

Doc. A/100-2
09 March 2003

DTV APPLICATION SOFTWARE ENVIRONMENT LEVEL 1 (DASE-1)
PART 2: DECLARATIVE APPLICATIONS AND ENVIRONMENT

ATSC Standard

Advanced Television Systems Committee

1750 K Street, N.W.
Suite 1200
Washington, D.C. 20006
www.atsc.org

Blank Page

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE III

Table of Contents

DASE-1 DECLARATIVE APPLICATIONS AND ENVIRONMENT1

1. SCOPE..1

1.1 Status ... 1

1.2 Purpose.. 1

1.3 Application... 1

1.4 Organization .. 1

2. REFERENCES..3

2.1 Normative References .. 3

2.2 Informative References .. 4

2.3 Reference Acquisition .. 5

3. DEFINITIONS..6

3.1 Conformance Keywords... 6

3.2 Acronyms and Abbreviations .. 6

3.3 Terms.. 6

4. BEHAVIOR ...7

4.1 Application Processing .. 7

4.2 Application Decoding ... 7

4.3 Application Presentation.. 7

4.3.1 Display Configuration... 8

4.4 Application Interaction ... 8

4.5 Trigger Processing ... 9

4.5.1 Event Processing ... 9

4.5.1.1 bubbles attribute ... 9

4.5.1.2 cancelable attribute... 9

4.5.1.3 target attribute... 9

4.5.2 Script Event Processing... 9

4.6 Relative Identifier Resolution .. 10

4.7 Ecmascript Identifier Scheme.. 10

5. FACILITIES...12

5.1 Markup Content... 12

5.1.1 application/xhtml+xml .. 12

5.1.1.1 Well Formedness.. 12

5.1.1.2 Validity .. 13

5.1.1.3 XML Declaration ... 13

5.1.1.4 Document Type Declaration ... 14

5.1.1.5 Attribute Semantics... 14

5.1.1.5.1 Universal Resource Identifiers (URIs) ... 14

5.1.1.5.2 name attribute.. 15

5.1.1.5.3 style attribute ... 15

5.1.1.5.4 xml:base attribute .. 16

5.1.1.5.5 xml:lang attribute ... 16

5.1.1.6 Element Semantics... 16

5.1.1.6.1 a (anchor) element... 16

5.1.1.6.2 base element ... 19

5.1.1.6.3 form element.. 19

5.1.1.6.4 img element ... 19

5.1.1.6.5 input element ... 19

5.1.1.6.6 link element.. 20

5.1.1.6.7 meta element ... 20

5.1.1.6.8 object element ... 21

5.1.1.6.9 script element .. 23

5.1.1.6.10 style element.. 24

5.1.1.7 External Stylesheets... 24

5.2 Stylesheet Content.. 24

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE IV

5.2.1 text/css... 24

5.2.1.1 Validity .. 25

5.2.1.2 Selectors... 25

5.2.1.3 Character Set Rules ... 26

5.2.1.4 Import Rules ... 26

5.2.1.5 Font Face Rules ... 26

5.2.1.5.1 'src' descriptor .. 27

5.2.1.6 Page Rules ... 27

5.2.1.7 Media Types ... 27

5.2.1.7.1 'atsc-tv' media type .. 27

5.2.1.8 Style Properties .. 28

5.2.1.8.1 Alternative Semantic Interpretations.. 28

5.2.1.8.2 Standard Property Values.. 30

5.2.1.8.3 Non-Standard Properties ... 30

5.2.1.8.4 Non-Standard Property Values.. 32

5.2.1.9 Inline Stylesheets.. 32

5.3 Script Content ... 33

5.3.1 text/ecmascript... 33

5.3.1.1 Native Objects .. 33

5.3.1.1.1 Non-Instantiable Built-In Objects ... 33

5.3.1.1.2 Instantiable Built-In Objects ... 34

5.3.1.2 Host Objects ... 37

5.3.1.2.1 Core Module Objects ... 38

5.3.1.2.2 Core Extension (XML) Module Objects ... 42

5.3.1.2.3 HTML Module Objects ... 43

5.3.1.2.4 Views Module Objects ... 55

5.3.1.2.5 StyleSheets Module Objects.. 58

5.3.1.2.6 CSS Module Objects ... 59

5.3.1.2.7 Events Module Objects.. 59

5.3.1.2.8 Event Set Module Objects ... 59

5.3.1.2.9 Environment Module Objects... 65

ANNEX A. DOCUMENT TYPE DEFINITIONS ..78

A.1 XDML Document Type .. 78

A.1.1 DTD Driver ... 78

A.1.2 Document (Content) Model.. 81

ANNEX B. DEFAULT STYLESHEET..85

B.1 Stylesheet .. 85

B.2 Default Fonts ... 86

ANNEX C. DOCUMENT OBJECT MODEL INTERFACES.......................................87

C.1 Native Extensions Module.. 87

C.2 Core Extensions Module .. 87

C.3 Environment Extensions Module .. 88

C.4 Events Extensions Module .. 89

C.5 HTML Extensions Module .. 92

C.6 Views Extensions Module .. 93

ANNEX D. DOCUMENT OBJECT MODEL BINDINGS ..95

D.1 Native Extensions Module Bindings ... 95

D.2 Core Extensions Module Bindings.. 95

D.3 Environment Extensions Module Bindings.. 96

D.4 Events Extensions Module Bindings .. 98

D.5 HTML Extensions Module Bindings.. 104

D.6 Views Extensions Module Bindings.. 106

ANNEX E. UNSUPPORTED HTML FEATURES ..107

E.1 Syntax... 107

E.1.1 Case Insensitivity ... 107

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE V

E.1.2 Markup Minimization.. 107

E.1.3 Reference End ... 109

E.2 Semantics .. 109

E.2.1 Constrained Attribute Interpretation... 109

E.2.2 Unsupported Attributes .. 110

E.2.3 Constrained Element Interpretation ... 110

E.2.4 Unsupported Elements .. 111

ANNEX F. TRANSCODING HTML TO XDML ..112

F.1 Syntax... 112

F.1.1 Character Encodings ... 112

F.1.2 Comments.. 113

F.1.3 Processing Instructions.. 113

F.1.4 Document Type Declaration .. 113

F.1.5 Elements .. 113

F.1.6 Character References.. 113

F.1.7 Marked Sections .. 113

F.2 Semantics .. 114

F.2.1 Common Attributes .. 114

F.2.2 Elements .. 114

ANNEX G. ACCESSIBILITY CONSIDERATIONS ..134

ANNEX H. EXAMPLES OF OBJECT ELEMENT USAGE......................................135

H.1 Active Object Content Example... 135

H.2 Trigger Content Object Element Example.. 135

CHANGES ..136

Changes from Candidate Standard to Standard... 136

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE VI

Table of Figures

Figure 1 Display Reference Model .. 56

Table of Tables

Table 1 CSS Selector Support .. 25

Table 2 CSS Font Face Rule Support ... 26

Table 3 CSS Property Support .. 28

Table 4 CSS Relative Font Size Mappings ... 30

Table 5 ECMAScript Non-Instantiable Native Object Support .. 33

Table 6 ECMAScript Instantiable Native Object Support .. 34

Table 7 Legacy Font Size Attribute Mappings... 35

Table 8 DOM Core Interface Support.. 38

Table 9 DOM Core Extensions Interface Support ... 43

Table 10 DOM HTML Interface Support.. 43

Table 11 DOM Views Interface Support.. 55

Table 12 DOM Stylesheet Interface Support... 59

Table 13 DOM Cascading Stylesheet Interface Support .. 59

Table 14 DOM Event Interface Support .. 59

Table 15 DOM Event Set Interface Support.. 60

Table 16 DOM Environment Interface Support ... 66

Table 17 List Element Type Attribute Mapping ... 126

Table 18 Ordered List Element Type Attribute Mapping ... 128

Table 19 Changes from Candidate Standard.. 136

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 1

DASE-1 Declarative Applications and Environment

ATSC Standard

1. SCOPE

1.1 Status

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is maintained
by the ATSC.

This specification is an ATSC Standard, having passed ATSC Member Ballot on September
16, 2002. This document is an editorial revision of the Approved Proposed Standard (PS/100-2)
dated November 5, 2002.

The ATSC believes that this specification is stable, that it has been substantially
demonstrated in independent implementations, and that it defines criteria that are necessary for
effective implementation and interoperability of Advanced Television Systems. A list of cumulative
changes made to this specification may be found at the end of this document.

A list of current ATSC Standards and other technical documents can be found at
http://www.atsc.org/standards.html.

1.2 Purpose

This specification defines an architecture and a collection of facilities by means of which
declarative applications may be delivered in an ATSC data broadcast service to a user agent
embodied by a compliant receiver.

1

A declarative application is an organization of information which primarily uses declarative
as opposed to procedural mechanisms to express its information content. An example of a
declarative application is a multimedia document composed of markup, style rules, scripts, and
embedded graphics, video, and audio.

A user agent is a software environment which decodes and presents a declarative
application to an end-user. An example of a user agent is a multimedia document browser. An
alternate name for a user agent is presentation engine.

1.3 Application

The architecture and facilities of this specification are intended to apply to terrestrial (over-
the-air) broadcast systems and receivers. In addition, the same architecture and facilities may be
applied to other transport systems (such as cable or satellite).

1.4 Organization

This specification is organized as follows:

• Section 1 Describes purpose, application and organization of this specification

• Section 2 Enumerates normative and informative references

• Section 3 Defines acronyms, terminology, and conventions

1
 The user's attention is called to the possibility that compliance with this standard may require

use of an invention covered by patent rights. By publication of this standard, no position is taken
with respect to the validity of this claim or of any patent rights in connection therewith. One or
more patent holders have, however, filed a statement regarding the terms on which such patent
holder(s) may be willing to grant a license under these rights to individuals or entities desiring to
obtain such a license. Details may be obtained from the ATSC Secretary and the patent holder.
(This note was editorially updated on 11 June 2008.)

http://www.atsc.org/standards.html�

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 2

• Section 4 Specifies declarative application and environment behavior

• Section 5 Specifies declarative application and environment facilities

• Annex A Specifies document type definitions for markup facilities

• Annex B Specifies default stylesheet for style facilities

• Annex C Specifies document object model for scripting facilities

• Annex D Specifies binding of document object model to ECMAScript

• Annex E Describes unsupported HTML features

• Annex F Describes transcoding from HTML to markup facilities

• Annex G Describes accessibility considerations

• Annex H Depicts examples of use of object element

• Changes Cumulative changes to specification

Unless explicitly indicated otherwise, all annexes shall be interpreted as normative parts of
this specification.

This specification makes use of certain notational devices to provide valuable informative
and explanatory information in the context of normative and, occasionally, informative sections.
These devices take the form of paragraphs labeled as Example or Note. In each of these cases,
the material is to be considered informative in nature.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 3

2. REFERENCES

This section defines the normative and informative references employed by this
specification. With the exception of Section 2.1, this section and its subsections are informative;
in contrast, Section 2.1 is normative.

2.1 Normative References

The following documents contain provisions which, through reference in this specification,
constitute provisions of this standard. At the time of publication, the editions indicated were valid.
All referenced documents are subject to revision, and parties to agreements based on this
standard are encouraged to investigate the possibility of applying the most recent edition of the
referenced document.

When a conflict exists between this specification and a referenced document, this
specification takes precedence.

Note: This specification uses a reference notation based on acronyms or convenient
labels for identifying a reference (as opposed to using numbers).

[CSS2]

 Cascading Style Sheets, Level 2, Recommendation, W3C

[DASE]

 DASE-1 Part 1: Introduction, Architecture, and Common Facilities, A/100-1, ATSC

[DOM2]

 Document Object Model (DOM) Level 2 Core, Recommendation, W3C

[DOM2-EVENTS]

 Document Object Model (DOM) Level 2 Events, Recommendation, W3C

[DOM2-HTML]

Document Object Model (DOM) Level 2 HTML, Recommendation, W3C

[DOM2-STYLE]

 Document Object Model (DOM) Level 2 Style, Recommendation, W3C

[DOM2-VIEWS]

 Document Object Model (DOM) Level 2 Views, Recommendation, W3C

[ECMASCRIPT]

 ECMAScript Language Specification, 3
rd

 Ed., ECMA-262, ECMA

[HTML]

 HTML 4.01 Specification, Recommendation, W3C

[HTTP]

 Hypertext Transfer Protocol – HTTP/1.1, RFC2616, IETF

[HTTP-STATE]

 HTTP State Management Mechanism, RFC2965, IETF

[LANG-TAGS]

 Tags for the Identification of Languages, RFC3066, IETF

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 4

[UNICODE]

 Unicode Character Encoding Standard, Version 3.2, Unicode Consortium

[URI]

 Uniform Resource Identifiers: Generic Syntax, RFC2396, IETF

[XHTMLBASIC]

 XHTML Basic, Recommendation, 19 Dec 2000, W3C

[XHTMLMIME]

 The 'application/xhtml+xml' Media Type, RFC3236, IETF

[XHTMLMOD]

 Modularization of XHTML, Recommendation, 10 Apr 2001, W3C

[XML]

 Extensible Markup Language (XML) 1.0, Recommendation, W3C

[XMLBASE]

 XML Base, Recommendation, 27 Jun 2001, W3C

[XMLNAMES]

 Namespaces in XML, Recommendation, W3C

[XMLSTYLE]

 Associating Style Sheets with XML Documents, Recommendation, W3C

2.2 Informative References

[CSS1]

 Cascading Style Sheets, Level 1, Recommendation, W3C

[CSS2-ERR]

 Errata in CSS2 REC-CSS2-19980512, W3C

[DDE-1]

 Declarative Data Essence, Content Level 1, SMPTE 363M, SMPTE

[DOM0]

Declarative Data Essence – Document Object Model Level 0 (DOM-0) and Related
Object Environment, SMPTE 366M, SMPTE

[DOM2-ERR]

 Errata of the Document Object Model Level 2 Specifications, W3C

[IDL]

 The Common Object Request Broker: Architecture and Specification, OMG

[SGML]

 Standard Generalized Markup Language, ISO 8879, ISO

[TIRESIAS]

The Tiresias Typeface Family, http://www.tiresias.org/fonts/home.htm, Royal National
Institute for the Blind (RNIB)

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 5

[WAI-ATAG]

 Authoring Tool Accessibility Guidelines 1.0, Recommendation, W3C

[WAI-UAAG]

 User Agent Accessibility Guidelines 1.0, Recommendation, W3C

[WAI-WCAG]

 Web Content Accessibility Guidelines 1.0, Recommendation, W3C

2.3 Reference Acquisition

ATSC Standards

Advanced Television Systems Committee (ATSC), 1750 K Street N.W., Suite
1200 Washington, DC 20006 USA; Phone: +1 202 828 3130; Fax: +1 202 828
3131; http://www.atsc.org/.

ECMA Standards

ECMA, 114, rue du Rhône, CH-1204 Geneva, Switzerland; Phone: +41 22 849
60 00; Fax: +41 22 849 60 01; http://www.ecma.ch/.

IETF Standards

Internet Engineering Task Force (IETF), c/o Corporation for National Research
Initiatives, 1895 Preston White Drive, Suite 100, Reston, VA 20191-5434, USA;
Phone: +1 703 620 8990; Fax: +1 703 758 5913; http://www.ietf.org/.

ISO Standards

International Organization for Standardization (ISO), 1, rue de Varembé, Case
postale 56, CH-1211 Geneva 20, Switzerland; Phone: +41 22 749 01 11; Fax:
+41 22 733 34 30; http://www.iso.ch/.

OMG Standards

Object Management Group (OMG), 250 First Avenue, Suite 201, Needham, MA
02494, USA; Phone: +1 781 444 0404; Fax: +1 781 444 0320;
http://www.omg.org/.

RNIB Standards

Royal National Institute for the Blind, 224 Great Portland Street, London W1N
6AA, United Kingdom; Phone: +44 20 7388 1266; Fax: +44 20 7388 2034;
http://www.rnib.org.uk/.

SMPTE Standards

Society of Motion Picture and Television Engineers, 595 W. Hartsdale Avenue,
White Plains, NY 10607-1824, USA; Phone: +1 914 761 1100; Fax: +1 914 761
3115; http://www.smpte.org/.

Unicode Standards

The Unicode Consortium, P.O. Box 391476, Mountain View, CA 94039-1476,
USA; Phone: +1 650 693 3921; Fax: +1 650 693 3010; http://www.unicode.org/.

W3C Standards

World Wide Web Consortium (W3C), Massachusetts Institute of Technology,
Laboratory for Computer Science, 200 Technology Square, Cambridge, MA
02139, USA; Phone: +1 617 253 2613; Fax: +1 617 258 5999;
http://www.w3.org/.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 6

3. DEFINITIONS

This section defines conformance keywords, acronyms and abbreviations, and terms as
employed by this specification.

All acronyms, abbreviations, and terms defined by [DASE] apply to this specification. Only
those acronyms, abbreviations, and terms specific to this document and not common to DASE in
its entirety are defined herein.

3.1 Conformance Keywords

As used in this document, the conformance keyword shall denotes a mandatory provision of
the standard. The keyword should denotes a provision that is recommended but not mandatory.
The keyword may denotes a feature whose presence does not preclude compliance, that may or
may not be present at the option of the content author or the user agent implementer.

As used in this document, the auxiliary verb will denotes simple futurity and is not
considered a conformance keyword. It may, however, by used in conjunction with statements
containing conformance keywords in order to elaborate the meaning of those statements.

As used in this document, the term deprecate is to be given the force of should not, i.e., it
serves as an explicit dis-recommendation.

3.2 Acronyms and Abbreviations

CSS Cascading Style Sheet
DTD Document Type Definition
HTML Hypertext Markup Language
IDL Interface Definition Language
W3C World Wide Web Consortium

3.3 Terms

monomedia content type: a type of content which does not support the general embedding of
other content types within its serialized or presented forms; for example, a PNG image is an
instance of a monomedia content type.

multimedia content type: a type of content which supports limited or general embedding of
other content types within its serialized or presented forms; for example, an XDML document is
an instance of a multimedia content type.

user agent: an embodiment of a declarative application environment.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 7

4. BEHAVIOR

This section describes certain normative behavior for DASE Applications and Systems
which employ the declarative facilities defined by this specification.

4.1 Application Processing

A declarative application environment performs three types of processing in order to
manifest the behavioral objectives of the application's author:

• decoding

• presentation

• interaction

During an application's lifecycle, that is, its period of processing in the application
environment, the application progresses through various states. These states are described
formally in [DASE], Section 5.1.3, Application Lifecycle, and further elaborated as pertains to
declarative application processing in the following subsections.

4.2 Application Decoding

A declarative application environment begins decoding a declarative application’s initial
entity resource during application activation processing.

During the decoding of the application initial entity resource, other resources may be
referenced, and, depending upon the context of the reference, the application environment may
fetch those resources from its resource cache and begin decoding them as well.

In general, each resource content type is associated with a distinct decoder which
understands the syntax and semantics of that content type. Some content types support the
content or presentation embedding of other resources of different content types. These are
referred to as multimedia content types. In contrast, content types which do not support such
embedding are referred to as monomedia content types.

A content type and a decoder may be distinctly characterized as to whether they permit
progressive decoding or not. A content type that permits a decoder to operate on deltas of
successively longer prefixes of a resource's content is referred to as being progressively
decodable.

Most content types permitted by this specification are progressively decodable. Irrespective
of whether a content type is progressively decodable or whether a resource makes use of
progressive coding, a decoder may or may not choose to support progressive decoding; that is, a
decoder may wait until all content is available prior to decoding.

Note: This specification does not define the mechanism by means of which a user agent
may obtain a partial sequence of an application resource’s content.

