond:

--> {
 "jsonrpc": "2.0",
 "result": {"playbackState": 0},
 "id": 63
}

9.13.4 Query RMP Playback Rate API
A Broadcaster Application may wish to know the speed at which the content is being presented by
the RMP. This allows the application to make adjustments in presenting supplemental content
based on playback speed of the content. For example, the application may choose to suspend
presentation of supplemental content during trick-play mode.

The Query RMP Playback Rate API shall be defined as follows:
method: "org.atsc.query.rmpPlaybackRate"
params: Omitted

Response:
result: A JSON object containing a playbackRate key/value pair.

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

112

result JSON Schema:

{
 "type": "object",
 "properties": {"playbackRate": {"type": "number"}},
 "required": ["playbackRate"]
}

playbackRate: This required floating-point value indicates the playback speed of the content
currently being presented by RMP with the same meaning as the attribute playbackRate of
HTMLMediaElement as given in [30].
For example, the Broadcaster Application makes a query:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.query.rmpPlaybackRate",
 "id": 65
}

And if the RMP is playing back content at the normal speed, the Receiver would respond:

<-- {
 "jsonrpc": "2.0",
 "result": {"playbackRate": 1.0},
 "id": 65
}

9.13.5 RMP Media Time Change Notification API
The RMP Media Time Change notification API shall be issued by the Receiver to the currently
executing Broadcaster Application if the current playback position of the content being presented
by the RMP changed. This API has the same meaning functionally as the timeupdate event of
HTMLMediaElement as given in [30]. The Receiver notifies the Broadcaster Application using this
API when the official playback position of the RMP changes as part of normal or trick playback.

The RMP Media Time Change notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object containing three key/value pairs.
params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {"type": "string","enum": ["rmpMediaTimeChange"]},
 "currentTime": {"type": "number","minimum": 0},
 "startDate": {"type": "string","format": "date-time"}
 },
 "required": ["msgType","currentTime"]
}

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

113

currentTime and startDate are defined in Query RMP Media Time API in Section 9.13.1.
If the startDate key/value is absent in the params, it indicates that the value of the key/value
pair is unchanged.

For example, the Receiver may notify the application the media time change every 250 to 500
msec. during the normal playback of the current service. A notification provided shortly after the
previous notification which contained a currentTime value 3600.033 might be:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "rmpMediaTimeChange",
 "currentTime": 3600.283
 }
}

9.13.6 RMP Playback State Change Notification API
The RMP Playback State Change notification API shall be issued by the Receiver to the currently
executing Broadcaster Application if the playback state of the RMP as defined in Query RMP
Playback State API in Section 9.13.3 changes from one value to another different value.

The RMP Playback State Change notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of two key/value pairs.
params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {"type": "string","enum": ["rmpPlaybackStateChange"]},
 "playbackState": {"type": "integer","minimum": 0,"maximum": 3}
 },
 "required": ["msgType","playbackState"]
}

playbackState: This integer value shall indicate the new playback state that is one of the
playback states defined in Query Playback State API in Section 9.13.3.
For example, if the user at the Receiver pauses the playback of the time-shift broadcast content,

the Receiver notifies the Broadcaster Application the playback state as shown below:

ATSC A/344:2017 ATSC 3.0 Interactive Content 18 December 2017

114

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "rmpPlaybackStateChange",
 "playbackState": 1
 }
}

9.13.7 RMP Playback Rate Change Notification API
The RMP Playback Rate Change notification API shall be issued by the Receiver to the currently
executing Broadcaster Application if the playback speed as defined in Query RMP Playback Rate
API in Section 9.13.4 changes from one value to another different value.