The internal representation of the decoded form of a resource content type is not defined by
this specification.

4.3 Application Presentation

After partial or complete decoding of an application’s initial entity resource, the application
environment initiates the presentation of decoded content. Unlike procedural applications,
declarative applications have an implied contract to present decoded content. This presentation is
effected by the intrinsic semantics of the declarative application environment.

The semantics of content presentation depend upon the content type. In general, the
presentation semantics of declarative applications may be mapped to the following two-
dimensional graphics primitives:

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 8

• filling a rectangular or circular area

• stroking the outline of a rectangular or circular area

• compositing a raster image

• compositing a rasterized glyph sequence (a special case of the previous primitive)

In addition to the above, the following higher-level presentation semantics are typically
involved in content presentation:

• viewport clipping and scrolling

• user interface controls or widgets (e.g., buttons, checkboxes, text edit fields, etc.)

• color and palette management

Certain content types entail the use of a relatively complex content formatting model which
operates prior to or during actual presentation. In particular, markup content in conjunction with
stylesheet content requires the use of a box or area formatting model in order to translate
decoded content into the graphics primitives that present the decoded content.

Just as each resource content type is associated with a distinct decoder, each resource
content type is typically associated with a distinct presentation component. This need not always
be the case, however, since the decoded content of multiple content types may by represented
by a unified data type capable of being presented by a single presentation component. For
example, the various graphical image content types may be decoded into a single image format
which can be presented by a single image presentation component.

Note: The use of one or more presentation components for a collection of similar content
types is an optimization which may be performed at the discretion of the application
environment implementer.

Note: Some resource content types are not directly presented as content but serve other
roles in contributing to application behavior, e.g., stylesheet, script, and font content types.

A content type and its presentation component may be distinctly characterized as to
whether they permit progressive presentation or not. A content type that permits a presentation
component to operate on deltas of successively longer sequences of decoded content is referred
to as being progressively presentable.

Most content types permitted by this specification are progressively presentable.
Irrespective of whether a content type is progressively presentable or whether a resource makes
use of progressive coding, a presentation component may or may not choose to support
progressive presentation.

4.3.1 Display Configuration

A declarative application environment shall employ the display model prescribed by [DASE],
Section 5.2.5, Display Model.

For presenting a declarative application, an application environment should provide a full-
screen graphics plane which is aligned to the video plane; however, a more general configuration
may be used as depicted by Figure 1 Display Reference Model in Section 5.3.1.2.4.1 below.

4.4 Application Interaction

Once an application is activated after the successful decoding of the application initial entity,
the application environment may enable user interaction with the presented content. At this point,
the end-user is able to navigate among content, e.g., by scrolling, by invoking hyperlinks, etc.

During periods where interaction is permitted with presented content, a focus hierarchy is
active. This hierarchy is established by either the nesting of logical content or the presented form
of this content. For example, a relatively complex focus hierarchy might be:

• on screen display containing active application region

• frame

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 9

• active object

• text field

Note: This specification does not require support for multiple applications, so inter-
application focus movement is not defined; however, inter-frame, object, and field focus
movement is possible within a single application.

Note: Some resource content types do not have interaction semantics as content but
serve other roles in contributing to application behavior, e.g., stylesheet, script, and font
content types.

4.5 Trigger Processing

A declarative application environment shall process trigger content as defined by [DASE],
Section 6.9. Trigger content may declare one or more events of a specific type which require
processing by a declarative application environment. A declarative application environment shall
process all events with a type attribute of the following value:

• script

4.5.1 Event Processing

An event whose type is defined as requiring processing by a declarative application

environment is processed by instantiating an Event object based on the information provided by

the event element then dispatching the Event object to a target document object instance
hierarchy according to the event propagation semantics specified by [DOM2-EVENTS], Section
1.2.

4.5.1.1 bubbles attribute

This attribute shall be processed by a declarative application environment.

Note: See [DASE], Section 6.9.1.6.1.1, for more information on this attribute.

4.5.1.2 cancelable attribute

This attribute shall be processed by a declarative application environment.

Note: See [DASE], Section 6.9.1.6.1.2, for more information on this attribute.

4.5.1.3 target attribute

This attribute shall reference a resource of content type application/xhtml+xml. If the
URI specifies a fragment identifier, then the fragment identifier shall identify a unique target
element within the resource referenced by the URI; otherwise, the target element shall be the
document element of the document object instance hierarchy produced as a result of decoding
the resource referenced by the URI.

Note: See [DASE], Section 6.9.1.6.1.3, for more information on this attribute.

4.5.2 Script Event Processing

An event whose type attribute has a value of "script" shall be processed as a script event.

The script event type provides support for certain types of legacy content. The parameter
set of an event of this type includes a required code parameter. The value of the code parameter
shall adhere to the syntax of the StatementList non-terminal of [ECMASCRIPT], Section 12.1; in
particular, it shall be syntactically valid for use as the content of the Block non-terminal.

When a script event is processed, the following steps shall occur:

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 10

(1) an Event object is instantiated and initialized with Event::initEvent, where

eventTypeArg is "org.atsc.script", canBubbleArg is the value of the bubbles attribute,
and cancelableArg is the value of the cancelable attribute;

(2) a Function object of one argument and a body equal to the value of the code parameter
specified by a param child element of this event element is instantiated and registered as

a non-capturing event listener using the EventTarget::addEventListener method on

the target element object (which shall implement both the EventTarget interface and the

HTMLTriggerObjectElementExt interfaces);

(3) the Event object created in (1) is dispatched using the EventTarget::dispatchEvent

on the document element object (which shall implement the EventTarget interface);

(4) the event listener registered in (2) is removed using EventTarget::-

removeEventListener;

See [DOM2-EVENTS], Section 1, for information on Event and EventTarget interfaces.

See Section 5.3.1.2.3.7 for information on the HTMLTriggerObjectElementExt interface.

4.6 Relative Identifier Resolution

A declarative application employs resource identifiers in order to reference various types of
application resources in a variety of contexts. These identifiers take a form as described by
[DASE], Section 5.1.2.3.1, Resource Identifiers. A reference to a resource may take an absolute
or a relative form as described by [DASE], Section 5.1.2.3.2, Resource References. When a
resource reference takes a relative form, the following interpretive rules shall be applied.

Given a relative identifier, the base identifier to be used to absolutize a relative identifier
shall be determined by the following rule. If this rule does not permit resolution of a relative
identifier, then an attempt shall be made to use rule two and following as specified by [DASE],
Section 5.1.2.3.2.1, Relative Resource Identifiers.

(1) for a relative identifier used within an entity of the markup content type, use the rules
prescribed by [XMLBASE], Section 4, Resolving Relative URIs.

4.7 Ecmascript Identifier Scheme

A URI which employs the ecmascript scheme, referred to below as an ecmascript URI, may
be employed by a legacy declarative application and shall be supported by a declarative
application environment.

Use of an ecmascript URI shall be restricted to the following contexts:

• a (anchor) element, href attribute

• area element, href attribute

• frame element, src attribute

Use of a ecmascript URI in any context other than the above either shall be ignored,
producing no side effect, or shall cause an implementation defined notification to the end-user.

A ecmascript URI shall adhere to the following syntax:

ecmascript_URI : "ecmascript:" statementList

The construct statementList shall be non-empty and shall adhere to the syntax prescribed
by [ECMASCRIPT], Section 12.1. Furthermore, the scheme-specific-part of a ecmascript URI

(i.e., the statementList) shall satisfy the syntax of the opaque_part non-terminal of the generic
URI syntax prescribed by [URI].

The resolution of an ecmascript URI shall adhere to the following procedure or a logical
equivalent thereof:

(1) Evaluate statementList in an execution context identical to that used to evaluate Global
Code, as further described by [ECMASCRIPT], Section 10.2.1;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 11

(2) If the resulting value produced by (1) is not the undefined value, then convert the
resulting value to the String Type; if the resulting string value is non-empty and a valid

document instance or fragment of text/html content according to either the traditional or
frameset document types specified by [HTML], then transcode this content to

application/xhtml+xml and use the resulting value as the content of the resource
accessed by this URI;

(3) If the resulting value produced by (1) is the undefined value, take no further action.

Note: If the resulting string is non-empty and invalid content of type text/html, the result

of accessing the resource associated with the URI is unspecified.

Note: The form of an ecmascript URI which does not specify a statement list after the
scheme component is not supported by this specification; in certain legacy user agents,
when accessed through an a (anchor) element, this would cause an ecmascript interpreter
user interface to be presented to the end-user to permit the direct entry of ecmascript
statements. This feature is not supported by this specification.

Note: If any invocation of document.write()within statementList would modify the

document which evaluates the ecmascript URI, then the result of accessing the resource
associated with the URI is unspecified.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 12

5. FACILITIES

This specification defines a number of facilities, each of which defines a category of content
types by enumerating a set of one or more specific content types. The following categories are
defined:

• markup content

• stylesheet content

• script content

A declarative application environment shall implement all the facilities specified in this
section, and declarative application entities may use these facilities.

5.1 Markup Content

This facility consists of a markup language content type. Every declarative application shall
contain one or more application entities which take the form of this markup language. In
particular, the initial entity of a declarative application shall take the form of this markup language.

If the initial entity of a declarative application is a content type other than that of the markup
language defined by this facility and this application is invoked, then the user agent shall abort the
application.

5.1.1 application/xhtml+xml

Markup content shall adhere to the Extensible Markup Language, Version 1.0 [XML] and

shall be identified as content type application/xhtml+xml in accordance with [XHTMLMIME].

Furthermore, markup content shall adhere to one of the following document types, labeled
here according to its formal public identifier, and defined in ANNEX A Document Type Definitions
and [XHTMLBASIC] according to procedures set forth in Modularization of XHTML
[XHTMLMOD]:

• "-//ATSC//DTD XHTML XDML 1.0//EN"

• "-//W3C//DTD XHTML Basic 1.0//EN"

Note: This first of the above document types, defined below in Section A.1, is referred to

as an XDML (Extensible DTV Markup Language) document type. The elements declared
by this document type are collectively referred to as XDML elements. Application entities
which employ this document type are referred to as XDML documents or XDML content.

Note: The XDML document type includes all [XHTMLMOD] modules except for the
following: applet, basic forms, basic tables, edit, iframe, legacy, and server-side image
map. See ANNEX E, Unsupported HTML Features, and ANNEX F, Transcoding HTML to
XDML, for more information on which features of HTML content are not supported by
XDML and which features are supported through transcoding.

A user agent which implements this facility shall satisfy the XHTML Family User Agent
Conformance criteria specified in [XHTMLMOD], Section 3.5.

Note: The XHTML Family User Agent Conformance criteria items (4)-(6) refer to scenarios
where an unknown element type, attribute, or attribute value may not be recognized by a
user agent; here, the term recognize is to be interpreted as semantic recognition as
expressed by presentation and processing semantics, and not as syntactic recognition.
This optional semantic recognition is independent from the requirement that every
document specify a document type and that it be both well-formed and valid.

5.1.1.1 Well Formedness

An application entity which employs this content type shall be well formed as prescribed by
[XML], Section 2.1.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 13

If an entity of a declarative application uses content type application/xhtml+xml, is not
well formed, and the entity is processed, then the user agent shall abort the application.

5.1.1.2 Validity

An application entity which employs this content type shall be valid as prescribed by [XML],
Section 2.8.

If an entity of this content type is not valid, then the user agent should report violations of
validity constraints set forth in [XML]. If an entity of a declarative application uses content type

application/xhtml+xml, is not valid, and the entity is processed, then the user agent should
abort the application.

A user agent which processes this content type implements an XML processor. An XML
processor may be characterized as validating or non-validating. In both cases, adherence to
[XML] requires the XML processor to check and report all violations of well-formedness
constraints. However, an XML processor may or may not check and report violations of validity
constraints. If it does check and report violations of validity constraints, it is referred to as a
validating XML processor. This specification recommends, but does not require a user agent to
implement a validating XML processor.

Note: See [XML], Section 5.1, Validating and Non-Validating Processors, for more
information on validation processing.

The manner in which a user agent reports violations to XML validity constraints is not
defined by this specification. A user agent may simply abort the application or it may provide
detailed information about the violations. It is recommended that user agents provide some form
of feedback to the end-user in the case that an application is aborted due to such violations,
particularly in cases where the application was explicitly invoked or selected by the user.

5.1.1.3 XML Declaration

An application entity which employs this content type shall specify a valid XML declaration
[XML:23].

Note: The notation [XML:23] refers to [XML] grammar production 23.

If an entity of a declarative application uses content type application/xhtml+xml, does
not specify a valid XML declaration, and the entity is processed, then the user agent should abort
the application.

An application entity which employs this content type shall specify an XML declaration with
an encoding declaration [XML:80] according to one of the following character encoding systems,
and, furthermore, the entity’s representation shall employ the specified encoding system as its
actual character encoding system.

• "UTF-8"

• "ISO-8859-1"

If an entity of a declarative application uses content type application/xhtml+xml, does
not specify one of the preceding encoding declarations in the XML declaration according to the
actual employed character encoding system, and the entity is processed, then the user agent
may abort the application.

An application entity which employs this content type shall not specify an XML declaration

with a standalone document declaration [XML:32] with the value "yes".

If an entity of a declarative application uses content type application/xhtml+xml, does

specify a standalone document declaration with the value "yes", and the entity is processed,
then the user agent may abort the application.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 14

Note: A standalone document is one which makes no use of external declarations, but
rather, incorporates all declarations into the document’s internal declaration subset.
However, this specification does not permit the use of internal declarations subsets (see

Section 5.1.1.4, Document Type Declaration), and, therefore, does not support standalone

documents.

5.1.1.4 Document Type Declaration

An application entity which employs this content type shall specify a valid document type
declaration [XML:28].

If an entity of a declarative application uses content type application/xhtml+xml, does
not specify a valid document type declaration, and the entity is processed, then the user agent
should abort the application.

An application entity which employs this content type shall specify a document type
declaration with an external identifier [XML:75] containing one of the following public identifiers
[XML:12]:

• "-//ATSC//DTD XHTML XDML 1.0//EN"

• "-//W3C//DTD XHTML Basic 1.0//EN"

If an entity of a declarative application uses content type application/xhtml+xml, does
not specify one of the preceding public identifiers in an external identifier in the document type
declaration, and the entity is processed, then the user agent may abort the application.

In order to provide for forward compatibility with future revisions of the DASE Standard, a
declarative application environment should not abort and should process an application entity

whose document type declaration specifies a public text description beginning with "XHTML".

Note: See [XHTMLMOD], Section 3.5, for further information on processing XHTML Host
Language Conformant Document Types.

An application entity which employs this content type shall not specify an internal
declaration subset. An internal declaration subset is that part of [XML:28] consisting of the

delimiters '[', ']', and all intervening whitespace, delimiters, and non-terminals.

If an entity of a declarative application uses content type application/xhtml+xml, does
specify an internal declaration subset (whether empty or not), and the entity is processed, then
the user agent may abort the application.

5.1.1.5 Attribute Semantics

With the exception of differences noted in the following subsections, the semantics of
XHTML attributes derive from the semantics specified by [XHTMLMOD], which, in turn, derive
from the semantics specified by [HTML].

5.1.1.5.1 Universal Resource Identifiers (URIs)

Attributes whose values are specified with the %URI.datatype; or %URIs.datatype;
parameter entities as defined in [XHTMLMOD], Section F.2.3, XHTML Datatypes, shall adhere to
the syntax specified by Universal Resource Identifiers [URI] for representing URIs; furthermore, a
URI shall adhere to the syntax of one of the schemes admitted by [DASE], Section 5.1.2.3.1,
Resource Identifiers, as further constrained below.

If a URI is processed for resource access and the URI’s scheme type is not supported, then
the user agent should take some well-defined, default action; for example, present an error
indication to the end-user.

If an entity of a declarative application uses content type application/xhtml+xml, does
specify a URI for which the scheme part of its absolutized form is not one of the admitted scheme

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 15

types, and the URI is processed for resource access, then the user agent shall not abort the
application.

5.1.1.5.1.1 Fragment Identifiers

If a URI specifies a fragment identifier and the referenced resource takes the form of the

content type application/xhtml+xml, then the following procedure shall be followed to
determine the URI destination:

(1) if the value of the id attribute of an element matches the fragment identifier, then that
element is the destination;

(2) otherwise, if the value of the name attribute of an element matches the fragment
identifier, then the first element whose name attribute matches is the destination;

(3) otherwise, the document element is the destination.

5.1.1.5.2 name attribute

Except for those element types which require the presence of a name attribute, an XHTML
document instance shall not use the name attribute unless the document instance is produced as

a result of transcoding a legacy text/html document, in which case a meta element with a

Transcoded-From-Type specifying text/html shall be present. See Section 5.1.1.6.7.3 for
additional information on transcoding information.

If an entity of a declarative application uses content type application/xhtml+xml, does
specify an element with a name attribute, and is not a legacy application, then the user agent may
abort the application.

Note: See [DASE], Section 3.3, for the definition of legacy application.

If a name attribute is permitted according to the above constraints, the decoding semantics
of any element type is restricted in regard to the form and uniqueness of the element’s name
attribute. The value of the name attribute, if specified, shall be restricted to start with a Latin letter

[A-Za-z], followed by zero or more Latin letters, digits [0-9], hyphens '-', underscores '_',

and, if no script content is used by the application, colons':' and full stops '.'.

A user agent should ignore the name attribute of an element which does not satisfy the
above constraints. If an entity of a declarative application uses content type

application/xhtml+xml, does specify an element with a name attribute whose value does not
satisfy the above constraints, then the user agent shall not abort the application.

Where the default value of a name attribute is defined by the applicable document type
declaration as #IMPLIED, the implied default value shall be either (1) the value of the id attribute,
if specified, or (2) the empty string.

Except for those element types which require the presence of a name attribute, use of this
attribute is deprecated; the id attribute should be used instead.

Note: Optional use of this attribute is provided to obtain interoperability with transcoded,
legacy content.

5.1.1.5.3 style attribute

The decoding semantics of the inline style attribute are restricted in regard to the form and
meaning of the attribute value. The form and meaning of the attribute value shall adhere to the
syntax and semantics of the document’s default style content type, possibly constrained further
by the style content type itself. See Section 5.1.1.6.7.2, Default Style Content Type.

If the default style content type is text/css, then the form and meaning of the inline style
attribute’s value shall adhere to the constraints specified in Section 5.2.1.9.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 16

5.1.1.5.4 xml:base attribute

The resolution of relative URIs shall employ the xml:base attribute as described above by
Section 4.6, Relative Identifier Resolution, and as specified by [XMLBASE]. This attribute is

permitted on any XDML element. Its declared value shall conform to CDATA. No default value is
specified.

Note: This attribute may or may not be supported by a given XHTML Host Language
Conformant Document Type. If it is not supported, then the information present in a base
element is used in relative identifier resolution.

5.1.1.5.5 xml:lang attribute

The value of the xml:lang attribute shall adhere to the syntax prescribed by [LANG-TAGS].
No default value is specified.

5.1.1.6 Element Semantics

With the exception of differences noted in the following subsections, the semantics of
XHTML elements derive from the semantics specified by [XHTMLMOD], which, in turn, derive
from the semantics specified by [HTML]. The semantics of XHTML elements may be
characterized according to the following:

• decoding semantics

• presentation semantics

• interaction semantics

Decoding semantics govern the way an element and its content are interpreted by the
application environment. Presentation semantics govern the way an element and its content are
formatted and presented to the end-user. Interaction semantics govern the way the end-user
interacts with the element and its content. Certain elements have null presentation semantics,
meaning that the element does not specify any direct presentation properties; e.g., the meta
element. Similarly, certain elements have null interaction semantics, meaning that the element
does not specify any direct interaction properties; e.g., the div element.

Note: An element that has non-null presentation semantics may be altered by stylesheet
content in order to cause it to be interpreted as if it had null presentation semantics. For

example, this may be accomplished by using the display style property with the value

none.

Note: An element that has null interaction semantics may be altered by script content in
order to cause it to be interpreted as if it had non-null interaction semantics. For example,
this may be accomplished by using an event handler that responds to anchor activation
events.

Note: Certain basic presentation and interaction semantics cannot be altered by an
application; e.g., table presentation and anchor interaction semantics cannot be changed
and cannot be associated with another element type.

5.1.1.6.1 a (anchor) element

The section specifies constraints on the semantics of the a (anchor) element.

If an a (anchor) element does not specify a target attribute, then the user agent shall behave

as if a target attribute with the value "_self" were specified.

If an a (anchor) element does specify a target attribute with the value "_blank", then a user
agent which does not support multiple windows shall behave as if a target attribute with the value

"_self" were specified.

Note: A user agent is not required to support multiple top-level windows.

Note: See [HTML], Section 16.3.2, Target Semantics, for more information on the use of
the target attribute. Regarding the interpretation of these semantics, since this content

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 17

type does not support the base element, but instead uses the xml:base attribute, then
precedence rules (2) and (3) should be interpreted as if no base element were present.
Furthermore, since a user agent is not required to support multiple top-level windows, a
target attribute which refers to an unknown frame F need not cause a new window and
frame to be created. In this case, the default behavior should be to interpret the target as if

the value "_self" were specified.

5.1.1.6.1.1 href attribute

The semantics of the a (anchor) element are restricted in regard to the content type of the
anchor’s destination, i.e., the entity referenced by the href attribute, as well as the context in
which a particular content type may be activated. The content type of an anchor’s destination
shall be one of the following types, as permitted by this specification:

• application/dase

• application/xhtml+xml

• video/mpeg, video/mpv

• audio/basic, audio/ac3

Note: In certain, limited circumstances, an a (anchor) element may reference a destination

whose content is generated dynamically. See Section 5.1.1.6.1.1.5 below for further

information about this usage.

5.1.1.6.1.1.1 Referencing Application Metadata Content

If an a (anchor) element's destination content type is application/dase, then anchor
activation shall cause (1) termination of the current application and (2) instantiation of a new
application instance where the anchor's destination resource is the application root entity of the
new application instance.

The process of replacing an application by activation of an anchor which references
application metadata content is referred to as application replacement by anchor activation.

Note: In this context, referencing an entity of content type application/dase is

equivalent to referencing a DASE application as a whole.

Note: A DASE application is able to cause itself to be replaced by a new instance of itself
by causing or permitting the activation of an anchor which refers to its own root entity.

If an entity is characterized as content type application/dase, then that entity shall adhere
to [DASE], Section 6.1.1.

5.1.1.6.1.1.2 Referencing Markup Content

If an a (anchor) element's destination content type is application/xhtml+xml, and the
anchor’s destination resource is an entity of the current declarative application, then anchor
activation shall not cause termination of the current declarative application; rather, the referenced
markup content shall be loaded and presented in the targeted frame.

5.1.1.6.1.1.3 Referencing Video Content

If an a (anchor) element's destination content type is video/mpeg or video/mpv and (1) the
current application is not a legacy declarative application, (2) the entity containing the a (anchor)

element is part of a legacy application but does not contain a Transcoded-From-Profile meta

element with the value "SMPTE DDE-1", or (3) the target of the anchor is not the top-level frame
(window), then anchor activation shall not cause termination of the current declarative application;
rather, the referenced video content shall be rendered by the environment's video capabilities into
the targeted frame, if such capabilities are present and enabled.

Note: See Section 5.1.1.6.7.3 for further information on the Transcoded-From-

Profile meta element.

If an a (anchor) element's destination content type is video/mpeg or video/mpv, the

containing entity is part of a legacy declarative application and contains a Transcoded-From-

Profile meta element with the value "SMPTE DDE-1", and the target of the anchor is the top-

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 18

level frame (window), then anchor activation shall cause (1) the referenced video content to be
rendered by the environment's video capabilities into a full-screen video plane and (2) termination
of the current declarative application in a manner consistent with the procedure prescribed for the

Window::close method.

Note: See Section 5.3.1.2.9.4.3 for further information on the Window::close method.

If an entity is characterized as content type video/mpeg, then that entity shall adhere to

[DASE], Section 6.5.1. If an entity is characterized as content type video/mpv, then that entity
shall adhere to [DASE], Section 6.5.2.

5.1.1.6.1.1.4 Referencing Audio Content

If an a (anchor) element's destination content type is audio/basic or audio/ac3, and the
anchor’s destination resource is an entity of the current declarative application, then anchor
activation shall not cause termination of the current declarative application; rather, the referenced
audio content shall be rendered by the environment's audio capabilities, if such capabilities are
present and enabled.

Rendering of audio content should be effected by mixing the referenced audio content with
the active audio of any video content being simultaneously rendered.

If an entity is characterized as content type audio/basic, then that entity shall adhere to

[DASE], Section 6.4.1. If an entity is characterized as content type audio/ac3, then that entity
shall adhere to [DASE], Section 6.6.1.

5.1.1.6.1.1.5 Referencing Dynamically Generated Content

If an a (anchor) element employs a ecmascript URI, then it shall adhere to the constraints
specified above in Section 4.7. Further, if the result of evaluating the statement list of the
ecmascript URI produces the value undefined, then, other than a side-effect produced by this
evaluation itself, no other side-effect shall occur.

Example: Given an a (anchor) element in a legacy declarative application as follows:

Say Hello

then activation of this anchor would cause the display of an alert dialog containing the text

"Hello World!", and, when the dialog is closed, the original content (i.e., the document

containing the above element) should remain displayed since the alert() method does not
return a value (i.e., it evaluates to undefined).

In contrast, given the following a (anchor) element in a legacy declarative application:

Say Hello

then activation of this anchor would cause the replacement of the content of the current document

window with the text "Hello World!".

5.1.1.6.1.1.6 Referencing Other Content

In the case that the content type of an anchor’s destination entity is not supported by a
content decoder, then the user agent shall either (1) ignore the anchor activation and produce no
side effect, or (2) present feedback to the end-user that anchor activation will/does produce no

effect. If an entity of a declarative application uses content type application/xhtml+xml, does
reference a destination entity of a content type not listed above in an anchor element, and the
anchor is activated, then the user agent shall not abort the application.

If an entity of a declaration application uses content type application/xhtml+xml, and an

anchor’s destination resource is neither an entity of the current declarative application nor the root

entity of another DASE application, then the user agent shall either (1) ignore the anchor

activation and produce no side effect, or (2) present feedback to the end-user that anchor

activation will/does produce no effect.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 19

5.1.1.6.2 base element

If a base element appears in an XHTML document instance, then it shall be interpreted as if
the value of its href attribute were specified as the value of an xml:base attribute on the root html
element.

If both an xml:base attribute appears on the root html element and a base element appears
in an XHTML document instance, then the base element shall be ignored, and, the value of the
xml:base attribute shall serve as the document instance's default base identifier.

Note: The base element is provided for facilitating interoperability with legacy content.
Content authors should use the xml:base attribute rather than the base element when
authoring new XDML content.

5.1.1.6.3 form element

This specification does not define a mechanism for obtaining privacy of personal information
obtained by means of a form element.

5.1.1.6.4 img element

The semantics of the img element are restricted in regard to the content type of the
referenced image entity, i.e., the entity referenced by the src attribute. The content type of an
image entity shall be one of the types permitted by [DASE], Section 6.2, Graphics Content.

If an entity of a declarative application uses content type application/xhtml+xml, does
specify an img element whose referenced resource is a content type other than those permitted
by the above paragraph or the entity is found to be invalid, then the user agent should allocate a
presentation area and render into this area any associated alternative text or, if and only if no
alternative text is available, an icon indicating the presence of unrenderable content.

If an entity referenced by an img element takes the form of a content type other than one of
the above types or the entity is found to be invalid, then the user agent shall not abort the
application.

Note: The img element is provided for facilitating interoperability with legacy content.
Content authors should use the object element rather than the img element when
authoring new XDML content.

5.1.1.6.5 input element

The decoding semantics of the input element are restricted to interpreting only those input
elements with certain values of the type attribute. Only the following values of the type attribute
are defined for use by this specification. An input element with any other value of the type
attribute may be ignored by the user agent. An input element which does not specify a type

attribute shall be interpreted as if a text attribute with a value of "text" were specified.

• button

• checkbox

• hidden

• image

• password

• radio

• reset

• submit

• text

Users may enter password information in clear text into an input element of type password.
According to constraints specified in Section 5.3.1.2.3.6.1, script content is not to be given direct
access to the clear text of user entered passwords.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 20

5.1.1.6.6 link element

The processing semantics of the link element are restricted to interpreting only those link
elements with certain values of the rel attribute. The value of the rel attribute shall be one of the
values specified by [HTML], Section 6.12, Link Types, or a non-standard value which starts with

the prefix "x-".

The value of the rel attribute shall be treated as case-insensitive for the purpose of
determining value equality.

If the value of the rel attribute of a link element is "stylesheet", then the href attribute shall
reference a style sheet resource in accordance with Section 5.2, Stylesheet Content. In addition
to those media types specified by [HTML], Section 6.13, Media Types, the value of the media

attribute may specify the "atsc-tv" media type defined below in Section 5.2.1.7.1.

Note: The link element is provided for facilitating interoperability with legacy content.
Content authors should use the xml-stylesheet processing instruction rather than the link
element to specify an external stylesheet when authoring new XDML content.

5.1.1.6.7 meta element

The semantics of the meta element are restricted to interpreting only those meta elements
with certain values of the name attribute. The value of the name attribute shall be one of the

values specified below or a non-standard value which starts with the prefix "x-".

• Content-Script-Type

• Content-Style-Type

• Transcoded-From-Type

• Transcoded-From-Profile

Note: Non-standard values of the name attribute are intended for use by DASE
Application and DASE System implementers who employ a private agreement. When a
non-standard value is used, its user should take care to avoid collision with other non-
standard values, such as by making use of an organization unique infix.

The value of the name attribute shall be treated as case-insensitive for the purpose of
determining value equality.

5.1.1.6.7.1 Default Script Content Type

The default content type for certain script content embedded in an XHTML document may

be changed by using a meta element with a name attribute with a value Content-Script-Type.
In this case, the value of the content attribute shall be a valid MIME media type indicating the
script content type.

This default content type applies to all cases where script content is specified in a context
where the script’s content type is not explicitly stated.

If more than one meta element specifies a document’s default script content type, then the
most recently specified element applies.

If no default script content type is specified, the content type shall default to

text/ecmascript.

Although the present level of declarative application functionality (DASE-1) only permits the
use of one type of script content, content authors should explicitly specify the default script
content type for enhanced interoperability with future levels which may permit multiple script
content types.

5.1.1.6.7.2 Default Style Content Type

The default content type for certain style content embedded in an XHTML document may be

changed by using a meta element with a name attribute with a value Content-Style-Type. In

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 21

this case, the value of the content attribute shall be a valid MIME media type indicating the style
content type.

This default content type applies to all cases where style content is specified in a context
where the style’s content type is not explicitly stated.

If more than one meta element specifies a document’s default style content type, then the
most recently specified element applies.

If no default style content type is specified, the content type shall default to text/css.

Although the present level of declarative application functionality (DASE-1) only permits the
use of one type of style content, content authors should explicitly specify the default style content
type for enhanced interoperability with future levels which may permit the use of multiple style
content types.

5.1.1.6.7.3 Transcoding Information

If the current document was transcoded from another content type, this information should
be recorded in the current document by using a meta element with a name attribute with a value

Transcoded-From-Type. In this case, the value of the content attribute shall be a valid MIME
media type indicating the source document’s content type.

If the current document was transcoded from another content type profile, this information
should be recorded in the current document by using a meta element with a name attribute with a

value Transcoded-From-Profile. In this case, the value of the content attribute shall specify the
source document’s content type profile. The following profiles are defined for use with source

documents transcoded from content type text/html:

• "Web"

• "SMPTE DDE-1"

When specifying a transcoding profile, the value of the content attribute shall be treated as
case-insensitive for the purpose of determining value equality.

Note: The "Web" profile designates generic Web profiles based on Versions 3.X or 4.X of

[HTML]. The "SMPTE DDE-1" profile designates profiles based on [DDE-1].

Content authors may extend the above set of transcoding profiles for text/html content
type sources or any other content type source provided that the profile value is prefixed with the

string "x-".

Note: Non-standard values of a transcoding profile are intended for use by DASE
Application and DASE System implementers who employ a private agreement. When a
non-standard value is used, its user should take care to avoid collision with other non-
standard values, such as by making use of an organization unique infix.

5.1.1.6.8 object element

The semantics of the object element are restricted in regard to the content type of the
object's data, i.e., the entity referenced by the data attribute. The content type of an object's data
entity shall be either (1) one of the types permitted by [DASE], Section 6.2, Graphics Content,
Section 6.3, Non-Streaming Video Content, Section 6.4, Non-Streaming Audio Content, Section
6.5, Streaming Video Content, and Section 6.6, Streaming Audio Content, or (2) an application
specific content type to be interpreted by an application defined object implementation.

If an entity of a declarative application uses content type application/xhtml+xml, does
specify an object element whose referenced data resource is a content type other than those
permitted by the above paragraph or the entity is found to be invalid, then the user agent should
allocate a presentation area and render into this area any associated alternative text or, if and
only if no alternative text is available, an icon indicating the presence of unrenderable content.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 22

If an entity referenced by an object element takes the form of a content type other than one
of the above types or the entity is found to be invalid, then the user agent shall not abort the
application.

The decoding semantics of the object element are restricted in regard to the content type of
the object's implementation, i.e., the entity referenced by the classid attribute. The content type of

an object's implementation shall be application/javatv-xlet, as permitted by [DASE], Section
4.1.3. If no classid attribute is specified, then the data entity referenced by the object element
shall not be an application specific content type.

Note: When no classid attribute is specified, the object element’s data entity must be a
built-in content type according to the constraints specified above in the first paragraph of
this section.

Note: A classid attribute may be specified to reference an object’s implementation even in
the case of a content type explicitly defined for use with the DASE Standard. This may be
used to provide an application-defined decoder for a built-in content type which would
otherwise use a built-in decoder.

If an entity of a declarative application uses content type application/xhtml+xml, does
specify an object element whose referenced implementation resource is a content type other than
those permitted by the above paragraph, and the entity is processed, then the user agent shall
not abort the application.

See ANNEX H for examples of the object element.

5.1.1.6.8.1 Active Content Object Element

The object element type may be used to reference one or more active content objects from

application/xhtml+xml content. By using this feature, a declarative application may make
indirect use of the procedural application environment. This use is considered indirect since no
mechanism is provided for direct interaction between the declarative application and this
procedural application content. Interaction is limited to (1) the transfer of input focus to the active
content object (so that this content may obtain end-user input events); (2) the display of active
content graphical output in an area within the displayed declarative application document view;
and (3) the rendering of audio content under control of the active content object.

Active object content used for an object element’s immediate implementation shall be

restricted to content type application/javatv-xlet as permitted by [DASE], Section 4.1.3. This
implementation may reference and thereby make use of other procedural content types admitted
by [DASE], Section 4.1.3.

Each object element whose classid attribute references an entity of content type

application/javatv-xlet shall cause the instantiation of a distinct Java TV™ Xlet with a
distinct class loader. Arguments to the Xlet are provided by zero or more param element children

of the object element, where the name attributes of the param elements are of the form arg.n,

with n being a non-negative integer. If the largest value of n among all param elements is N, then
the Xlet shall be instantiated with N+1 arguments, and the nth argument shall be the value of the

param element whose name attribute is arg.n. If some arg.n is not specified, then a default
value of the empty string shall be used as the value.

The archive attribute, if specified, shall be a space separated list of URIs each of which
specifies an archive content entity according to [DASE], Section 6.8, or a Java archive content
entity as permitted by [DASE], Section 4.1.3.

The classid attribute of an active content object element shall be a URI which specifies the

Java class resource that implements the javax.tv.xlet.Xlet interface.

The codebase attribute, if specified, shall be an absolute URI or a relative URI, which shall
be absolutized according to Section 4.6, Relative Identifier Resolution. The resulting absolute URI
shall be used to absolutize relative URIs used with the archive, classid, and data attributes. If not

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 23

specified, the codebase shall default to the base URI of the document entity in which the object
element is specified.

The codetype attribute, if specified, shall be application/javatv-xlet.

In addition to Xlet arguments of the form arg.n, which are derived from param element
children of the object element, the following additional parameters shall be provided to the Xlet as
Xlet context properties:

• org.atsc.xlet.obj.codebase

• org.atsc.xlet.obj.data

• org.atsc.xlet.obj.type

These additional Xlet arguments shall be computed as follows:

(1) the org.atsc.xlet.obj.codebase parameter’s value shall be the URI specified by the
codebase attribute, or, if no codebase attribute is specified, the base URI of the
document entity in which the object element is specified;

(2) the org.atsc.xlet.obj.data parameter’s value shall be the absolutized form of the URI
specified by the data attribute, or, if no data attribute is specified, the empty string;

(3) the org.atsc.xlet.obj.type parameter’s value shall be the value specified by the type
attribute, or, if no type attribute is specified, the empty string.

5.1.1.6.8.1.1 Active Content Document Instance Access

When an embedded Xlet is in its active state, it shall be given access to the containing
document’s object instance hierarchy.

5.1.1.6.8.2 Trigger Object Element

Notwithstanding the above constraints placed on use of the object element, a special use of
the object element is permitted. This special use is referred to as a trigger object element and is
used with certain legacy content. A trigger object element is an object element which (1) specifies

an id attribute, (2) specifies a type attribute with value application/dase-trigger, and (3) does
not specify a classid or data attribute. No more than one instance of a trigger object element may

appear at any given instant within all application/xhtml+xml entities that compose a
declarative application’s current document instance hierarchy. See Section 5.3.1.2.3.7 for further
requirements regarding the instantiation of an associated document object for use by script
content.

5.1.1.6.9 script element

The semantics of the script element are restricted in regard to the values of the element’s
type attribute. The value of the type attribute is restricted to one of the types permitted by Section
 5.3, Script Content.

A user agent should ignore a script element whose type attribute does not satisfy the above

constraints. If an entity of a declarative application uses content type application/xhtml+xml,
does specify a script element with a type attribute whose value does not satisfy the above
constraints, then the user agent shall not abort the application.

The script element’s content is parsed as #PCDATA. As a consequence, any entity reference
open (ero), start tag open (stago), end tag open (etago), and markup declaration open (mdo)
delimiters are recognized as markup rather than script content. The practical impact of this is that

any ampersand character '&' or less-than character '<' should be escaped using an appropriate

character reference, e.g., & and <, respectively. Alternatively, the script content may be

enclosed in a CDATA marked section provided that the marked section close (msc) delimiter "]]>"
does not appear in the enclosed content.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 24

5.1.1.6.10 style element

The decoding semantics of the style element are restricted in regard to the values of the
element’s type attribute. The value of the type attribute is restricted to one of the types permitted
by Section 5.2, Stylesheet Content.

A user agent should ignore a style element whose type attribute does not satisfy the above

constraints. If an entity of a declarative application uses content type application/xhtml+xml,
does specify a style element with a type attribute whose value does not satisfy the above
constraints, then the user agent shall not abort the application.