The RMP Playback Rate Change notification API is defined as follows:
method: "org.atsc.notify"
params: A JSON object consisting of two key/value pairs.
params JSON Schema:

{
 "type": "object",
 "properties": {
 "msgType": {"type": "string","enum": ["rmpPlaybackRateChange"]},
 "playbackRate": {"type": "number"}},
 "required": ["msgType","playbackRate"]
}

playbackRate shall be as defined in Query RMP Playback Rate API in Section 9.13.4.
For example, if the user at the Receiver performs fast-forward playback of the time-shift

content at 2 times normal playback speed, the Receiver notifies the Broadcaster Application the
playback speed changes as shown below:

--> {
 "jsonrpc": "2.0",
 "method": "org.atsc.notify",
 "params": {
 "msgType": "rmpPlaybackRateChange",
 "playbackRate": 2
 }
}

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex A 18 December 2017

115

Annex A: DASH Ad Insertion

A.1 INTRODUCTION
The Reference Receiver Model supports personalized client-side ad insertion. The mechanism
depends on the type of service: for regular “watch TV” types of services that include application-
based features, the Broadcaster Application can directly parse the MPD and resolve the XLink. It
can also provide a service to the Receiver Media Player to resolve an XLink, but this assumes that
the Receiver Media Player should parse the MPD and propagate the XLink resolution event to the
Broadcaster Application in less than 150 milliseconds. Receiver Media Players that cannot parse
the MPD and propagate the XLink resolution event in less than 150 milliseconds cannot be used
for client-side ad insertion. For application-based services, the Broadcaster Application itself can
determine the appropriate content to play for any particular user. The XLink-based method is
described and specified here.

A.2 DYNAMIC AD INSERTION PRINCIPLES
The basic principles of dynamic ad insertion include:

1) Signaling an “ad avail” to indicate an available slot for a replacement ad or ad pod;
2) Controlling the pre-caching of ad replacement content;
3) Choosing the appropriate ad for download based on user preferences, cookies (past

viewing, or past answers to questions), custom logic, etc.; and
4) Executing the seamless splice of replacement ad into broadcast stream

The method specified herein involves:
1) Signaling an “ad avail” as a DASH Period in an MPD;
2) Tagging each replaceable Period with an XLink;
3) Having the Receiver Media Player call on the Broadcaster Application to resolve each

XLink;
4) Managing the pre-caching of ad content, if necessary, within the Broadcaster Application;
5) Employing the Broadcaster Application to choose the appropriate ad, personalized to this

viewer; and
6) Having the Receiver Media Player execute the seamless splice;
Figure A.2.1 describes three DASH Periods, designated as P1, P2, and P3. Here, P2 is an “ad

avail,” meaning that a possible replacement ad may be substituted for the content that would
otherwise play during that interval. If no personalization is done, the default content (called “P2*”)
plays. The asterisk indicates that the MPD element describing P2 includes an XLink. Based on
some personalization criteria (described later), P2 could be replaced with an alternative content,
shown as P2a, P2b, or P2c in the figure.

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex A 18 December 2017

116

P1 P2* P3

P2c

P2b

P2a

Alternate
(Personalized)

Ads

02:20:15 02:21:45

time

Figure A.2.1 Personalized ad periods.

In this example, the broadcast MPD includes an XLink attribute within the Period element
describing P2.

A.3 OVERVIEW OF XLINKS
The XLink concept is specified by W3C in [44]. While XLinks have many applications, for the
purposes of the ATSC 3.0 runtime environment we are only using one feature: an XLink appearing
as an attribute of an XML element can be “resolved” to replace that entire element with the result
of the resolution process. This feature is signaled by setting the XLink “show” attribute to the
value “embed,” as shown in the simplified example MPD.Period given in Figure A.3.1.

<Period start="PT9H" xlink:show="embed" xlink:href="private-data-known-to-app"
 duration="PT30S">
 <AdaptationSet mimeType="video/mp4" … >
 <SegmentTemplate timescale="90000" … media="xbc-$Number$.mp4v" />
 <Representation id="v2" width="1920" height="1080" … />
 </AdaptationSet>
</Period>

Figure A.3.1 Example period with XLink.