The style element’s content is parsed as #PCDATA. As a consequence, any entity reference
open (ero), start tag open (stago), end tag open (etago), and markup declaration open (mdo)
delimiters are recognized as markup rather than script content. The practical impact of this is that

any ampersand character '&' or less-than character '<' should be escaped using an appropriate

character reference, e.g., & and <, respectively. Alternatively, the style content may be

enclosed in a CDATA marked section provided that the marked section close (msc) delimiter "]]>"
does not appear in the enclosed content.

5.1.1.7 External Stylesheets

One or more external stylesheets may be associated with an XHTML document instance by

using either the xml-stylesheet processing instruction in accordance with [XMLSTYLE] or the

link element with a rel attribute equal to "stylesheet".

A user agent which implements this facility shall support [XMLSTYLE] semantics.

If multiple external stylesheets are associated with an XHTML document instance, then the
rules for their application precedence are determined by stylesheet specific semantics. The order
of their appearance in an XHTML document instance may be considered significant when
resolving style rules that would apply to the same content.

5.2 Stylesheet Content

This facility consists of a stylesheet language content type. A declarative application may
contain one or more application entities which take the form of this stylesheet language.
Furthermore, fragments of this stylesheet language may be embedded directly into markup
language content as well as script language content.

A stylesheet is used to express how some other content is to be presented. In the context of
this specification, that other content is the markup language content specified above (see Section
 5.1).

5.2.1 text/css

Stylesheet content shall adhere to Cascading Style Sheets, Level 2, 12 May 1998 [CSS2],

as extended and restricted below. This content shall be identified as content type text/css.

Note: See Errata in REC-CSS2-19980512 [CSS2-ERR] for corrections and clarifications
regarding [CSS2].

A user agent which implements this facility shall satisfy the CSS Level 2 User Agent
Conformance requirements specified in [CSS2], Section 3.2, items (2)-(5).

Note: Such a user agent is not strictly CSS Level 2 Conformant unless it supports one of
the pre-defined media types specified by CSS Level 2. This specification does not require
that any of the pre-defined media types be supported.

An application resource which represents an application entity of this content type should be
accompanied by content type metadata which specifies a charset parameter indicating the
character encoding which applies to the resource.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 25

If the content type metadata for an application resource of type text/css contains a

charset parameter, then (1) the value of that parameter shall be either UTF-8 or ISO-8859-1,
and (2) the character encoding of the resource shall employ the specified encoding system as its
actual character encoding system.

5.2.1.1 Validity

An application entity which employs this content type shall be valid. A stylesheet content
entity is valid if either (1) it is valid according to [CSS2], Section 3.1, or (2) after removing all
references to non-standard style properties and property values, it is valid according to [CSS2],
Section 3.1, and these references adhere to the syntax for the non-standard style properties and
property values defined below.

If an entity of a declarative application uses content type text/css, is not valid, and the
entity is processed, then the user agent shall not abort the application.

Note: All stylesheet content entities which are valid according to [CSS2], Section 3.1, are
valid according to this specification; however, the converse does not hold since this
specification permits certain non-standard style properties in stylesheet content entities.

If an entity of this content type is not valid, then the user agent shall ignore certain invalid
constructs according to [CSS2], Section 4.2, Rules for Handling Parsing Errors. A user agent may
report violations of validity criteria set forth in [CSS2] and in this specification.

Note: Certain non-standard extensions to [CSS2] are defined by this specification. In all
cases, these extensions take the form of new identifiers which are permitted by [CSS2],
Appendix D, The Grammar of CSS2. Furthermore, in each of these cases, the identifier is

prefixed by the string "atsc-" in order to prevent collision with future W3C revisions of

this content type.

5.2.1.2 Selectors

A user agent which implements this facility shall support the semantics of both (1) selector
grouping as prescribed by [CSS2], Section 5.2.1, and (2) the following selector types:

Table 1 CSS Selector Support

universal [CSS2], Section 5.3

type [CSS2], Section 5.4

descendant [CSS2], Section 5.5

child [CSS2], Section 5.6

adjacent sibling [CSS2], Section 5.7

attribute and attribute value [CSS2], Section 5.8.1

class [CSS2], Section 5.8.3

id [CSS2], Section 5.9

:first-child pseudo-class [CSS2], Section 5.11.1

link pseudo-classes [CSS2], Section 5.11.2

:hover pseudo-class [CSS2], Section 5.11.3

:active pseudo-class [CSS2], Section 5.11.3

:focus pseudo-class [CSS2], Section 5.11.3

:lang pseudo-class [CSS2], Section 5.11.4

pseudo-elements [CSS2], Section 5.12

Note: The above selector types constitute a proper superset of the selector types specified
by CSS Level 1 [CSS1].

If a rule uses a valid [CSS2] selector type which is recognized by, but whose semantics are
not supported by a user agent, then the user agent shall ignore the rule.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 26

Note: Content authors should use simple selectors instead of complex selectors. This
permits avoiding the inherent processing overhead required for complex selectors.
Complex selectors include descendant, attribute, and attribute value selector types.

If a pointer device is not supported by a declarative application environment, then the

semantics of the :hover pseudo-class selector need not be supported.

5.2.1.3 Character Set Rules

A user agent which implements this facility shall support the semantics of @charset rules
[CSS2], Section 4.4.

A non-embedded stylesheet entity shall specify a @charset rule according to one of the
following character encoding systems, and, furthermore, the stylesheet entity’s representation
shall employ the specified encoding system as its actual character encoding system:

• "UTF-8"

• "ISO-8859-1"

If an entity of this content type does not specify a @charset rule and no metadata about the
character encoding system of the entity is otherwise available, then the user agent should

process the entity’s representation as if a @charset rule specifying "UTF-8" were present. If an

entity of a declarative application uses content type text/css, does not specify a @charset rule
with one of the preceding character encoding systems according to the actual employed
character encoding system, and the entity is processed, then the user agent shall not abort the
application.

If the content type metadata for the application resource which embodies an entity of type

text/css specifies a charset parameter, than the character encoding system specified by the

@charset rule shall be the same as the charset parameter’s value.

5.2.1.4 Import Rules

A user agent which implements this facility shall support the semantics of @import rules
[CSS2], Section 6.3.

If stylesheet content uses an @import rule, then the absolutized form of the URI argument
to the rule shall adhere to constraints specified by Section 5.1.1.5.1 and this URI shall reference

an entity of content type text/css.

If an entity of a declarative application uses content type text/css, either in a distinct

resource or in stylesheet embedded in application/xhtml+xml content, does specify an
@import rule with a URI for which (1) the scheme part of its absolutized form does not adhere to
constraints specified by Section 5.1.1.5.1 or (2) the referenced entity is not content type

text/css, and the import rule is processed for resource access, then the user agent shall not
abort the application.

If an entity of this content type does specify an @import rule with a URI which cannot be
resolved to a resource of this content type, then the user agent should ignore the @import rule.

5.2.1.5 Font Face Rules

A user agent which implements this facility shall support a subset of the semantics of @font-
face rules [CSS2], Section 15.3, including (1) the font matching algorithm specified by [CSS2],
Section 15.5, and (2) the following descriptors:

Table 2 CSS Font Face Rule Support

'font-family' descriptor [CSS2], Section 15.3.2

'font-style' descriptor [CSS2], Section 15.3.2

'font-variant' descriptor [CSS2], Section 15.3.2

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 27

'font-weight' descriptor [CSS2], Section 15.3.2

'font-stretch' descriptor [CSS2], Section 15.3.2

'font-size' descriptor [CSS2], Section 15.3.2

'unicode-range' descriptor [CSS2], Section 15.3.3

'src' descriptor [CSS2], Section 15.3.5

If a @font-face rule which uses an unsupported, but valid [CSS2] @font-face rule descriptor
type is recognized by a user agent, then the user agent should ignore the descriptor. If an entity

of a declarative application uses content type text/css, does specify a @font-face rule with a

descriptor not listed above within an atsc-tv @media rule, and the entity is processed, then the
user agent shall not abort the application.

5.2.1.5.1 'src' descriptor

If a 'src' descriptor is specified in a @font-face rule, then the value of the descriptor shall

consist of a single url() specification optionally followed by a format() specification. The url()
specification shall specify a URI which adheres to constraints specified by Section 5.1.1.5.1 and
which references a resource of a content type permitted by [DASE], Section 6.7, Font Content.

If a @font-face rule uses a valid 'src' descriptor which does not satisfy the above

constraints, then the user agent should either (1) use the first url() specification in the descriptor
which does adhere to the above constraints or (2) ignore the descriptor. If an entity of a

declarative application uses content type text/css, does specify a 'src' descriptor which does
not satisfy the above constraints, and the entity is processed, then the user agent shall not abort
the application.

Note: The local() specification of a font resource source provided by [CSS2], Section

15.3.5, is not supported by this specification.

A user agent should ignore any valid local() specifications present in a valid 'src'
descriptor.

If a format() specification is provided, it should be compatible with the content type of the

resource referenced by the URI value of the url() specification.

If a format() specification is provided, then the user agent may interpret it as a hint of the
referenced font resource’s content type.

5.2.1.6 Page Rules

A user agent which implements this facility need not support the semantics of @page rules,
described by [CSS2], Section 13.2; furthermore, an application entity shall not rely upon user
agent support for @page rules.

5.2.1.7 Media Types

A CSS media type is a collection of CSS style properties associated with a particular media
form or a manner in which content is presented on a media form. A number of media types are

pre-defined by [CSS2], including screen, print, tv, aural, and others. This specification does
not make use of any of these pre-defined media types. Rather, this specification defines a new

media type, atsc-tv, to be used as the default media type for stylesheet content.

A user agent which implements this facility shall support the atsc-tv media type defined
below.

Note: For the purpose of interpreting [CSS2] statements regarding user agent
conformance, an XHTML user agent is to be construed as an HTML user agent.

5.2.1.7.1 'atsc-tv' media type

The atsc-tv media type includes the following style properties:

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 28

Table 3 CSS Property Support

atsc-dynamic-refresh border-top-color margin

atsc-nav-down border-top-style margin-bottom

atsc-nav-index border-top-width margin-left

atsc-nav-left border-width margin-right

atsc-nav-right bottom margin-top

atsc-nav-up caption-side outline

background clear outline-color

background-attachment clip outline-style

background-color color outline-width

background-image content overflow

background-position counter-increment padding

background-repeat counter-reset padding-bottom

border display padding-left

border-bottom float padding-right

border-bottom-color font padding-top

border-bottom-style font-family position

border-bottom-width font-size right

border-color font-style text-align

border-left font-variant text-decoration

border-left-color font-weight text-indent

border-left-style height text-transform

border-left-width left top

border-right letter-spacing vertical-align

border-right-color line-height visibility

border-right-style list-style white-space

border-right-width list-style-image width

border-style list-style-position word-spacing

border-top list-style-type z-index

Content authors should avoid uses of the overflow property which result in scrolling
behavior.

5.2.1.8 Style Properties

For a user agent to support a media type, it must implement the semantics of each style
property included in that media type. The semantics of each style property are specified by
[CSS2] as extended and constrained by this specification. The semantics of style properties with
extensions or constraints are specified below.

5.2.1.8.1 Alternative Semantic Interpretations

Certain [CSS2] style properties are afforded alternative interpretations by either [CSS2] or
this specification. In general, an alternative interpretation of a style property entails the user agent
optionally ignoring or producing a different implied side effect.

Content authors should take into account the possibility that a style property will be ignored
or interpreted differently than implied by its explicit semantics.

Note: It is not necessary for a declarative application to employ a guard in order to use
style properties which may have an alternative interpretation. This is due to the
requirement that a user agent be able to parse valid style properties for which alternative
interpretations may apply irrespective of whether the user agent employs an alternative
interpretation or not.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 29

5.2.1.8.1.1 ‘background’ property

A user agent may ignore a declaration which specifies this property if the <’background-

image’> sub-construct of this shorthand property would be ignored in accordance with the
alternative interpretation of the background-image property (see Section 5.2.1.8.1.3).

5.2.1.8.1.2 ‘background-attachment’ property

A user agent may interpret the value fixed as the value scroll. A user agent should

correctly interpret the semantics of fixed for the body element.

5.2.1.8.1.3 ‘background-image’ property

A user agent may ignore a declaration which specifies this property if the background is a
content type other than the graphic or streaming video content types permitted by this
specification.

If the background is a streaming video content type, then a user agent should attempt to
scale and translate the video to the size and position of the affected element.

5.2.1.8.1.4 ‘background-repeat’ property

A user agent may ignore a declaration which specifies this property if the background is a
streaming video content type.

5.2.1.8.1.5 ‘border-top-style’, ‘border-left-style’, ‘border-bottom-style’, ‘border-right-style’, and
‘border-style’ properties

A user agent may interpret the values dotted, dashed, double, groove, ridge, inset and

outset as the value solid.

5.2.1.8.1.6 ‘content’ property

A user agent may ignore a declaration which specifies this property if it has a value which

takes the form <uri> or if it has one of the following values: open-quote, close-quote, no-

open-quote, or no-close-quote.

5.2.1.8.1.7 ‘display’ property

A user agent may ignore a declaration which specifies this property if it has one of the

following values: run-in, compact, marker, table, inline-table, table-row-group, table-

header-group, table-footer-group, table-row, table-column-group, table-column,

table-cell, or table-caption.

If a user agent ignores a declaration which specifies this property, it shall apply the implicit
display semantics for the selected element according to [HTML].

5.2.1.8.1.8 ‘font’ property

A user agent may ignore a declaration which specifies this property if it has one of the

following values: caption, icon, menu, message-box, small-caption, and status-bar.

5.2.1.8.1.9 ‘font-variant’ property

A user agent may interpret the value small-caps as the value normal for characters that do
not have prescribed case-conversion rules.

5.2.1.8.1.10 ‘letter-spacing’ property

A user agent may interpret a value of the form <length> as the value normal.

5.2.1.8.1.11 ‘list-style-type’ property

A user agent may interpret the values armenian, cjk-ideographic, georgian, hebrew,

hiragana, hiragana-iroha, katakana, katakana-iroha, and lower-greek as the value

decimal.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 30

5.2.1.8.1.12 ‘overflow’ property

A user agent may interpret the value scroll as the value auto.

Note: A user agent is not required to support visible scroll indicators or scroll functionality
when clipping occurs on an overflowing box.

5.2.1.8.1.13 ‘text-align’ property

A user agent may interpret the value justify as the value left or right, depending upon
whether the element’s default writing direction is left-to-right or right-to-left, respectively.

5.2.1.8.1.14 ‘text-decoration’ property

A user agent may interpret the value blink as the value none.

5.2.1.8.1.15 ‘white-space’ property

A user agent may ignore a declaration which specifies this property.

If a user agent ignores a declaration which specifies this property, it shall apply the implicit
white-space semantics for the selected element according to [HTML].

5.2.1.8.1.16 ‘word-spacing’ property

A user agent may interpret a value of the form <length> as the value normal.

5.2.1.8.2 Standard Property Values

This section specifies additional constraints on standard [CSS2] style property values.

5.2.1.8.2.1 ‘font-size’ property, ‘<relative-size>’ values

The <relative-size> values of the font-size property shall be interpreted as the following font-
relative sizes according to a reference font of size 24 pixels on a reference display of 480 pixels
in height:

Table 4 CSS Relative Font Size Mappings

xx-small 0.33em

x-small 0.50em

small 0.75em

medium 1.00em

large 1.33em

x-large 2.00em

xx-large 2.67em

5.2.1.8.3 Non-Standard Properties

This section specifies non-standard, ATSC specific style properties.

Note: In this context, non-standard means not specified by the W3C for use with CSS.

5.2.1.8.3.1 ‘atsc-dynamic-refresh’ property

The atsc-dynamic-refresh property may be used to specify that an XHTML document,
image, or an embedded object in an XHTML document (i.e., an instance of an object element) is
to be dynamically refreshed (redisplayed) when the underlying application resource is updated.

The following constraints apply to this property:

Values: auto | none | inherit
Initial: none
Applies to: html, img, object
Inherited: no

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 31

Percentages: n/a
Media: atsc-tv

If used with any other element type, this property shall be ignored.

If the value is auto and the underlying application resource is updated, then the document,
image, or object shall be dynamically updated by re-decoding and re-presenting the contents of

the updated resource. Otherwise, if the value is none, a change to the underlying application
resource shall have no affect on previously decoded and presented document, image, or object
content through means of this property.

Note: In the case the value of this property is none, a refresh may still be effected by

programmatic means by registering an org.atsc.resourcechanged event listener on

an element of interest and then using the DocumentViewExt::refresh method to

cause a refresh to occur. See Sections 5.3.1.2.8.3.1 and 5.3.1.2.4.1.10 for further

information.

Only changes to the application resource referenced by the data attribute of an object
element shall be construed as a dynamic update. Changes to an application resource referenced
by the classid attribute of an object shall not cause a dynamic update.

The dynamic update of an XHTML document instance shall cause all script state associated
with its prior document instance to be discarded.

Note: The ability for an XHTML document instance, image, or object data instance to be
updated is dependent upon the application delivery system used to deliver an application's
resources. The property specified here is intended to support those application resource
delivery mechanisms that support automatic updating (versioning) of resources, e.g., a
broadcast data or object carousel.

5.2.1.8.3.2 ‘atsc-nav-index’ property

The atsc-nav-index property may be used to specify that an element is the target of a

directional navigation property (see atsc-nav-left, atsc-nav-right, atsc-nav-up, atsc-nav-

down properties).

The following constraints apply to this property:

Values: auto | <number>
Initial: auto
Applies to: all focusable elements
Inherited: no
Percentages: n/a
Media: atsc-tv

When the value is auto, directional navigation behavior is not defined by this specification,
but is implementation dependent.

When a <number> value is used to express an integer index value, no more than one
element in a document instance shall be associated with the index.

5.2.1.8.3.3 ‘atsc-nav-{left,right,up,down}’ properties

The atsc-nav-{left,right,up,down} properties may be used to specify an element to
which focus should be moved when responding to focus movement events.

The following constraints apply to this property:

Values: auto | <number> | <string> | inherit
Initial: auto
Applies to: all focusable elements
Inherited: no
Percentages: n/a
Media: atsc-tv

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 32

When the value is auto, directional navigation behavior is not defined by this specification,
but is implementation dependent.

When a <number> value form is used, it shall denote an integer index value that

corresponds to the index value associated with an element by the atsc-nav-index property.

When a <string> value form is used, it shall adhere to the following syntax:

navigation-target: [frame-ref] '#' element-ref
frame-ref: idref
element-ref: idref | '$' integer

The value of frame-ref, if specified, shall be a valid identifier reference associated with some
frame in the current document instance frame hierarchy. The value of element-ref shall be either
a valid identifier reference to some element or an integer reference to an index value associated

with an element by an atsc-nav-index property. The scope of element reference shall be limited
by the frame reference, if one is specified, or the current frame, if none is specified.

The syntax of idref shall adhere to the set of legal values of the XML id attribute.

Note: Care should be taken by content authors to ensure that uses of these properties do
not lead to unexpected navigation behavior. In particular, it is possible that, through
variations in content layout, an element which might appear on the left or right in one
layout context may appear on the right or left in another layout context; e.g., due to
differences in default fonts, font sizes, text layout algorithms, etc.

5.2.1.8.4 Non-Standard Property Values

This section specifies non-standard, ATSC style property values.

Note: In this context, non-standard means not specified by the W3C for use with CSS.

5.2.1.8.4.1 ‘atsc-rgba’ function

The atsc-rgba() function may be used to specify an RGB color with alpha as a property
value. The function takes four arguments, in the following order, indicating the red, green, blue,
and alpha components of the color. Each argument shall be either an integer in the range 0
through 255 (inclusive) or a percentage. In this context, alpha is to be interpreted as opacity; that
is, values of 255 or 100% shall be interpreted as opaque.