When the Receiver Media Player that meets ATSC 3.0 performance requirements for XLink
resolution is used to render media and it receives an updated MPD including an XLink in one or
more Period elements, if there is a Broadcaster Application currently running, it passes the
contents of the xlink:href attribute as a parameter to the Broadcaster Application using the XLink
Resolution API specified in Section 9.6.3 to attempt to get it resolved. If successful, the application
responds with a replacement Period element. A broadcaster application that directly renders media
will have access to the updated MPD and can resolve the XLink directly. For the example above,
the replacement Period might look like the one given in Figure A.3.2

<Period start="PT9H">
 <AdaptationSet mimeType="video/mp4" … >
 <SegmentTemplate timescale="90000" … media="ad6-$Number$.mp4v" duration="90000" />
 <Representation id="v2" width="1920" height="1080" … />
 </AdaptationSet>
</Period>

Figure A.3.2 Example remote period.

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex A 18 December 2017

117

In the example, the original content (referenced by the relative URL "xbc-$Number$.mp4v")
was replaced by a personalized ad segment referenced by "ad6-$Number$.mp4v".

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex B 18 December 2017

118

Annex B: Obscuring the Location of Ad Avails

B.1 OBSCURING THE LOCATION OF AD AVAILS
The XLink-based technique described in Section A.3 may be used to obscure the location of ad
avails, thanks to the possibility that the XLink resolution can return not one, but multiple Period
elements.

xbc-1.mp4v ...

0:00:00
UTC

8:59:59
UTC

xbc-32400.mp4v

9:00:00
UTC

xbc-32401.mp4v

...

9:00:30
UTC

xbc-32431.mp4vxbc-32430.mp4v xbc-86400.mp4v... ...

0:00:00
UTC

Public MPD

Private MPD

P1c

P1

P1a P1b

Replaceable Segments
(Ad avail)

Figure B.1.1 Public and private MPDs.

Figure B.1.1 describes a “public” MPD and a “private” MPD. The public MPD is delivered in
the broadcast emission stream, and signals one Period (P1) starting at midnight UTC on 1 July,
2016, and lasting for 24 hours. Figure B.1.2 shows, in simplified form, this MPD instance.

<MPD type="dynamic" … availabilityStartTime="2016-07-01T00:00:00Z">
…
<Period start="PT0S" duration="PT1D" xlink:show="embed"
 xlink:href="urn:xbc?d=2016-07-01&s=4A92D344092A9A09eC35" > <!-- P1 -->
 <AdaptationSet mimeType="video/mp4" … >
 <SegmentTemplate timescale="90000" … media="xbc-$Number$.mp4v" duration="90000" />
 <Representation id="v2" width="1920" height="1080" … />
 </AdaptationSet>
</Period>
</MPD>

Figure B.1.2 Example public MPD.

The MPD includes an XLink within the one Period. The resolution of this XLink yields three
Periods, replacing the one. This “private” MPD is shown in Figure B.1.1 at the bottom. Now, the
Period P1 is broken into three sub-Periods, P1a, P1b, and P1c. The middle Period, P1b, is actually
an ad avail occurring at 9:00 am UTC and lasting for 30 seconds.

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex B 18 December 2017

119

Note that the public MPD indicated Media Segments of 1-second duration running all day
long. Thus, the first Media Segment of the day would be xbc-1.mp4v, running through to the end
of the day with xbc-864000.mp4v.

Figure B.1.3 illustrates an MPD that would result in output of exactly the same media content
as the MPD given in Figure B.1.2. This example is given only to illustrate the concept of the
Period.SegmentTemplate.startNumber.

<MPD type="dynamic" … availabilityStartTime="2016-07-01T00:00:00Z">
…
<Period start="PT0S" > <!-- P1a -->
 <AdaptationSet mimeType="video/mp4" … >
 <SegmentTemplate timescale="90000" … media="xbc-$Number$.mp4v" duration="90000" />
 <Representation id="v2" width="1920" height="1080" … />
 </AdaptationSet>
</Period>

<Period start="PT9H" > <!-- P1b -->
 <AdaptationSet mimeType="video/mp4" … >
 <SegmentTemplate timescale="90000" … media="xbc-$Number$.mp4v" duration="90000"
 startNumber="32401" />
 <Representation id="v2" width="1920" height="1080" … />
 </AdaptationSet>
</Period>

<Period start="PT9H0M30S" > <!-- P1c -->
 <AdaptationSet mimeType="video/mp4" … >
 <SegmentTemplate timescale="90000" … media="xbc-$Number$.mp4v" duration="90000"
 startNumber="32431" />
 <Representation id="v2" width="1920" height="1080" … />
 </AdaptationSet>
</Period>
</MPD>

Figure B.1.3 Example MPD equivalent.