The atsc-rgba() function may appear anywhere that the rgb() function is permitted by
[CSS2], Section 4.3.6.

5.2.1.9 Inline Stylesheets

When an inline stylesheet is specified in application/xhtml+xml content by means of the

style attribute and the default style content type is text/css, then the normalized value of the

style attribute shall adhere to the syntax of the following inline-stylesheet non-terminal:

inline-stylesheet
 : S* [declarations | inline-rulesets]?

declarations
 : declaration [';' S* declaration]*

inline-rulesets
 : inline-ruleset*

inline-ruleset
 : [pseudo S* [',' S* pseudo S*]*]? '{' S* declarations '}' S*

See [CSS2], Appendix D, The Grammar of CSS2, for the definitions of declaration and

pseudo non-terminals.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 33

The semantics of the above inline style specification are as follows: (1) declarations not
associated with a pseudo selector apply to the element on which the inline style attribute occurs
and have a cascading order equivalent to that of a rule-set specified at the end of the author’s

style sheet with a specificity of {a=1,b=0,c=0}; (2) declarations associated with a pseudo-class
and not a pseudo-element selector apply to all document elements for which the pseudo-class
applies and have a cascading order equivalent to that of a rule-set specified at the end of the

author’s style sheet with a specificity of {a=1,b=1,c=0}; (3) declarations associated with a
pseudo-element selector and not a pseudo-class selector apply to the element on which this
inline style attribute occurs and have a cascading order equivalent to that of a rule-set specified at

the end of the author’s style sheet with a specificity of {a=1,b=0,c=1}; and (4) declarations
associated with both a pseudo-class and a pseudo-element selector apply to all document
elements for which the pseudo-class applies and have a cascading order equivalent to that of a

rule-set specified at the end of the author’s style sheet with a specificity of {a=1,b=1,c=1}. See
[CSS2], Section 6.4, The Cascade, for information on cascade specificity determination.

5.3 Script Content

This facility consists of a script language content type. A declarative application may contain
one or more application entities which take the form of this script language. Furthermore,
fragments of this script language may be embedded directly into markup language content.

5.3.1 text/ecmascript

Script content shall adhere to ECMAScript, 3
rd

 Edition [ECMASCRIPT], as extended and

restricted below, and shall be identified as content type text/ecmascript.

A user agent which implements this facility shall satisfy the ECMAScript Conformance
requirements specified in [ECMASCRIPT], Section 2.

An application entity or fragment which employs this content type shall be valid. A script
content entity or fragment is valid if it (1) adheres to the grammar specified by [ECMASCRIPT]
and (2) makes reference only to application-defined host objects and to native objects and host
objects permitted by this specification.

If an entity of a declarative application uses content type text/ecmascript, is not valid, and
the entity or fragment is processed, then the user agent may abort the application.

An application resource which represents an application entity of this content type should be
accompanied by content type metadata which specifies a charset parameter indicating the
character encoding which applies to the resource.

If the content type metadata for an application resource of type text/ecmascript contains

a charset parameter, then (1) the value of that parameter shall be either UTF-8 or ISO-8859-1,
and (2) the character encoding of the resource shall employ the specified encoding system as its
actual character encoding system.

5.3.1.1 Native Objects

An ECMAScript native object is an object whose form and semantics are defined by
[ECMASCRIPT].

5.3.1.1.1 Non-Instantiable Built-In Objects

A script content entity or fragment may reference the following non-instantiable, built-in,
native objects as defined by [ECMASCRIPT].

Table 5 ECMAScript Non-Instantiable Native Object Support

Global Math

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 34

5.3.1.1.1.1 Global Object

The Global object shall implement the Window interface specified in Section 5.3.1.2.9.4.

5.3.1.1.2 Instantiable Built-In Objects

A script content entity or fragment may reference and instantiate the following instantiable,
built-in native objects, as defined by [ECMASCRIPT].

Table 6 ECMAScript Instantiable Native Object Support

Array Boolean Date

Error Function Number

Object Regexp String

5.3.1.1.2.1 Date Object

When a Date object is constructed so as to indicate the current time of day, it should derive
the time of day from accurate time information available from the application delivery system.

5.3.1.1.2.2 String Object

In addition to implementing the semantics defined by [ECMASCRIPT], Section 15.5, each

instance of a String object shall implement the following interface:

interface StringExt
{
 /* methods */
 String anchor(in String name);
 String big();
 String blink();
 String bold();
 String fixed();
 String fontcolor(in String color);
 String fontsize(in String size);
 String italics();
 String link(in String href);
 String small();
 String strike();
 String sub();
 String sup();
};

The following subsections describe the entirety of StringExt interface semantics. Use of
this interface is deprecated in non-legacy content.

Note: This extended interface is provided to obtain lexical interoperability with certain
legacy script content.

5.3.1.1.2.2.1 StringExt::anchor

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows:

original string

where the name argument is used to specify the value of the a (anchor) element’s name attribute.

5.3.1.1.2.2.2 StringExt::big

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows

<big>original string</big>

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 35

5.3.1.1.2.2.3 StringExt::blink

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows:

original string

5.3.1.1.2.2.4 StringExt::bold

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows

original string

5.3.1.1.2.2.5 StringExt::fixed

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows

<tt>original string</tt>

5.3.1.1.2.2.6 StringExt::fontcolor

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows:

original string

where the color argument is used to specify the value of the color style property.

5.3.1.1.2.2.7 StringExt::fontsize

This string valued method shall return a string representing the current String object
surrounded by a one or more span element start and end tags.

If the value of the size argument is an integer in the range [1-7], then the following shall be
returned:

original string

where the value of absolute size is determined according to the value of the size argument as
follows:

Table 7 Legacy Font Size Attribute Mappings

1 xx-small

2 x-small

3 small

4 medium

5 large

6 x-large

7 xx-large

If the value of the size argument is an integer in the range [1-7] preceded by either the '+'

(plus sign) delimiter or the '-' (minus sign) delimiter, then the following shall be returned:

...original string...

where (1) the value of relative size is either larger or smaller depending upon whether the

preceding delimiter is '+' or '-', respectively, and (2) ... denotes additional surrounding span
element start and end tags such that the number of surrounding span elements is equal to the
integer value of the size argument.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 36

The following script fragment, and, in particular, the fontsize function, provides a sample
implementation of this method’s semantics:

function mapsize (size)
{
 var map = ["xx-small", "x-small", "small", "medium", "large", "x-large", "xx-large"];
 if (isNaN (parseInt (size)))
 size = 4;
 else if (size < 1)
 size = 1;
 else if (size > 7)
 size = 7;
 return map [size - 1];
}

function fontsize (string, size)
{
 if (size.substring (0, 1) == '+') {
 if (size.substring (1) > 0)
 return "<" + "span style=\"font-size: larger\">" +
 fontsize (string, "+" + (size.substring (1) - 1)) +
 "</" + "span>";
 else
 return string;
 } else if (size.substring (0, 1) == '-') {
 if (size.substring (1) > 0)
 return "<" + "span style=\"font-size: smaller\">" +
 fontsize (string, "-" + (size.substring (1) - 1)) +
 "</" + "span>";
 else
 return string;
 } else if ((size >= 1) && (size <= 7)) {
 return "<" + "span style=\"font-size: " + mapsize (size) + "\">" +
 string +
 "</" + "span>";
 } else
 return string;
};

5.3.1.1.2.2.8 StringExt::italics

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows

<i>original string</i>

5.3.1.1.2.2.9 StringExt::link

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows:

original string

where the href argument is used to specify the value of the a (anchor) element’s href attribute.

5.3.1.1.2.2.10 StringExt::small

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows

<small>original string</small>

5.3.1.1.2.2.11 StringExt::strike

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows:

original string

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 37

5.3.1.1.2.2.12 StringExt::sub

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows

_{original string}

5.3.1.1.2.2.13 StringExt::sup

This string valued method shall return a string representing the current String object
surrounded by a start and end tag as follows

^{original string}

5.3.1.2 Host Objects

An ECMAScript host object is an object whose meta-behavior (as object) is defined by
[ECMASCRIPT], Section 8.6, The Object Type, but whose particular form and semantics are not
defined by the language. Host objects extend the functionality of ECMAScript beyond that
functionality provided by native objects.

This specification permits the use of a number of host objects in order to support (1) access
to and modification of the decoded representation of a declarative application and (2) access to
and modification of the state of the user agent. The specifications of these two types of host
objects are referred to as the Document Object Model (DOM) and the Environment Object Model
(EOM), respectively.

Note: Both document and environment object models are frequently conflated. This
specification does not formally distinguish between the DOM and EOM, and uses the
common term DOM to refer to both.

A user agent which supports this facility shall implement the host objects specified by the
following subsections in accordance with Document Object Model, Level 2 [DOM2], and as
extended and restricted below:

• Core

• Core Extensions

• HTML

• Views

• StyleSheets

• CSS

• Event Sets

• Environment

Note: The purpose of the Core, Core Extensions, Views, StyleSheets, CSS, and Event
Sets objects is to satisfy general requirements for access to, manipulation of, and
interaction with a declarative application by procedural means within the context of script
content.

Note: The purpose of the HTML and Environment host objects, defined below in Sections

 5.3.1.2.3, HTML Module Objects, and 5.3.1.2.9, Environment Module Objects, is to satisfy

interoperability requirements for legacy script content usage as supported by [DOM0].

Note: See Errata of Document Object Model Level 2 Specifications [DOM2-ERR] for
corrections and clarifications regarding [DOM2], [DOM2-EVENTS], [DOM2-HTML],
[DOM2-STYLE], and [DOM2-VIEWS].

A user agent shall implement these objects and their extended interfaces in such a manner
that if a valid script content entity or fragment which references only the objects, object properties,
and object methods of [DOM0] is evaluated, then that evaluation will not produce an error
condition for reasons of either (1) reference to an unknown property or (2) reference to an
unknown method. However, evaluation may produce an error condition for reasons of semantic

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 38

restrictions placed on properties or methods as specified below. When such a restriction does
produce an error condition, it shall do so by means of throwing an ECMAScript exception.

Note: In the following subsections, the term interface is used to refer to both (1) a
collection of object properties and methods and (2) an IDL (interface definition language)
specification of such a collection. In addition, the term property is used to refer to both (1)
a state variable of an object, whether mutable (read-write) or immutable (read-only), and
(2) an IDL attribute specification.

Note: IDL (interface definition language) uses the keyword attribute to designate an object
property. To avoid confusion between IDL attributes and XML attributes, we use the term
property when referring to interface functionality expressed as an IDL attribute. This is
consistent with an ECMAScript binding of IDL, since ECMAScript uses the term property
as well.

Except for those cases which would not otherwise conform to [ECMASCRIPT] semantics,
the DontEnum attribute shall not be present on properties which correspond to the methods and
properties of all host objects permitted by this specification; that is, enumeration of these methods
and properties shall be supported.

Note: See [ECMASCRIPT], Sections 8.6 and 12.6.4, for further information on use of the
DontEnum property attribute.

All host objects shall implement the internal [[HasInstance]] method in order to support

the instanceof operator.

Note: See [ECMASCRIPT], Section 15.3.5.3., for further information on use of the internal

[[HasInstance]] method.

5.3.1.2.1 Core Module Objects

A script content entity or fragment may reference and a user agent which supports this
facility shall implement the following host objects, defined by [DOM2], Section 1.2, Fundamental
Interfaces, in conjunction with [DOM2], Appendix E, ECMAScript Language Binding.

With the exception of the DOMException object, none of the following objects is directly

instantiable; that is, the internal [[Construct]] property for the object shall remain undefined.

Any attempt to construct an object using the new operator shall cause an ECMAScript TypeError
to be raised.

Note: See [ECMASCRIPT], Section 11.2.2, for further information on use of the internal

[[Construct]] property.

Table 8 DOM Core Interface Support

Attr CharacterData Comment

Document DocumentFragment DOMException

DOMExceptionExt DOMImplementation Element

NamedNodeMap Node NodeList

Text

Certain methods and properties exposed by means of these host objects may be invoked or
mutated in such a manner as to cause a valid, decoded document instance or fragment to
become invalid.

Script content shall not cause a valid decoded document instance or fragment to become
invalid by invoking the methods or mutating the properties of these host objects.

Note: This constraint applies only to document instances or fragments produced as a
result of decoding a source document. It does not apply to document instances or
fragments synthesized by script content.

If use of this property causes a valid decoded document instance or fragment to become

invalid, then the user agent should cause a VALIDATION_ERR exception to be raised. If an entity of

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 39

a declarative application uses content type text/ecmascript and invokes a method or mutates a
property of these host objects in such a manner as to cause a valid, decoded document instance
or fragment to become invalid, then the user agent may abort the application.

Note: See Section 5.3.1.2.1.3.5 for more information on VALIDATION_ERR.

The methods and properties of Core host objects which permit the violation of validity are
specified explicitly in the following subsections.

5.3.1.2.1.1 Attr Interface

5.3.1.2.1.1.1 Attr::ownerElement

If the Attr::specified property has the value false, then the Attr::ownerElement

property may have the value null even when the attribute is in use.

Note: By permitting the value of this property to remain null, an implementation of a

declarative application environment may share instances of default attributes, thus
achieving considerable memory savings.

5.3.1.2.1.1.2 Attr::specified

The Attr::specified property shall have the value false if the attribute has no assigned
value in the document and has a default value in the DTD.

5.3.1.2.1.1.3 Attr::value

The Attr::value property may be used to mutate the value of an attribute Node which
would invalidate a valid document instance or fragment. For example, the value of the type

attribute of an input element could be changed to file.

5.3.1.2.1.2 Document Interface

5.3.1.2.1.2.1 Document::createEntityReference

If a user agent does not support the EntityReference interface and this method is invoked,

then the user agent shall cause a NOT_SUPPORTED_ERR exception to be raised.

Note: See Section 5.3.1.2.2.3 for further information on the EntityReference interface.

5.3.1.2.1.3 DOMException Interface

The DOMException interface shall be implemented by the DOMException exception object
according to [DOM2], Appendix E, ECMAScript Language Binding.

Exceptional conditions defined by [DOM2] or by this specification shall be raised by use of
an explicit or implied ThrowStatement as specified by [ECMASCRIPT], Section 12.13. The value

of the throw statement’s exception argument shall be a DOMException object instance whose

code property is either (1) set to the specific exception type code defined by [DOM2] or (2) set to
the special value 65535 (0xFFFF) in the case of an extended exception code as defined below.

In addition to implementing the DOMException exception interface as defined by [DOM2],

Section 1.2, each instance of a DOMException exception object shall implement the following
exception interface:

exception DOMExceptionExt
{
 unsigned short codeExtension;
};

// Extended Exception Codes
const unsigned short VALIDATION_ERR = 1;
const unsigned short NO_CLOSE_ALLOWED_ERR = 2;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 40

The following subsections describe constraints on DOMException exception interface

semantics as well as the entirety of DOMExceptionExt exception interface semantics.

5.3.1.2.1.3.1 DOMException::[[Construct]]

The internal [[Construct]] method for the DOMException object shall be implemented by
a user agent which supports this facility. This method shall take two arguments: (1) an argument

used to initialize DOMException::code, and (2) an argument used to initialize

DOMExceptionExt::codeExtension. If the second argument is non-zero, the first argument shall
be 65535 (0xFFFF).

Note: See [ECMASCRIPT], Section 13.2.2, for further information on the internal

[[Construct]] property.

5.3.1.2.1.3.2 NO_MODIFICATION_ALLOWED_ERR

A NO_MODIFICATION_ALLOWED_ERR exception shall be raised upon any attempt to
modify a read-only property.

5.3.1.2.1.3.3 DOMExceptionExt::codeExtension

This immutable, non-negative integral number valued property denotes an extended
exception code. For extended exceptions defined by this specification, this property shall have a
non-zero, positive value.

5.3.1.2.1.3.4 NO_CLOSE_ALLOWED_ERR

A NO_CLOSE_ALLOWED_ERR exception shall be raised upon certain attempts to close a

Window object. See Section 5.3.1.2.9.4.3 for further information.

5.3.1.2.1.3.5 VALIDATION_ERR

A VALIDATION_ERR exception should be raised upon any attempt to modify a source
document instance or one of its nodes in such a manner as to cause a valid document instance to
become invalid.

5.3.1.2.1.4 DOMImplementation Interface

5.3.1.2.1.4.1 DOMImplementation::hasFeature

This method shall return true for the following standard feature strings defined by [DOM2],

[DOM2-VIEWS], [DOM2-STYLE], and [DOM2-EVENTS]: "Core", "Views", "StyleSheets",

"CSS", "Events", "UIEvents", "MouseEvents", "MutationEvents", and "HTMLEvents".

In addition, this method shall return true for the feature string "XML" if the user agent
supports internal declaration subsets.

In addition, this method shall return true for the following feature strings defined by this

specification: "org.atsc.dom.core", "org.atsc.dom.environment", "org.atsc.dom.events",

"org.atsc.dom.html", "org.atsc.dom.native" and "org.atsc.dom.views".

5.3.1.2.1.4.2 DOMImplementation::createDocumentType

If the public identifier supplied as an argument to this method is not one of those specified in
Section 5.1.1.4 Document Type Declaration, then the user agent may cause a

NOT_SUPPORTED_ERR exception to be raised.

5.3.1.2.1.4.3 DOMImplementation::createDocument

If the public identifier of the document type supplied as an argument to this method is not
one of those specified in Section 5.1.1.4 Document Type Declaration, then the user agent may

cause a NOT_SUPPORTED_ERR exception to be raised.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 41

5.3.1.2.1.5 Element Interface

5.3.1.2.1.5.1 Element::removeAttribute

The Element::removeAttribute method may be used to remove an attribute from an

Element which would invalidate a valid document instance or fragment. For example, the type

attribute could be removed from a script Element.

5.3.1.2.1.5.2 Element::removeAttributeNS

The Element::removeAttributeNS method may be used to remove an attribute from an

Element which would invalidate a valid document instance or fragment. For example, the type

attribute could be removed from a script Element.

5.3.1.2.1.5.3 Element::removeAttributeNode

The Element::removeAttributeNode method may be used to remove an attribute from an

Element which would invalidate a valid document instance or fragment. For example, the type

attribute could be removed from a script Element.

5.3.1.2.1.5.4 Element::setAttribute

The Element::setAttribute method may be used to mutate the value of an attribute of an

Element which would invalidate a valid document instance or fragment. For example, the value of

the type attribute of an input element could be changed to file.

5.3.1.2.1.5.5 Element::setAttributeNS

The Element::setAttributeNS method may be used to mutate the value of an attribute of

an Element which would invalidate a valid document instance or fragment. For example, the

value of the type attribute of an input element could be changed to file.

5.3.1.2.1.5.6 Element::setAttributeNode

The Element::setAttributeNode method may be used to mutate the value of an attribute

of an Element which would invalidate a valid document instance or fragment. For example, the

value of the type attribute of an input element could be changed to file.

5.3.1.2.1.5.7 Element::setAttributeNodeNS

The Element::setAttributeNodeNS method may be used to mutate the value of an

attribute of an Element which would invalidate a valid document instance or fragment. For

example, the value of the type attribute of an input element could be changed to file.

5.3.1.2.1.6 NamedNodeMap Interface

5.3.1.2.1.6.1 NamedNodeMap::removeNamedItem

The NamedNodeMap::removeNamedItem method may be used to mutate the value of certain

NamedNodeMap instances which would invalidate a valid document instance or fragment. For

example, the value the Node::attributes property could be mutated so as to remove a required
attribute.