Although there are two additional Periods, the media content referenced by the middle one (the
Period starting at 9 a.m.), is exactly the same as before, because the starting index number is set to
32,401. This is the same number, and hence the same Media Segment, that would have played at
9 a.m. according to the MPD of Figure B.1.2. Likewise, at 30 seconds after 9:00, the start number
of 32,431 references the same content as before.

Therefore, if XLink resolution would return these three Periods, nothing would change. A
seamless ad replacement can occur, however, if the Broadcaster Application replaces the middle
period with different content. Figure B.1.4 illustrates the case that the content referenced in the
middle period is now to a personalized ad of 30 seconds duration, by reference to media="ad7-
$Number$.mp4v".

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex B 18 December 2017

120

<MPD type="dynamic" … availabilityStartTime="2016-07-01T00:00:00Z">
…
<Period start="PT0S" > <!-- P1a -->
 <AdaptationSet mimeType="video/mp4" … >
 <SegmentTemplate timescale="90000" … media="xbc-$Number$.mp4v" duration="90000" />
 <Representation id="v2" width="1920" height="1080" … />
 </AdaptationSet>
</Period>

<Period start="PT9H" > <AdaptationSet mimeType="video/mp4" … > <!-- P1b* -->
 <SegmentTemplate timescale="90000" … media="ad7-$Number$.mp4v" duration="90000" />
 <Representation id="v2" width="1920" height="1080" … />
 </AdaptationSet>
</Period>

<Period start="PT9H0M30S" > <!-- P1c -->
 <AdaptationSet mimeType="video/mp4" … >
 <SegmentTemplate timescale="90000" … media="xbc-$Number$.mp4v" duration="90000"
 startNumber="32431" />
 <Representation id="v2" width="1920" height="1080" … />
 </AdaptationSet>
</Period>
</MPD>

Figure B.1.4 Example ad replacement.

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex C 18 December 2017

121

Annex C: JSON-RPC 2.0 Specification

The contents of this Annex were copied verbatim from http://www.jsonrpc.org/specification [41]
on September 28, 2017.

Origin Date:
2010-03-26 (based on the 2009-05-24 version)

Updated:
2013-01-04

Author:
JSON-RPC Working Group <json-rpc@googlegroups.com>

1 Overview
JSON-RPC is a stateless, light-weight remote procedure call (RPC) protocol. Primarily this
specification defines several data structures and the rules around their processing. It is transport
agnostic in that the concepts can be used within the same process, over sockets, over http, or in
many various message passing environments. It uses JSON (RFC 4627) as data format.

It is designed to be simple!

2 Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119.

Since JSON-RPC utilizes JSON, it has the same type system (see http://www.json.org or RFC
4627). JSON can represent four primitive types (Strings, Numbers, Booleans, and Null) and two
structured types (Objects and Arrays). The term "Primitive" in this specification references any of
those four primitive JSON types. The term "Structured" references either of the structured JSON
types. Whenever this document refers to any JSON type, the first letter is always capitalized:
Object, Array, String, Number, Boolean, Null. True and False are also capitalized.

All member names exchanged between the Client and the Server that are considered for
matching of any kind should be considered to be case-sensitive. The terms function, method, and
procedure can be assumed to be interchangeable.

The Client is defined as the origin of Request objects and the handler of Response objects. The
Server is defined as the origin of Response objects and the handler of Request objects.

One implementation of this specification could easily fill both of those roles, even at the same
time, to other different clients or the same client. This specification does not address that layer of
complexity.

http://www.jsonrpc.org/specification
https://groups.google.com/forum/#!forum/json-rpc
http://www.json.org/
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc2119.txthttp:/www.ietf.org/rfc/rfc2119.txt
http://www.json.org/
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex C 18 December 2017

122

3 Compatibility
JSON-RPC 2.0 Request objects and Response objects may not work with existing JSON-RPC 1.0
clients or servers. However, it is easy to distinguish between the two versions as 2.0 always has a
member named "jsonrpc" with a String value of "2.0" whereas 1.0 does not. Most 2.0 implementations
should consider trying to handle 1.0 objects, even if not the peer-to-peer and class hinting aspects
of 1.0.

4 Request object
A rpc call is represented by sending a Request object to a Server. The Request object has the
following members:
jsonrpc

A String specifying the version of the JSON-RPC protocol. MUST be exactly "2.0".
method

A String containing the name of the method to be invoked. Method names that begin with the
word rpc followed by a period character (U+002E or ASCII 46) are reserved for rpc-internal
methods and extensions and MUST NOT be used for anything else.

params
A Structured value that holds the parameter values to be used during the invocation of the
method. This member MAY be omitted.

id
An identifier established by the Client that MUST contain a String, Number, or NULL value
if included. If it is not included it is assumed to be a notification. The value SHOULD normally
not be Null1 and Numbers SHOULD NOT contain fractional parts2

The Server MUST reply with the same value in the Response object if included. This
member is used to correlate the context between the two objects.

4.1 Notification
A Notification is a Request object without an "id" member. A Request object that is a Notification
signifies the Client's lack of interest in the corresponding Response object, and as such no
Response object needs to be returned to the client. The Server MUST NOT reply to a Notification,
including those that are within a batch request.

Notifications are not confirmable by definition, since they do not have a Response object to be
returned. As such, the Client would not be aware of any errors (like e.g. "Invalid params","Internal
error").

4.2 Parameter Structures

1 The use of Null as a value for the id member in a Request object is discouraged, because this

specification uses a value of Null for Responses with an unknown id. Also, because JSON-
RPC 1.0 uses an id value of Null for Notifications this could cause confusion in handling.

2 Fractional parts may be problematic, since many decimal fractions cannot be represented exactly
as binary fractions.

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex C 18 December 2017

123

If present, parameters for the rpc call MUST be provided as a Structured value. Either by-position
through an Array or by-name through an Object.

• by-position: params MUST be an Array, containing the values in the Server expected
order.

• by-name: params MUST be an Object, with member names that match the Server
expected parameter names. The absence of expected names MAY result in an error
being generated. The names MUST match exactly, including case, to the method's
expected parameters.

5 Response object
When a rpc call is made, the Server MUST reply with a Response, except for in the case of
Notifications. The Response is expressed as a single JSON Object, with the following members:
jsonrpc

A String specifying the version of the JSON-RPC protocol. MUST be exactly "2.0".
result

This member is REQUIRED on success. This member MUST NOT exist if there was an error
invoking the method. The value of this member is determined by the method invoked on the
Server.

error
This member is REQUIRED on error. This member MUST NOT exist if there was no error
triggered during invocation. The value for this member MUST be an Object as defined in
section I.5.1.

id
This member is REQUIRED. It MUST be the same as the value of the id member in the
Request Object. If there was an error in detecting the id in the Request object (e.g. Parse
error/Invalid Request), MUST be Null. Either the result member or error member MUST be
included, but both members MUST NOT be included.

5.1 Error object
When a rpc call encounters an error, the Response Object MUST contain the error member with a
value that is a Object with the following members:
code

A Number that indicates the error type that occurred. This MUST be an integer.
message

A String providing a short description of the error. The message SHOULD be limited to a
concise single sentence.

data
A Primitive or Structured value that contains additional information about the error. This may
be omitted. The value of this member is defined by the Server (e.g. detailed error information,
nested errors etc.).
The error codes from and including -32768 to -32000 are reserved for pre-defined errors. Any

code within this range, but not defined explicitly below is reserved for future use. The error codes

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex C 18 December 2017

124

are nearly the same as those suggested for XML-RPC at the following url: http://xmlrpc-
epi.sourceforge.net/specs/rfc.fault_codes.php

code message meaning

-32700 Parse error Invalid JSON was received by the server.
An error occurred on the server while parsing the JSON text.

-32600 Invalid Request The JSON sent is not a valid Request object.

-32601 Method not found The method does not exist / is not available.

-32602 Invalid params Invalid method parameter(s).