5.3.1.2.1.6.2 NamedNodeMap::removeNamedItemNS

The NamedNodeMap::removeNamedItemNS method may be used to mutate the value of

certain NamedNodeMap instances which would invalidate a valid document instance or fragment.

For example, the value the Node::attributes property could be mutated so as to remove a
required attribute.

5.3.1.2.1.6.3 NamedNodeMap::setNamedItem

The NamedNodeMap::setNamedItem method may be used to mutate the value of certain

NamedNodeMap instances which would invalidate a valid document instance or fragment. For

example, the value the Node::attributes property could be mutated so as to replace an
attribute with an invalid attribute.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 42

5.3.1.2.1.6.4 NamedNodeMap::setNamedItemNS

The NamedNodeMap::setNamedItemNS method may be used to mutate the value of certain

NamedNodeMap instances which would invalidate a valid document instance or fragment. For

example, the value the Node::attributes property could be mutated so as to replace an
attribute with an invalid attribute.

5.3.1.2.1.7 Node Interface

5.3.1.2.1.7.1 Node::appendChild

The Node::appendChild method may be used to insert a child Node which would invalidate
a valid document instance or fragment. For example, a body element node could be inserted as a
child of another body element node.

5.3.1.2.1.7.2 Node::attributes

The Node::attributes property provides access to the attribute nodes of an element

node. In such a case, the NamedNodeMap typed value of this property may be mutated in such a
manner as to invalidate a valid document instance or fragment. For example, a required attribute

Node could be removed, leaving an element Node without a required attribute.

5.3.1.2.1.7.3 Node::insertBefore

The Node::insertBefore method may be used to insert a child Node which would
invalidate a valid document instance or fragment. For example, a body element node could be
inserted as a child of another body element node.

5.3.1.2.1.7.4 Node::nodeValue

The Node::nodeValue property may be used to mutate the value of an attribute Node which
would invalidate a valid document instance or fragment. For example, the value of the type

attribute of an input element could be changed to file.

5.3.1.2.1.7.5 Node::prefix

The Node::prefix property may be used to mutate the XML namespace prefix of an

element or attribute Node which would invalidate a valid document instance or fragment. For

example, the XML namespace prefix of the a element could be changed to none.

5.3.1.2.1.7.6 Node::removeChild

The Node::removeChild method may be used to remove a child Node which would
invalidate a valid document instance or fragment. For example, a body element node could be
removed as the child of an html element node.

5.3.1.2.1.7.7 Node::replaceChild

The Node::replaceChild method may be used to replace a child Node which would
invalidate a valid document instance or fragment. For example, the body element node child of an
html element node could be replaced with a head element node.

5.3.1.2.2 Core Extension (XML) Module Objects

A script content entity or fragment may reference and a user agent which supports this
facility shall implement the following host objects, defined by [DOM2], Section 1.3, Extended
Interfaces, in conjunction with [DOM2], Appendix E, ECMAScript Language Binding.

None of the following objects is directly instantiable; that is, the internal [[Construct]]

property for the object shall remain undefined. Any attempt to construct an object using the new
operator shall cause an ECMAScript TypeError to be raised.

Note: See [ECMASCRIPT], Section 11.2.2, for further information on use of the internal

[[Construct]] property.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 43

Table 9 DOM Core Extensions Interface Support

CDATASection DocumentType Entity

EntityReference Notation ProcessingInstruction

5.3.1.2.2.1 DocumentType Interface

5.3.1.2.2.1.1 DocumentType::entities

If a user agent does not support internal declaration subsets (see Section 5.1.1.4) and does
not parse an external declaration subset, then this property’s value shall be an empty

NamedNodeMap.

5.3.1.2.2.1.2 DocumentType::internalSubset

If a user agent does not support internal declaration subsets (see Section 5.1.1.4), then this
property’s value shall be an empty string.

5.3.1.2.2.1.3 DocumentType::notations

If a user agent does not support internal declaration subsets and does parse the external

declaration subset, then this property’s value shall be an empty NamedNodeMap.

Note: See Section 5.1.1.4 for more information on support of internal declaration subsets.

5.3.1.2.2.2 Entity Interface

If a user agent does not support internal declaration subsets and does not parse the
external declaration subset, then the user agent need not implement this interface or its
associated object.

Note: See Section 5.1.1.4 for more information on support of internal declaration subsets.

5.3.1.2.2.3 EntityReference Interface

If a user agent does not support internal declaration subsets and does not parse the
external declaration subset, then the user agent need not implement this interface or its
associated object.

Note: See Section 5.1.1.4 for more information on support of internal declaration subsets.

5.3.1.2.2.4 Notation Interface

If a user agent does not support internal declaration subsets and does not parse the
external declaration subset, then the user agent need not implement this interface or its
associated object.

Note: See Section 5.1.1.4 for more information on support of internal declaration subsets.

5.3.1.2.3 HTML Module Objects

A script content entity or fragment may reference and a user agent which supports this
facility shall implement the following host objects and interfaces, defined by [DOM2-HTML].

None of the following objects is directly instantiable; that is, the internal [[Construct]]

property for the object shall remain undefined. Any attempt to construct an object using the new
operator shall cause an ECMAScript TypeError to be raised.

Note: See [ECMASCRIPT], Section 11.2.2, for further information on use of the internal

[[Construct]] property.

Table 10 DOM HTML Interface Support

HTMLAnchorElement HTMLAnchorElementExt HTMLBodyElement

HTMLCollection HTMLDocument HTMLDocumentExt

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 44

HTMLElement HTMLFormElement HTMLFormElementExt

HTMLImageElement HTMLImageElementExt HTMLInputElement

HTMLObjectElement HTMLObjectElementExt HTMLOptionElement

HTMLOptionsCollection HTMLSelectElement HTMLTextAreaElement

HTMLTriggerObjectElementExt

Note: These objects represent a subset of the interfaces defined by [DOM2-HTML]. Some
of these objects are additionally extended by the interfaces defined in the following
sections. The purpose of these extended interfaces is to provide strict lexical compatibility
with [DOM0] usage.

The presence of support for this set of interfaces is indicated by means of a feature string

"org.atsc.dom.html", which may be used with the DOMImplementation::hasFeature method.

When a source document entity containing application/xhtml+xml content is decoded,
the user agent will instantiate these objects in order to populate a document object instance
hierarchy. These objects may be referenced and mutated during the decoding process by script
content embedded in the document itself.

As an optimization, a user agent may defer the instantiation of a document object instance
hierarchy until a reference to the instance occurs. This optimization permits the decoding of
source documents that do not make reference to the document object instance without incurring
the overhead of creating a document object instance hierarchy that is never used.

5.3.1.2.3.1 HTMLAnchorElement Object

In addition to implementing the HTMLAnchorElement interface as defined by [DOM2-HTML],

each instance of an HTMLAnchorElement object shall implement the following interface:

interface HTMLAnchorElementExt
{
 /* read-write properties */
 attribute DOMString hash;
 attribute DOMString host;
 attribute DOMString hostname;
 attribute DOMString pathname;
 attribute DOMString port;
 attribute DOMString protocol;
 attribute DOMString search;
};

The following subsections describe constraints on HTMLAnchorElement interface semantics

as well as the entirety of HTMLAnchorElementExt interface semantics.

5.3.1.2.3.1.1 HTMLAnchorElement::[[DefaultValue]]

The internal [[DefaultValue]] method for the HTMLAnchorElement object shall return the

value of HTMLAnchorElement::href in the form of a primitive string value irrespective of the
value of hint. See [ECMASCRIPT], Section 8.6.2.6.

5.3.1.2.3.1.2 HTMLAnchorElementExt::hash

This mutable, string valued property denotes the fragment portion of the parsed
representation of the anchor element’s href attribute value. See [URI], Section 4.1.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of HTMLAnchorElement::href.

5.3.1.2.3.1.3 HTMLAnchorElementExt::host

This mutable, string valued property denotes the hostport portion of the parsed
representation of the anchor element’s href attribute value. See [URI], Section 3.2.2.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 45

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of HTMLAnchorElement::href.

5.3.1.2.3.1.4 HTMLAnchorElementExt::hostname

This mutable, string valued property denotes the host portion of the parsed representation of
the anchor element’s href attribute value. See [URI], Section 3.2.2.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of HTMLAnchorElement::href and HTMLAnchorElementExt::host.

5.3.1.2.3.1.5 HTMLAnchorElementExt::pathname

This mutable, string valued property denotes the abs_path or rel_path portion of the parsed
representation of the anchor element’s href attribute value, depending on whether the URI is an
absoluteURI or relativeURI, respectively. See [URI], Sections 3 and 5.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of HTMLAnchorElement::href.

5.3.1.2.3.1.6 HTMLAnchorElementExt::port

This mutable, string valued property denotes the port portion of the parsed representation of
the anchor element’s href attribute value. See [URI], Section 3.2.2.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of HTMLAnchorElement::href and HTMLAnchorElementExt::host.

5.3.1.2.3.1.7 HTMLAnchorElementExt::protocol

This mutable, string valued property denotes the scheme portion of the parsed

representation of the anchor element’s href attribute value, including the ':' delimiter (colon) that
follows the scheme. See [URI], Section 3.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of HTMLAnchorElement::href.

5.3.1.2.3.1.8 HTMLAnchorElementExt::search

This mutable, string valued property denotes the query portion of the parsed representation

of the anchor element’s href attribute value, including the '?' delimiter (question mark) that
precedes the query. See [URI], Sections 3 and 3.4.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of HTMLAnchorElement::href and HTMLAnchorElementExt::pathname.

5.3.1.2.3.2 HTMLBodyElement Object

None of the properties of the HTMLBodyElement interface corresponds to XDML or XHTML
Basic attributes; rather, the functionality of these properties is specified by using stylesheet
content. Notwithstanding the inability to directly set these properties by using attributes, these
properties shall support their [HTML] presentation semantics. In particular, mutation of their
values shall cause a presentation side effect as if the element’s style were changed by mutating

the CSSStyleDeclaration value of the ElementCSSInlineStyle::style property of the

HTMLBodyElement object.

Note: XHTML Host Language Conformant Document Types other than XDML and XHTML
Basic may support the legacy attributes which correspond to the properties of

HTMLBodyElement.

5.3.1.2.3.3 HTMLDocument Object

In addition to implementing the HTMLDocument interface as defined by [DOM2-HTML], each

instance of an HTMLDocument object shall implement the following interface:

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 46

interface HTMLDocumentExt
{
 /* read-only properties */
 readonly attribute DOMString location;
 readonly attribute DOMString lastModified;
 readonly attribute Window window;
 /* read-write properties */
 attribute DOMString alinkColor;
 attribute DOMString vlinkColor;
 attribute DOMString linkColor;
 attribute DOMString bgColor;
 attribute DOMString fgColor;
 /* methods */
 void clear();
};

The following subsections describe constraints on HTMLDocument interface semantics as

well as the entirety of HTMLDocumentExt interface semantics.

5.3.1.2.3.3.1 HTMLDocument::anchors

This immutable, object value property shall reference an immutable HTMLCollection object

that, in turn, references zero or more mutable HTMLAnchorElement objects.

An HTMLAnchorElement shall be instantiated and added to the HTMLCollection object
referenced by this property for each a (anchor) element decoded, provided the element specifies
a name attribute.

If an a (anchor) element specifies both name and href attributes, then only one instance of

HTMLAnchorElement shall be instantiated, and that instance shall be added to both

HTMLCollection objects referenced by this property and HTMLDocument::links. See Section
 5.3.1.2.3.3.8 for further information.

Note: Although script content may not mutate the referenced HTMLCollection object,

the user agent will mutate this object as a side effect of loading the document and
decoding individual a (anchor) elements. This mutation of the referenced

HTMLCollection object by the user agent will occur asynchronously with respect to

script content evaluation.

5.3.1.2.3.3.2 HTMLDocument::applets

This immutable, object value property shall either (1) reference an immutable

HTMLCollection object that, in turn, references zero or more mutable HTMLObjectElement
objects or (2) have a null value according to whether the user agent supports active object
content or not, respectively.

If the user agent supports active object content, then an HTMLObjectElement shall be

instantiated and added to the HTMLCollection object referenced by this property for each object
element that references active object content.

Note: Although script content may not mutate the referenced HTMLCollection object,

the user agent will mutate this object as a side effect of loading the document and

decoding individual object elements. This mutation of the referenced HTMLCollection

object by the user agent will occur asynchronously with respect to script content
evaluation.

For each named HTMLObjectElement object the user agent adds to the referenced

HTMLCollection object, a new property shall be added to the current HTMLDocument object,

where the name of the property is the value of the name property of that HTMLObjectElement

object and the value of the property is the HTMLObjectElement object itself. If an identically

named property already exists on the current HTMLDocument object, then a property shall not be
added and the value of the pre-existing, identically named property shall not be changed.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 47

5.3.1.2.3.3.3 HTMLDocument::body

A user agent may disallow mutation of this mutable property, in which case an attempt to

mutate this property shall cause a NO_MODIFICATION_ALLOWED_ERR exception to be raised.

5.3.1.2.3.3.4 HTMLDocument::cookie

This mutable, string valued property denotes persistent state information that (1) is
associated with the application resource which represents the current frame or current document
entity and (2) is composed of information described by the cookies non-terminal of [HTTP-
STATE], Section 4.2.2.

If no persistent state information is available for the application resource which represents
the current frame or current document entity, then this property’s value shall be an empty string.

Note: In the following, the phrase persistent state item refers to a single cookie. The value
of this property denotes zero or more persistent state items.

When this property is accessed by a read operation, all persistent state items whose domain
and path attributes are unifiable with an absolutized form of the resource identifier (URI) of the
application resource which represents the current frame or current document entity shall be
returned as a single string, with each persistent state item’s name-value pair concatenated into a
list of name-value pairs, each list item being separated by a ';' (semicolon) delimiter. Any
attribute-value pairs associated with each persistent state item are not returned in the resulting
value.

When accessed by a write operation, the value to be written shall be a string that adheres to
the cookie non-terminal of [HTTP-STATE]; that is, it shall be a single name-value pair followed by
zero or more optional attribute-value pairs. If no domain attribute is specified, then the domain
attribute for the new value shall default to the host portion of an absolutized form of the resource
identifier of the application resource which represents the current frame or current document
entity. If no path attribute is specified, then the path attribute for the new value shall default to the
abs_path portion of an absolutized form of the resource identifier of the application resource
which represents the current frame or current document entity. If no max-age attribute is
specified, then the max-age attribute for the new value shall default to 60 (seconds). If a
persistent state item with the specified name is already associated with the current frame or
current document entity’s associated application resource, then the new value as well as the new
attributes shall replace the old value and attributes. If a max-age attribute of zero is specified for
the new value, then any existing persistent state item of the specified name shall be removed
from the persistent state item store.

When mutating the value of this property, if the new value does not adhere to the cookie

syntax specified by [HTTP-STATE], then the user agent shall cause a SYNTAX_ERR exception to
be raised.

A user agent shall support the semantics of the persistent state attribute-value pairs
specified by [HTTP-STATE]. In addition, if a declarative application is designated as a legacy
application, then the application may employ and a user agent shall support an attribute-value
pair whose name is expires and whose value is an rfc1123-date, in accordance with the syntax
prescribed by [DASE], Section 6.8.1. Otherwise, if an application is not a declarative application
or is not designated as a legacy application, then the presence of an expires attribute shall cause

a SYNTAX_ERR exception to be raised.

For the initial (first) instantiation of a particular declarative application by a user agent,
persistent state data shall not be initially available; however, data may be available in a
subsequent processing of the document in a single user agent session if this property has been
mutated by script content.

Note: The precise nature of a user agent session is not defined by this specification.

A user agent should provide storage for at least one cookie during a single session such
that at least 4096 (4K) bytes of persistent store items may be retained during the session. A user

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 48

agent should attempt to retain at least twenty (20) such cookies in non-volatile store between
user agent sessions.

A user agent should digest or checksum each retained persistent store item in order to
prevent unintended modification of the item. Retained items which fail a subsequent digest or
checksum test should be deleted from the persistent state store.

A user agent shall take measures to prevent unexpected sharing of persistent store items as
described in [HTTP-STATE], Section 7.3.

Script content shall not rely upon a user agent being able to store a particular persistent
storage item between two instantiations of the same application, even in the context of a single
user agent session.

If a user agent makes use of a local file system to store a persistent store item, then the
portion of the local file system used for this purpose shall be made inaccessible to any
functionality of a DASE Application which may attempt to directly access the item’s store.

5.3.1.2.3.3.5 HTMLDocument::domain

This immutable, string valued property denotes the domain name of the server that issued
the application resource that represents the current document entity, if known, or shall be null.

For applications whose initial entity resource is delivered by a broadcast channel, this
property shall be the domain name of the resource reference of the application’s initial entity.

5.3.1.2.3.3.6 HTMLDocument::forms

This immutable, object value property shall reference an immutable HTMLCollection object

that, in turn, references zero or more mutable HTMLFormElement objects.

An HTMLFormElement shall be instantiated and added to the HTMLCollection object
referenced by this property for each form element decoded.

Note: Although script content may not mutate the referenced HTMLCollection object,

the user agent will mutate this object as a side effect of loading the document and

decoding individual form elements. This mutation of the referenced HTMLCollection

object by the user agent will occur asynchronously with respect to script content
evaluation.

For each named HTMLFormElement object the user agent adds to the referenced

HTMLCollection object, a new property shall be added to the current HTMLDocument object,

where the name of the property is the value of the name property of that HTMLFormElement object

and the value of the property is the HTMLFormElement object itself. If an identically named

property already exists on the current HTMLDocument object, then a property shall not be added
and the value of the pre-existing, identically named property shall not be changed.

5.3.1.2.3.3.7 HTMLDocument::images

This immutable, object value property shall reference an immutable HTMLCollection object

that, in turn, references zero or more mutable HTMLImageElement or HTMLObjectElement
objects.

An HTMLImageElement shall be instantiated and added to the HTMLCollection object
referenced by this property for each img element decoded.

An HTMLObjectElement shall be instantiated and added to the HTMLCollection object
referenced by this property for each object element decoded if (1) the classid attribute is not
specified and (2) the data attribute is specified and references content which may be interpreted
as a graphical image.

Note: Although script content may not mutate the referenced HTMLCollection object,

the user agent will mutate this object as a side effect of loading the document and
decoding individual img (image) or object elements. This mutation of the referenced

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 49

HTMLCollection object by the user agent will occur asynchronously with respect to

script content evaluation.

For each named HTMLImageElement or HTMLObjectElement object the user agent adds to

the referenced HTMLCollection object, a new property shall be added to the current

HTMLDocument object, where the name of the property is the value of the name property of that

HTMLImageElement or HTMLObjectElement object and the value of the property is the

HTMLImageElement or HTMLObjectElement object itself. If an identically named property already

exists on the current HTMLDocument object, then a property shall not be added and the value of
the pre-existing, identically named property shall not be changed.

5.3.1.2.3.3.8 HTMLDocument::links

This immutable, object value property shall reference an immutable HTMLCollection object

that, in turn, references zero or more mutable HTMLAnchorElement or HTMLElement objects.

An HTMLAnchorElement or an HTMLElement shall be instantiated and added to the

HTMLCollection object referenced by this property for each a (anchor) and area element
decoded, respectively, provided the element specifies an href attribute.

If an a (anchor) element specifies both name and href attributes, then only one instance of

HTMLAnchorElement shall be instantiated, and that instance shall be added to both

HTMLCollection objects referenced by this property and HTMLDocument::anchors. See Section
 5.3.1.2.3.3.1 for further information.

Note: Although script content may not mutate the referenced HTMLCollection object,

the user agent will mutate this object as a side effect of loading the document and
decoding individual a (anchor) or area elements. This mutation of the referenced

HTMLCollection object by the user agent will occur asynchronously with respect to

script content evaluation.

5.3.1.2.3.3.9 HTMLDocument::open

A user agent shall ignore any arguments specified by the caller of this method.

5.3.1.2.3.3.10 HTMLDocument::title

A user agent may disallow mutation of this mutable property, in which case an attempt to

mutate this property shall cause a NO_MODIFICATION_ALLOWED_ERR exception to be raised.

5.3.1.2.3.3.11 HTMLDocument::write

If a declarative application is a legacy application, this void valued method shall cause the
insertion of text into the current entity’s input stream immediately subsequent to the close tag of
the script element in which this method is invoked; otherwise, if not a legacy application, a user
agent may abort the application. If this method is invoked multiple times during the evaluation of
script content in a single script element, then the text inserted by each invocation shall be
serialized into the input stream in evaluation order.

If this method is invoked in any execution context other than during the processing of a
script element, then no side effect shall result.

Note: This method has no effect if invoked within an event handler or scheduled statement
timer context.

The aggregate text to be inserted into the input stream by zero or more invocations of this

method within the context of a single script element shall be valid text/html content according to
either the traditional or frameset document types specified by [HTML]. Furthermore, this
aggregate text shall be a well-formed document entity fragment; namely, it shall be either element
or mixed element content and any element contained therein shall be complete (i.e., contain the
entirety of its start tag, content, and end tag, if required).

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 50

If an entity of a declarative application uses content type text/ecmascript and invokes this
method in such a manner as to generate content that is not valid HTML Transitional or HTML
Frameset content, then the user agent may abort the application.

When a user agent decodes content inserted by this method, it shall do so by first

transcoding this content from text/html to application/xhtml+xml. The resulting modified

document entity shall be valid application/xhtml+xml content. See Section 5.1.1.2 for further
information.

Note: It is possible to simply transcode a valid, well-formed text/html document entity

fragment to application/xhtml+xml by performing the process described in ANNEX

F. When performing this transcoding, the source fragment is interpreted either as an
HTML Transitional or HTML Frameset fragment according to the elements referenced by
the fragment.

This method shall not be used to insert application/xhtml+xml content into the current
entity’s input stream.

Note: The functionality of generating application/xhtml+xml content may be

achieved by other means; for example, by using Node::appendChild.

5.3.1.2.3.3.12 HTMLDocument::writeln

This method shall have the same semantics as HTMLDocument::write except that a
newline character shall be appended to the inserted content.

5.3.1.2.3.3.13 HTMLDocumentExt::alinkColor

This mutable, string valued property shall have the same value as the

HTMLBodyElement::aLink property. Mutation of this property shall be reflected in any

subsequent reference to the value of HTMLBodyElement::aLink.

Use of this property is deprecated. The HTMLBodyElement::aLink property should be used
instead.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.3.14 HTMLDocumentExt::bgColor

This mutable, string valued property shall have the same value as the

HTMLBodyElement::background property. Mutation of this property shall be reflected in any

subsequent reference to the value of HTMLBodyElement::background.

Use of this property is deprecated. The HTMLBodyElement::background property should be
used instead.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.3.15 HTMLDocumentExt::clear

This void valued method shall have the same semantics as the HTMLDocument::open
method.

Use of this property is deprecated. The HTMLDocument::open method should be used
instead.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.3.16 HTMLDocumentExt::fgColor

This mutable, string valued property shall have the same value as the

HTMLBodyElement::text property. Mutation of this property shall be reflected in any subsequent

reference to the value of HTMLBodyElement::text.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 51

Use of this property is deprecated. The HTMLBodyElement::text property should be used
instead.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.3.17 HTMLDocumentExt::lastModified

This immutable, string valued property denotes the last modified date and time of the
underlying document. If no last modified information is available, then the value of this property
shall be an empty string. If last modified information is available by means of application signaling
metadata, then the value of this property shall be a primitive String value which adheres to the
rfc1123-date non-terminal of [HTTP], Section 3.3.1.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.3.18 HTMLDocumentExt::linkColor

This mutable, string valued property shall have the same value as the

HTMLBodyElement::link property. Mutation of this property shall be reflected in any subsequent

reference to the value of HTMLBodyElement::link.

Use of this property is deprecated. The HTMLBodyElement::link property should be used
instead.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.3.19 HTMLDocumentExt::location

This immutable, string valued property shall have the same value as the

HTMLDocument::URL property.

Use of this property is deprecated. The HTMLDocument::URL property should be used
instead.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.3.20 HTMLDocumentExt::vlinkColor

This mutable, string valued property shall have the same value as the

HTMLBodyElement::vLink property. Mutation of this property shall be reflected in any

subsequent reference to the value of HTMLBodyElement::vLink.

Use of this property is deprecated. The HTMLBodyElement::vLink property should be used
instead.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.3.21 HTMLDocumentExt::window

This immutable, object value property shall reference the Window object within which the

object which implements the HTMLDocument interface is being or is to be displayed. See Section

 5.3.1.2.9.4 for information about the Window object.

Note: If a single document instance may be associated with multiple Window instances,

then the choice of which Window instance this property references is implementation

dependent.

Note: No explicit binding is specified for this property for ECMAScript since the Global
object is bound to an object implementing the Window interface which provides a window
property. See Section 5.3.1.2.9.4.21 for further information. This property is specified in
order to support access to a Window instance from a Document instance in those
language bindings employed with procedural application content that do not support a
Global object.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 52

5.3.1.2.3.4 HTMLFormElement Object

In addition to implementing the HTMLFormElement interface as defined by [DOM2-HTML],

each instance of an HTMLFormElement object shall implement the following interface:

interface HTMLFormElementExt
{
 /* read-write properties */
 attribute DOMString encoding;
};

The following subsections describe constraints on HTMLFormElement interface semantics as

well as the entirety of HTMLFormElementExt interface semantics.

5.3.1.2.3.4.1 HTMLFormElement::elements

This immutable, object value property shall reference an immutable HTMLCollection object

that, in turn, references zero or more mutable HTMLInputElement, HTMLSelectElement, or

HTMLTextAreaElement objects.

An HTMLInputElement, HTMLSelectElement, or HTMLTextAreaElement shall be

instantiated and added to the HTMLCollection object referenced by this property for each input,
select, and textarea element decoded.

Note: Although script content may not mutate the referenced HTMLCollection object,

the user agent will mutate this object as a side effect of loading the document and
decoding individual input, select, and textarea elements. This mutation of the referenced

HTMLCollection object by the user agent will occur asynchronously with respect to

script content evaluation.

For each named HTMLInputElement, HTMLSelectElement, and HTMLTextAreaElement

object the user agent adds to the referenced HTMLCollection object, a new property shall be

added to the current HTMLFormElement object, where the name of the property is the value of the

name property of that HTMLInputElement, HTMLSelectElement, or HTMLTextAreaElement object

and the value of the property is the HTMLInputElement, HTMLSelectElement, or

HTMLTextAreaElement object itself. If an identically named property already exists on the current

HTMLFormElement object, then a property shall not be added and the value of the pre-existing,
identically named property shall not be changed.

5.3.1.2.3.4.2 HTMLFormElementExt::encoding

This mutable, string valued property shall have the same value as the

HTMLFormElement::enctype property. Mutation of this property shall be reflected in any

subsequent reference to the value of HTMLFormElement::enctype.

Use of this property is deprecated. The HTMLFormElement::enctype property should be
used instead.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.5 HTMLImageElement Object

In addition to implementing the HTMLImageElement interface as defined by [DOM2-HTML],

each instance of an HTMLImageElement object shall implement the following interface:

interface HTMLImageElementExt
{
 /* read-only properties */
 readonly attribute boolean complete;
 /* read-write properties */
 attribute DOMString lowsrc;
};

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 53

Note: This interface is provided to obtain lexical interoperability with certain legacy
content. Its use is deprecated for non-legacy applications.

5.3.1.2.3.5.1 HTMLImageElementExt::complete

This immutable, boolean valued property shall be false during the time the image is

loading and shall transition to true when the image is loaded or when a load error occurs.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.5.2 HTMLImageElementExt::lowsrc

This mutable, string valued property shall be either (1) an empty string or (2) a URI which
denotes a low resolution, alternate image that may be displayed as alternate content.

Use of this property is deprecated.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.6 HTMLInputElement Object

The following subsections describe constraints on HTMLInputElement interface semantics.

5.3.1.2.3.6.1 HTMLInputElement::value

If an HTMLInputElement is instantiated as a result of decoding an input element in the

source document and the input element has a type attribute with the value password, then read
access to this mutable, string valued property shall return a nonce value consisting of N asterisk

'*' characters, where N is the length of the actual string value.

Note: This constraint provides additional security with respect to script content access to
user entered passwords.

5.3.1.2.3.7 HTMLObjectElement Object

In addition to implementing the HTMLObjectElement interface as defined by [DOM2-HTML],

each instance of an HTMLObjectElement object shall implement the following interface:

interface HTMLObjectElementExt
{
 /* read-only properties */
 readonly attribute boolean complete;
 /* read-write properties */
 attribute DOMString lowsrc;
 attribute DOMString src;
};

Note: This interface is provided to obtain lexical interoperability with certain legacy
content. Its use is deprecated for non-legacy applications.

In addition, instances of an HTMLObjectElement object which are instantiated as a result of
decoding a trigger object element shall implement the following interface:

interface HTMLTriggerObjectElementExt
{
 /* read-only properties */
 readonly attribute DOMString backChannel;
 readonly attribute DOMString contentLevel;
 readonly attribute DOMString sourceId;
 /* read-write properties */
 attribute boolean enabled;
 attribute boolean releasable;
};

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 54

No more than one instance of an HTMLElement object shall implement this interface within
the context of all of the active document object instance hierarchies associated with a single
declarative application.

Note: This interface is provided to obtain lexical interoperability with certain legacy
content. Its use is deprecated for non-legacy applications.

Note: See Section 5.1.1.6.8.2 for more information on use of a trigger object element.

The following subsections describe constraints on HTMLObjectElement interface semantics

as well as the entirety of HTMLObjectElementExt and HTMLTriggerObjectElementExt interface
semantics.

5.3.1.2.3.7.1 HTMLObjectElementExt::complete

This immutable, boolean valued property shall be false during the time the object is loading

and shall transition to true when the object is loaded or when a load error occurs.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.7.2 HTMLObjectElementExt::lowsrc

This mutable, string valued property shall be either (1) an empty string or (2) a URI which
denotes a low resolution, alternate image that may be displayed as alternate content.

Use of this property is deprecated.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.3.7.3 HTMLObjectElementExt::src

This mutable, string valued property shall have the same value as the data property of this
object. Mutation of this property shall be reflected in any subsequent reference to the value of

data property.

Use of this property is deprecated.

5.3.1.2.3.7.4 HTMLTriggerObjectElementExt::backChannel

This immutable, string valued property shall have the same value as the

Navigator::ddeBackChannel property.

5.3.1.2.3.7.5 HTMLTriggerObjectElementExt::contentLevel

This immutable, string valued property shall have the same value as the

Navigator::ddeContentLevel property.

5.3.1.2.3.7.6 HTMLTriggerObjectElementExt::sourceId

This immutable, string valued property shall have the same value as the

Navigator::ddeSourceId property.

5.3.1.2.3.7.7 HTMLTriggerObjectElementExt::enabled

This mutable, boolean valued property shall have the same value as the

Navigator::ddeEnabled property. Mutation of this property shall be reflected in the value of as

the Navigator::ddeEnabled property.

5.3.1.2.3.7.8 HTMLTriggerObjectElementExt::releasable

This mutable, boolean valued property shall have the same value as the

Navigator::ddeReleasable property. Mutation of this property shall be reflected in the value of

as the Navigator::ddeReleasable property.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 55

5.3.1.2.4 Views Module Objects

A script content entity or fragment may reference and a user agent which supports this
facility shall implement the following host objects, defined by [DOM2-VIEWS], Section 1.2,
Interfaces, in conjunction with [DOM2-VIEWS], Appendix C, ECMAScript Language Binding.

None of the following objects is directly instantiable; that is, the internal [[Construct]]

property for the object shall remain undefined. Any attempt to construct an object using the new
operator shall cause an ECMAScript TypeError to be raised.

Note: See [ECMASCRIPT], Section 11.2.2, for further information on use of the internal

[[Construct]] property.

Table 11 DOM Views Interface Support

AbstractView DocumentView DocumentViewExt

5.3.1.2.4.1 DocumentView Object

In addition to implementing the DocumentView interface as defined by [DOM2-VIEWS],

Section 1.2, Interfaces, each instance of a DocumentView object shall implement the following
interface:

interface DocumentViewExt
{
 /* read-only properties */
 readonly attribute double refWidthMm;
 readonly attribute double refHeightMm;
 readonly attribute double gfxPosX;
 readonly attribute double gfxPosY;
 readonly attribute double gfxWidth;
 readonly attribute double gfxHeight;
 readonly attribute unsigned long gfxWidthPx;
 readonly attribute unsigned long gfxHeightPx;
 readonly attribute double vidPosX;
 readonly attribute double vidPosY;
 readonly attribute double vidWidth;
 readonly attribute double vidHeight;
 readonly attribute unsigned long vidWidthPx;
 readonly attribute unsigned long vidHeightPx;
 readonly attribute unsigned long sampleBitsR;
 readonly attribute unsigned long sampleBitsG;
 readonly attribute unsigned long sampleBitsB;
 readonly attribute unsigned long sampleBitsA;
 /* read-write properties */
 attribute boolean refreshOnChange;
 /* methods */
 boolean refresh(in DOMString id);
};

The following subsections describe the entirety of DocumentViewExt interface semantics.

In order to fully specify the relationship between the graphics and video planes in which a
document’s view is rendered, a normalized (reference) coordinate space is used, as depicted
below in Figure 1 Display Reference Model. Coordinates in this space are specified using real
valued numbers, where the top-left point of the reference space is designated as position (0,0)
and the bottom-right point designated as position (1,1).

Note: This reference space will generally correspond to the full display screen; however,
the graphics and video planes need not align with each other or the reference space.
Furthermore, the pixels of the graphics and video plane need not be of identical size or
aspect ratio.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 56

5.3.1.2.4.1.1 DocumentViewExt::gfxHeight

This immutable, real number valued property shall have a value which specifies the height
of the graphics plane in normalized coordinates.

The value of this property shall be determined by the user agent implementer.

Reference Frame

Video

Plane
Graphics Plane

(0,0)

(1,1)

refWidthMm

re
fH

e
ig

h
tM

m

vidWidth, vidWidthPx

gfxWidth, gfxWidthPx

v
id

H
e
ig

h
t,
 v

id
H

e
ig

h
tP

x

g
fx

H
e
ig

h
t,
 g

fx
H

e
ig

h
tP

x

Figure 1 Display Reference Model

5.3.1.2.4.1.2 DocumentViewExt::gfxHeightPx

This immutable, non-negative integral number valued property shall have a value which
specifies the height of the graphics plane in pixels.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.3 DocumentViewExt::gfxPosX

This immutable, real number valued property shall have a value which specifies the leftmost
position of the graphics plane in normalized coordinates.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.4 DocumentViewExt::gfxPosY

This immutable, real number valued property shall have a value which specifies the topmost
position of the video plane in normalized coordinates.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.5 DocumentViewExt::gfxWidth

This immutable, real number valued property shall have a value which specifies the width of
the graphics plane in normalized coordinates.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.6 DocumentViewExt::gfxWidthPx

This immutable, non-negative integral number valued property shall have a value which
specifies the width of the graphics plane in pixels.

The value of this property shall be determined by the user agent implementer.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 57

5.3.1.2.4.1.7 DocumentViewExt::refHeightMm

This immutable, real valued property shall have a value which specifies the height of
normalized coordinate space in millimeters as realized on the physical display device; that is, the
absolute distance between points (0,0) and (0,1).

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.8 DocumentViewExt::refWidthMm

This immutable, real valued property shall have a value which specifies the width of
normalized coordinate space in millimeters as realized on the physical display device; that is, the
absolute distance between points (0,0) and (1,0).

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.9 DocumentViewExt::refreshOnChange

This mutable, boolean valued property shall have a value which specifies whether any
change (mutation) of the document instance should cause refresh (i.e., reformat and redraw) to

occur. If set to the value false, then refresh should not occur when the document instance is

changed. If set to true, then any change of the document instance should cause a refresh.

Additionally, if the value of this property is changed from false to true and any change has

occurred since the value of the property was set to false, then a refresh should occur.

The default value of this property shall be true unless the application was signaled with an

application parameter deferDisplay, in which case the default value shall be false.

Note: See [DASE], Section 6.1.1.6.13.3, for more information on how this application
parameter is specified.

5.3.1.2.4.1.10 DocumentViewExt::refresh

This boolean valued method shall cause either the entire view or a portion of the view to be
refreshed while taking into account changes in one or more rendered elements. The id argument
to this method shall specify either (1) null or an empty string or (2) a non-empty string whose
value references some element in accordance to the element's id attribute. If the id argument is
null or an empty string, then refresh scope applies to the entire document rendered in the view;
otherwise, refresh scope applies to the identified element and any of its child elements, if present.

If no element or renderable content referenced by an element in the refresh scope has
changed since the prior (i.e., currently depicted) rendition, then no side-effect shall obtain, and

the boolean value false shall be returned; otherwise, the affected portion(s) of the view shall be

re-rendered using the changed element or referenced renderable content, and the value true
shall be returned.

If a document is refreshed by means of this method, then any dynamic script object state
associated with the document shall be discarded. In addition, the values of any references to the

former document object from the properties Window::document and Window::frames shall be
replaced by references to a new document object. Subsequent references to the former
document object by user-defined script objects are not defined.

Note: This method is intended to satisfy the need for programmatic control of element
rendition in the presence of dynamic updates to underlying image, object, and document
content, where such updates may occur as a result of asynchronous changes to content.

Note: User defined script objects must take adequate care that references to document
instances which are undergoing dynamic updates are replaced by references to the
updated document instances.

5.3.1.2.4.1.11 DocumentViewExt::sampleBitsA

This immutable, non-negative integral number valued property shall have a value which
specifies the bits per pixel of each view pixel’s alpha sample.

The value of this property shall be determined by the user agent implementer.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 58

5.3.1.2.4.1.12 DocumentViewExt::sampleBitsB

This immutable, non-negative integral number valued property shall have a value which
specifies the bits per pixel of each view pixel’s blue sample.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.13 DocumentViewExt::sampleBitsG

This immutable, non-negative integral number valued property shall have a value which
specifies the bits per pixel of each view pixel’s green sample.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.14 DocumentViewExt::sampleBitsR

This immutable, non-negative integral number valued property shall have a value which
specifies the bits per pixel of each view pixel’s red sample.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.15 DocumentViewExt::vidHeight

This immutable, real number valued property shall have a value which specifies the height
of the video plane in normalized coordinates.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.16 DocumentViewExt::vidHeightPx

This immutable, non-negative integral number valued property shall have a value which
specifies the height of the video plane in pixels.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.17 DocumentViewExt::vidPosX

This immutable, real number valued property shall have a value which specifies the leftmost
position of the video plane in normalized coordinates.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.18 DocumentViewExt::vidPosY

This immutable, real number valued property shall have a value which specifies the topmost
position of the video plane in normalized coordinates.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.19 DocumentViewExt::vidWidth

This immutable, real number valued property shall have a value which specifies the width of
the video plane in normalized coordinates.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.4.1.20 DocumentViewExt::vidWidthPx

This immutable, non-negative integral number valued property shall have a value which
specifies the width of the video plane in pixels.