-32603 Internal error Internal JSON-RPC error.

-32000 to -32099 Server error Reserved for implementation-defined server-errors.

The remainder of the space is available for application defined errors.

6 Batch
To send several Request objects at the same time, the Client MAY send an Array filled with
Request objects.

The Server should respond with an Array containing the corresponding Response objects, after
all of the batch Request objects have been processed. A Response object SHOULD exist for each
Request object, except that there SHOULD NOT be any Response objects for notifications. The
Server MAY process a batch rpc call as a set of concurrent tasks, processing them in any order and
with any width of parallelism.

The Response objects being returned from a batch call MAY be returned in any order within
the Array. The Client SHOULD match contexts between the set of Request objects and the
resulting set of Response objects based on the id member within each Object.

If the batch rpc call itself fails to be recognized as an valid JSON or as an Array with at least
one value, the response from the Server MUST be a single Response object. If there are no
Response objects contained within the Response array as it is to be sent to the client, the server
MUST NOT return an empty Array and should return nothing at all.

7 Examples
Syntax:
--> data sent to Server

<-- data sent to Client

rpc call with positional parameters:
--> {"jsonrpc": "2.0", "method": "subtract", "params": [42, 23], "id": 1}

<-- {"jsonrpc": "2.0", "result": 19, "id": 1}

--> {"jsonrpc": "2.0", "method": "subtract", "params": [23, 42], "id": 2}

http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php
http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex C 18 December 2017

125

<-- {"jsonrpc": "2.0", "result": -19, "id": 2}

rpc call with named parameters:
--> {"jsonrpc": "2.0", "method": "subtract", "params": {"subtrahend": 23, "minuend":

42}, "id": 3}

<-- {"jsonrpc": "2.0", "result": 19, "id": 3}

--> {"jsonrpc": "2.0", "method": "subtract", "params": {"minuend": 42, "subtrahend":

23}, "id": 4}

<-- {"jsonrpc": "2.0", "result": 19, "id": 4}

a Notification:
--> {"jsonrpc": "2.0", "method": "update", "params": [1,2,3,4,5]}

--> {"jsonrpc": "2.0", "method": "foobar"}

rpc call of non-existent method:
--> {"jsonrpc": "2.0", "method": "foobar", "id": "1"}

<-- {"jsonrpc": "2.0", "error": {"code": -32601, "message": "Method not found"}, "id":

"1"}

rpc call with invalid JSON:
--> {"jsonrpc": "2.0", "method": "foobar, "params": "bar", "baz]

<-- {"jsonrpc": "2.0", "error": {"code": -32700, "message": "Parse error"}, "id":

null}

rpc call with invalid Request object:
--> {"jsonrpc": "2.0", "method": 1, "params": "bar"}

<-- {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":

null}

rpc call Batch, invalid JSON:
--> [

 {"jsonrpc": "2.0", "method": "sum", "params": [1,2,4], "id": "1"},

 {"jsonrpc": "2.0", "method"

]

<-- {"jsonrpc": "2.0", "error": {"code": -32700, "message": "Parse error"}, "id":

null}

rpc call with an empty Array:
--> []

<-- {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":

null}

rpc call with an invalid Batch (but not empty):
--> [1]

<-- [

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex C 18 December 2017

126

 {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":

null}

]

rpc call with invalid Batch:
--> [1,2,3]

<-- [

 {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":

null},

 {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":

null},

 {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":

null}

]

rpc call Batch:
--> [

 {"jsonrpc": "2.0", "method": "sum", "params": [1,2,4], "id": "1"},

 {"jsonrpc": "2.0", "method": "notify_hello", "params": [7]},

 {"jsonrpc": "2.0", "method": "subtract", "params": [42,23], "id": "2"},

 {"foo": "boo"},

 {"jsonrpc": "2.0", "method": "foo.get", "params": {"name": "myself"}, "id":

"5"},

 {"jsonrpc": "2.0", "method": "get_data", "id": "9"}

]

<-- [

 {"jsonrpc": "2.0", "result": 7, "id": "1"},

 {"jsonrpc": "2.0", "result": 19, "id": "2"},

 {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"},

"id": null},

 {"jsonrpc": "2.0", "error": {"code": -32601, "message": "Method not found"},

"id": "5"},

 {"jsonrpc": "2.0", "result": ["hello", 5], "id": "9"}

]

rpc call Batch (all notifications):
--> [

 {"jsonrpc": "2.0", "method": "notify_sum", "params": [1,2,4]},

 {"jsonrpc": "2.0", "method": "notify_hello", "params": [7]}

]

<-- //Nothing is returned for all notification batches

ATSC A/344:2017 ATSC 3.0 Interactive Content, Annex C 18 December 2017

127

8 Extensions
Method names that begin with rpc. are reserved for system extensions, and MUST NOT be used
for anything else. Each system extension is defined in a related specification. All system extensions
are OPTIONAL.

Copyright (C) 2007-2010 by the JSON-RPC Working Group

This document and translations of it may be used to implement JSON-RPC, it may be
copied and furnished to others, and derivative works that comment on or otherwise explain
it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this
document itself may not bemodified in any way.

The limited permissions granted above are perpetual and will not be revoked.

This document and the information contained herein is provided "AS IS" and ALL
WARRANTIES, EXPRESS OR IMPLIED are DISCLAIMED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

— End of Document —

	1. SCOPE
	1.1 Introduction and Background
	1.2 Organization

	2. References
	2.1 Normative References
	2.2 Informative References

	3. Definition of Terms
	3.1 Compliance Notation
	3.2 Treatment of Syntactic Elements
	3.2.1 Reserved Elements

	3.3 Acronyms and Abbreviations
	3.4 Terms

	4. Overview
	4.1 Application Runtime Environment
	4.2 Receiver Media Player Display

	5. ATSC Reference receiver Model
	5.1 Introduction
	5.2 User Agent Definition
	5.2.1 HTTP Protocols
	5.2.2 Receiver WebSocket Server Protocol
	5.2.3 Cascading Style Sheets (CSS)
	5.2.4 HTML5 Presentation and Control: Image and Font Formats
	5.2.5 JavaScript
	5.2.6 2D Canvas Context
	5.2.7 Web Workers
	5.2.8 XMLHttpRequest (XHR)
	5.2.9 Event Source
	5.2.10 Web Storage
	5.2.11 Cross-Origin Resource Sharing (CORS)
	5.2.12 Mixed Content
	5.2.13 Web Messaging
	5.2.14 Opacity Property
	5.2.15 Transparency
	5.2.16 Full Screen
	5.2.17 Media Source Extensions
	5.2.18 Encrypted Media Extensions

	5.3 Origin Considerations

	6. Broadcaster Application Management
	6.1 Introduction
	6.2 Application Context Cache Management
	6.2.1 Signaling Intent for File Caching
	6.2.1.1 Boundary Header HTTP Attribute Definition

	6.2.2 Application Context Cache Hierarchy Definition
	6.2.3 Active Service Application Context Cache Priority
	6.2.4 Cache Expiration Time

	6.3 Broadcaster Application Signaling
	6.3.1 Broadcaster Application Launch
	6.3.2 Broadcaster Application Events (Static / Dynamic)

	6.4 Broadcaster Application Delivery
	6.4.1 Broadcaster Application Packages
	6.4.2 Broadcaster Application Package Changes

	6.5 Security Considerations
	6.6 Companion Device Interactions

	7. Media Player
	7.1 Utilizing RMP
	7.1.1 Broadcast or Hybrid Broadband and Broadcast Live Streaming
	7.1.2 Broadband Media Streaming
	7.1.3 Downloaded Media Content

	7.2 Utilizing AMP
	7.2.1 Broadcast or Hybrid Broadband and Broadcast Live Streaming
	7.2.2 Broadband Media Streaming
	7.2.3 Downloaded Media Content
	7.2.4 AMP Utilizing the Pull Model
	7.2.5 AMP Utilizing the Push Model

	8. ATSC 3.0 Web SOCKET Interface
	8.1 Introduction
	8.2 Interface binding
	8.2.1 WebSocket Servers
	8.2.1.1 Initializing Pushed Media WebSocket Connections
	8.2.1.2 Media WebSocket Connection Operation

	8.3 Data Binding
	8.3.1 Error handling

	9. Supported methods
	9.1 Receiver Query APIs
	9.1.1 Query Content Advisory Rating API
	9.1.2 Query Closed Captions Enabled/Disabled API
	9.1.3 Query Service ID API
	9.1.4 Query Language Preferences API
	9.1.5 Query Caption Display Preferences API
	9.1.6 Query Audio Accessibility Preferences API
	9.1.7 Query MPD URL API
	9.1.8 Query Receiver Web Server URI API
	9.1.9 Query Alerting URL API

	9.2 Asynchronous Notifications of Changes
	9.2.1 Rating Change Notification API
	9.2.2 Rating Block Change Notification API
	9.2.3 Service Change Notification API
	9.2.4 Caption State Change Notification API
	9.2.5 Language Preference Change Notification API
	9.2.6 Caption Display Preferences Change Notification API
	9.2.6.1 IMSC1 Extensions
	9.2.6.2 Manufacturer Private Extensions
	9.2.6.3 Example

	9.2.7 Audio Accessibility Preference Change Notification API
	9.2.8 MPD Change Notification API
	9.2.9 Alerting Change Notification API
	9.2.10 Content Change Notification API
	9.2.10.1 Advanced Emergency Alert Enhancement Content Considerations

	9.3 Cache Request APIs
	9.3.1 Cache Request API
	9.3.2 Cache Request DASH API

	9.4 Query Cache Usage API
	9.5 Event Stream APIs
	9.5.1 Event Stream Subscribe API
	9.5.2 Event Stream Unsubscribe API
	9.5.3 Event Stream Event API

	9.6 Request Receiver Actions
	9.6.1 Acquire Service API
	9.6.2 Video Scaling and Positioning API
	9.6.3 XLink Resolution API
	9.6.4 Subscribe MPD Changes API
	9.6.5 Unsubscribe MPD Changes API
	9.6.6 Set RMP URL API
	9.6.7 Audio Volume API
	9.6.8 Subscribe Alerting Changes API
	9.6.9 Unsubscribe Alerting Changes API
	9.6.10 Subscribe Content Changes API
	9.6.11 Unsubscribe Content Changes API
	9.6.12 Subscribe RMP Media Time Change Notification API
	9.6.13 Unsubscribe RMP Media Time Change Notification API
	9.6.14 Subscribe RMP Playback State Change Notification API
	9.6.15 Unsubscribe RMP Playback State Change Notification API
	9.6.16 Subscribe RMP Playback Rate Change Notification API
	9.6.17 Unsubscribe RMP Playback Rate Change Notification API

	9.7 Media Track Selection API
	9.8 Mark Unused API
	9.9 Content Recovery APIs
	9.9.1 Query Content Recovery State API
	9.9.2 Query Display Override API
	9.9.3 Query Recovered Component Info API
	9.9.4 Content Recovery State Change Notification API
	9.9.5 Display Override Change Notification API
	9.9.6 Recovered Component Info Change Notification API

	9.10 Filter Codes APIs
	9.10.1 Get Filter Codes API
	9.10.2 Set Filter Codes API

	9.11 Keys APIs
	9.11.1 Request Keys API
	9.11.2 Relinquish Keys API
	9.11.3 Request Keys Timeout

	9.12 Query Device Info API
	9.13 RMP Content Synchronization APIs
	9.13.1 Query RMP Media Time API
	9.13.2 Query RMP Wall Clock API
	9.13.3 Query RMP Playback State API
	9.13.4 Query RMP Playback Rate API
	9.13.5 RMP Media Time Change Notification API
	9.13.6 RMP Playback State Change Notification API
	9.13.7 RMP Playback Rate Change Notification API
	Annex A : DASH Ad Insertion
	A.1 Introduction
	A.2 Dynamic Ad Insertion Principles
	A.3 Overview of XLinks

	Annex B : Obscuring the Location of Ad Avails
	B.1 Obscuring the Location of Ad Avails

	Annex C : JSON-RPC 2.0 Specification