The value of this property shall be determined by the user agent implementer.

5.3.1.2.5 StyleSheets Module Objects

A script content entity or fragment may reference and a user agent which supports this
facility shall implement the following host objects, defined by [DOM2-STYLE], Section 1.2, Style
Sheet Interfaces, and Section 1.3, Document Extensions, in conjunction with [DOM2-STYLE],
Appendix C, ECMAScript Language Binding.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 59

None of the following objects is directly instantiable; that is, the internal [[Construct]]

property for the object shall remain undefined. Any attempt to construct an object using the new
operator shall cause an ECMAScript TypeError to be raised.

Note: See [ECMASCRIPT], Section 11.2.2, for further information on use of the internal

[[Construct]] property.

Table 12 DOM Stylesheet Interface Support

DocumentStyle LinkStyle MediaList

StyleSheet StyleSheetList

5.3.1.2.6 CSS Module Objects

A script content entity or fragment may reference and a user agent which supports this
facility shall implement the following host objects, defined by [DOM2-STYLE], Section 2.2, CSS
Fundamental Interfaces, in conjunction with [DOM2-STYLE], Appendix C, ECMAScript Language
Binding.

None of the following objects is directly instantiable; that is, the internal [[Construct]]

property for the object shall remain undefined. Any attempt to construct an object using the new
operator shall cause an ECMAScript TypeError to be raised.

Note: See [ECMASCRIPT], Section 11.2.2, for further information on use of the internal

[[Construct]] property.

Table 13 DOM Cascading Stylesheet Interface Support

Counter CSSCharsetRule CSSFontFaceRule

CSSImportRule CSSMediaRule CSSPrimitiveValue

CSSRule CSSRuleList CSSStyleDeclaration

CSSStyleRule CSSStyleSheet CSSUnknownRule

CSSValue CSSValueList DocumentCSS

DOMImplementationCSS ElementCSSInlineStyle Rect

RGBColor ViewCSS

5.3.1.2.7 Events Module Objects

A script content entity or fragment may reference and a user agent which supports this
facility shall implement the following host objects, defined by [DOM2-EVENTS], Section 1.3
through 1.5, in conjunction with [DOM2-EVENTS], Appendix C, ECMAScript Language Binding.

None of the following objects is directly instantiable; that is, the internal [[Construct]]

property for the object shall remain undefined. Any attempt to construct an object using the new
operator shall cause an ECMAScript TypeError to be raised.

Note: See [ECMASCRIPT], Section 11.2.2, for further information on use of the internal

[[Construct]] property.

Table 14 DOM Event Interface Support

DocumentEvent Event EventException

EventListener EventTarget

5.3.1.2.8 Event Set Module Objects

A script content entity or fragment may reference and a user agent which supports this
facility shall implement the following host objects, defined herein or defined by [DOM2-EVENTS],
Section 1.6, Event Module Definitions, in conjunction with [DOM2-EVENTS], Appendix C,
ECMAScript Language Binding.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 60

None of the following objects is directly instantiable; that is, the internal [[Construct]]

property for the object shall remain undefined. Any attempt to construct an object using the new
operator shall cause an ECMAScript TypeError to be raised.

Note: See [ECMASCRIPT], Section 11.2.2, for further information on use of the internal

[[Construct]] property.

Table 15 DOM Event Set Interface Support

KeyEvent KeyModifiers MouseEvent

MutationEvent UIEvent VirtualKeys

5.3.1.2.8.1 KeyEvent Object

A KeyEvent object provides a means to deliver events generated by a text or key input

device. A KeyEvent object shall implement the KeyEvent, KeyModifiers, and VirtualKeys
interfaces specified below.

interface KeyEvent : UIEvent
{
 /* read-write properties */
 attribute DOMString outputString;
 attribute unsigned long keyVal;
 attribute unsigned long virtKeyVal;
 attribute boolean visibleOutputGenerated;
 attribute boolean numPad;
 /* methods */
 void initKeyEvent(
 in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg,
 in DOMString outputString,
 in unsigned long keyValArg,
 in unsigned long virtKeyValArg,
 in boolean visibleOutputGeneratedArg,
 in boolean numPadArg);
 void initModifier(in unsigned long modifier, in boolean value);
 boolean checkModifier(in unsigned long modifier);
};

interface KeyModifiers
{
 const unsigned long MOD_NONE = 0;
 const unsigned long MOD_SHIFT = 1;
 const unsigned long MOD_CONTROL = 2;
 const unsigned long MOD_META = 4;
 const unsigned long MOD_ALT = 8;
};

interface VirtualKeys
{
 const unsigned long VK_UNDEFINED = 0;
 const unsigned long VK_CANCEL = 3;
 const unsigned long VK_BACK_SPACE = 8;
 const unsigned long VK_TAB = 9;
 const unsigned long VK_ENTER = 10;
 const unsigned long VK_CLEAR = 12;
 const unsigned long VK_SHIFT = 16;
 const unsigned long VK_CONTROL = 17;
 const unsigned long VK_ALT = 18;
 const unsigned long VK_PAUSE = 19;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 61

 const unsigned long VK_CAPS_LOCK = 20;
 const unsigned long VK_KANA = 21;
 const unsigned long VK_FINAL = 24;
 const unsigned long VK_KANJI = 25;
 const unsigned long VK_ESCAPE = 27;
 const unsigned long VK_CONVERT = 28;
 const unsigned long VK_NONCONVERT = 29;
 const unsigned long VK_ACCEPT = 30;
 const unsigned long VK_MODECHANGE = 31;
 const unsigned long VK_SPACE = 32;
 const unsigned long VK_PAGE_UP = 33;
 const unsigned long VK_PAGE_DOWN = 34;
 const unsigned long VK_END = 35;
 const unsigned long VK_HOME = 36;
 const unsigned long VK_LEFT = 37;
 const unsigned long VK_UP = 38;
 const unsigned long VK_RIGHT = 39;
 const unsigned long VK_DOWN = 40;
 const unsigned long VK_COMMA = 44;
 const unsigned long VK_PERIOD = 46;
 const unsigned long VK_SLASH = 47;
 const unsigned long VK_0 = 48;
 const unsigned long VK_1 = 49;
 const unsigned long VK_2 = 50;
 const unsigned long VK_3 = 51;
 const unsigned long VK_4 = 52;
 const unsigned long VK_5 = 53;
 const unsigned long VK_6 = 54;
 const unsigned long VK_7 = 55;
 const unsigned long VK_8 = 56;
 const unsigned long VK_9 = 57;
 const unsigned long VK_SEMICOLON = 59;
 const unsigned long VK_EQUALS = 61;
 const unsigned long VK_A = 65;
 const unsigned long VK_B = 66;
 const unsigned long VK_C = 67;
 const unsigned long VK_D = 68;
 const unsigned long VK_E = 69;
 const unsigned long VK_F = 70;
 const unsigned long VK_G = 71;
 const unsigned long VK_H = 72;
 const unsigned long VK_I = 73;
 const unsigned long VK_J = 74;
 const unsigned long VK_K = 75;
 const unsigned long VK_L = 76;
 const unsigned long VK_M = 77;
 const unsigned long VK_N = 78;
 const unsigned long VK_O = 79;
 const unsigned long VK_P = 80;
 const unsigned long VK_Q = 81;
 const unsigned long VK_R = 82;
 const unsigned long VK_S = 83;
 const unsigned long VK_T = 84;
 const unsigned long VK_U = 85;
 const unsigned long VK_V = 86;
 const unsigned long VK_W = 87;
 const unsigned long VK_X = 88;
 const unsigned long VK_Y = 89;
 const unsigned long VK_Z = 90;
 const unsigned long VK_OPEN_BRACKET = 91;
 const unsigned long VK_BACK_SLASH = 92;
 const unsigned long VK_CLOSE_BRACKET = 93;
 const unsigned long VK_NUMPAD0 = 96;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 62

 const unsigned long VK_NUMPAD1 = 97;
 const unsigned long VK_NUMPAD2 = 98;
 const unsigned long VK_NUMPAD3 = 99;
 const unsigned long VK_NUMPAD4 = 100;
 const unsigned long VK_NUMPAD5 = 101;
 const unsigned long VK_NUMPAD6 = 102;
 const unsigned long VK_NUMPAD7 = 103;
 const unsigned long VK_NUMPAD8 = 104;
 const unsigned long VK_NUMPAD9 = 105;
 const unsigned long VK_MULTIPLY = 106;
 const unsigned long VK_ADD = 107;
 const unsigned long VK_SEPARATER = 108;
 const unsigned long VK_SUBTRACT = 109;
 const unsigned long VK_DECIMAL = 110;
 const unsigned long VK_DIVIDE = 111;
 const unsigned long VK_F1 = 112;
 const unsigned long VK_F2 = 113;
 const unsigned long VK_F3 = 114;
 const unsigned long VK_F4 = 115;
 const unsigned long VK_F5 = 116;
 const unsigned long VK_F6 = 117;
 const unsigned long VK_F7 = 118;
 const unsigned long VK_F8 = 119;
 const unsigned long VK_F9 = 120;
 const unsigned long VK_F10 = 121;
 const unsigned long VK_F11 = 122;
 const unsigned long VK_F12 = 123;
 const unsigned long VK_DELETE = 127;
 const unsigned long VK_NUM_LOCK = 144;
 const unsigned long VK_SCROLL_LOCK = 145;
 const unsigned long VK_PRINTSCREEN = 154;
 const unsigned long VK_INSERT = 155;
 const unsigned long VK_HELP = 156;
 const unsigned long VK_META = 157;
 const unsigned long VK_BACK_QUOTE = 192;
 const unsigned long VK_QUOTE = 222;
 const unsigned long VK_COLORED_KEY_0 = 403;
 const unsigned long VK_COLORED_KEY_1 = 404;
 const unsigned long VK_COLORED_KEY_2 = 405;
 const unsigned long VK_COLORED_KEY_3 = 406;
 const unsigned long VK_COLORED_KEY_4 = 407;
 const unsigned long VK_COLORED_KEY_5 = 408;
 const unsigned long VK_POWER = 409;
 const unsigned long VK_DIMMER = 410;
 const unsigned long VK_WINK = 411;
 const unsigned long VK_REWIND = 412;
 const unsigned long VK_STOP = 413;
 const unsigned long VK_EJECT_TOGGLE = 414;
 const unsigned long VK_PLAY = 415;
 const unsigned long VK_RECORD = 416;
 const unsigned long VK_FAST_FWD = 417;
 const unsigned long VK_PLAY_SPEED_UP = 418;
 const unsigned long VK_PLAY_SPEED_DOWN = 419;
 const unsigned long VK_PLAY_SPEED_RESET = 420;
 const unsigned long VK_RECORD_SPEED_NEXT = 421;
 const unsigned long VK_GO_TO_START = 422;
 const unsigned long VK_GO_TO_END = 423;
 const unsigned long VK_TRACK_PREV = 424;
 const unsigned long VK_TRACK_NEXT = 425;
 const unsigned long VK_RANDOM_TOGGLE = 426;
 const unsigned long VK_CHANNEL_UP = 427;
 const unsigned long VK_CHANNEL_DOWN = 428;
 const unsigned long VK_STORE_FAVORITE_0 = 429;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 63

 const unsigned long VK_STORE_FAVORITE_1 = 430;
 const unsigned long VK_STORE_FAVORITE_2 = 431;
 const unsigned long VK_STORE_FAVORITE_3 = 432;
 const unsigned long VK_RECALL_FAVORITE_0 = 433;
 const unsigned long VK_RECALL_FAVORITE_1 = 434;
 const unsigned long VK_RECALL_FAVORITE_2 = 435;
 const unsigned long VK_RECALL_FAVORITE_3 = 436;
 const unsigned long VK_CLEAR_FAVORITE_0 = 437;
 const unsigned long VK_CLEAR_FAVORITE_1 = 438;
 const unsigned long VK_CLEAR_FAVORITE_2 = 439;
 const unsigned long VK_CLEAR_FAVORITE_3 = 440;
 const unsigned long VK_SCAN_CHANNELS_TOGGLE = 441;
 const unsigned long VK_PINP_TOGGLE = 442;
 const unsigned long VK_SPLIT_SCREEN_TOGGLE = 443;
 const unsigned long VK_DISPLAY_SWAP = 444;
 const unsigned long VK_SCREEN_MODE_NEXT = 445;
 const unsigned long VK_VIDEO_MODE_NEXT = 446;
 const unsigned long VK_VOLUME_UP = 447;
 const unsigned long VK_VOLUME_DOWN = 448;
 const unsigned long VK_MUTE = 449;
 const unsigned long VK_SURROUND_MODE_NEXT = 450;
 const unsigned long VK_BALANCE_RIGHT = 451;
 const unsigned long VK_BALANCE_LEFT = 452;
 const unsigned long VK_FADER_FRONT = 453;
 const unsigned long VK_FADER_REAR = 454;
 const unsigned long VK_BASS_BOOST_UP = 455;
 const unsigned long VK_BASS_BOOST_DOWN = 456;
 const unsigned long VK_INFO = 457;
 const unsigned long VK_GUIDE = 458;
 const unsigned long VK_TELETEXT = 459;
 const unsigned long VK_SUBTITLE = 460;
};

5.3.1.2.8.1.1 KeyEvent::outputString

This mutable, string valued property shall have a value denoting the text output generated
by the key event. The value may be a single Unicode character or a string of multiple characters.

If no output is generated by the event, then this property shall have a null value.

5.3.1.2.8.1.2 KeyEvent::keyVal

This mutable, integral valued property shall have a value denoting the Unicode character
associated with the depressed key. If the key has no Unicode representation, then the value shall
be zero (0).

5.3.1.2.8.1.3 KeyEvent::virtKeyVal

When the key associated with a key event is not representable with a Unicode character,
this mutable, integral valued property shall denote a virtual key code associated with the
depressed key. If no Unicode character is available and no virtual key code is associated with the
key, then the value shall be zero (0).

In the case that a key is associated with both a Unicode character and a virtual key, then
this property shall denote the virtual key.

The set of values permitted for this property shall be restricted to those constants defined by

the VirtualKeys interface above.

Note: The virtual key codes defined by the VirtualKeys interface are explicitly chosen

to match the virtual key codes employed by DASE-1 Part 3 active object content facilities.

In particular, these values correspond to those defined for use with the

java.awt.event.KeyEvent and org.havi.ui.event.HRcEvent types.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 64

5.3.1.2.8.1.4 KeyEvent::visibleOutputGenerated

This mutable, boolean valued property indicates whether the key event will normally cause
visible output. If the key event does not generate any visible output, such as the use of a function
key or the combination of certain modifier keys used in conjunction with another key, then the

value will be false. If visible output is normally generated by the key event then the value will be

true.

The value of visibleOutputGenerated does not guarantee the creation of a character. If a
key event causing visible output is cancelable it may be prevented from causing visible output.
This attribute is intended primarily to differentiate between keys events which may or may not
produce visible output depending on the system state.

5.3.1.2.8.1.5 KeyEvent::numPad

This mutable, boolean valued property indicates whether or not the key event was
generated on the number pad section of the keyboard. If the number pad was used to generate

the key event the value is true, otherwise the value is false.

5.3.1.2.8.1.6 KeyEvent::initKeyEvent

The initKeyEvent method is used to initialize the value of a KeyEvent created through the

DocumentEvent interface. This method may only be called before the KeyEvent has been

dispatched via the dispatchEvent method, though it may be called multiple times during that
phase if necessary. If called multiple times, the final invocation takes precedence. This method
has no effect if called after the event has been dispatched.

5.3.1.2.8.1.7 KeyEvent::initModifier

The initModifier method is used to initialize the values of any modifiers associated with a

KeyEvent created through the DocumentEvent interface. This method may only be called before

the KeyEvent has been dispatched via the dispatchEvent method, though it may be called
multiple times during that phase if necessary. If called multiple times with the same modifier

property the final invocation takes precedence. Unless explicitly give a value of true, all modifiers

have a value of false. This method has no effect if called after the event has been dispatched.

The list of values below, a subset of those defined by the KeyModifiers interface, represents the
allowable modifier parameters for this method:

• MOD_NONE

• MOD_SHIFT

• MOD_CONTROL

• MOD_META

• MOD_ALT

Note: The modifier codes defined by the KeyModifierss interface are explicitly chosen

to match the modifier codes employed by DASE-1 Part 3 active object content facilities. In

particular, these values correspond to those defined for use with the

java.awt.event.InputEvent type.

5.3.1.2.8.1.8 KeyEvent::checkModifier

The checkModifier method is used to check the status of a single modifier key associated

with a KeyEvent. The identifier of the modifier in question is passed into the checkModifier

method. If the modifier is triggered it will return true. If not, it will return false. The value of the
modifier parameter to this method is limited to those values taken by the modifier parameter to

the initModifier method.

5.3.1.2.8.2 Key Event Types

The value of Event::type for a KeyEvent object shall be one of the event types described
in the following sub-sections.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 65

5.3.1.2.8.2.1 org.atsc.textinput

The org.atsc.textinput event indicates that text information has been entered. The text
information entered can originate from a variety of sources. It could, for example, be a character

resulting from a key press. It could also be a string resulting from an input method. The detail

attribute inherited from UIEvent is used to indicated the number of key presses which have
occurred during key repetition. If this information is not available, this value should be zero (0).

Name: org.atsc.textinput
Bubbles: yes
Cancelable: yes
Context: view, detail, visibleOutputGenerated, outputString, keyVal, virtKeyVal, numPad

5.3.1.2.8.2.2 org.atsc.keydown

The keydown event indicates a physical or logical key motion down (engage).

Name: org.atsc.keydown
Bubbles: yes
Cancelable: yes
Context: view, keyVal, virtKeyVal, numPad

5.3.1.2.8.2.3 org.atsc.keyup

The keyup event indicates a physical or logical key motion up (dis-engage).

Name: org.atsc.keyup
Bubbles: yes
Cancelable: yes
Context: view, keyVal, virtKeyVal, numPad

5.3.1.2.8.3 Mutation Event Types

In addition to those mutation event types defined by [DOM2-EVENTS], Section 1.6.4, the
following mutation event shall be generated by a user agent.

5.3.1.2.8.3.1 org.atsc.resourcechanged

The org.atsc.resourcechanged event indicates that an application resource referenced
explicitly or implicitly by an element has changed. If the document application resource changes,

then the relatedNode shall reference the Document node whose resource has changed. If an
image or object data resource changes, then the relatedNode shall reference the associated

Element node. Changes to application resources which do not represent a document, image, or
object need not cause generation of this event.

Name: org.atsc.resourcechanged
Bubbles: no
Cancelable: no
Context: relatedNode

5.3.1.2.9 Environment Module Objects

A script content entity or fragment may reference and a user agent which supports this
facility shall implement the following host objects, defined in the following sections.

None of the following objects is directly instantiable; that is, the internal [[Construct]]

property for the object shall remain undefined. Any attempt to construct an object using the new
operator shall cause an ECMAScript TypeError to be raised.

Note: See [ECMASCRIPT], Section 11.2.2, for further information on use of the internal

[[Construct]] property.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 66

Table 16 DOM Environment Interface Support

History Location Navigator

Window

The presence of support for this set of interfaces is indicated by means of a feature string

"org.atsc.dom.environment", which may be used with the DOMImplementation::hasFeature
method.

5.3.1.2.9.1 History Object

A History object provides a means to navigate among recently navigated content. It
implements the following interface:

interface History
{
 /* read-only properties */
 readonly attribute long length;
 /* methods */
 void back();
 void forward();
 void go(in long index);
 void go(in DOMString uri);
};

A user agent which implements this facility shall support a global navigation history list
length of at least four entries. Mutation of this list is effected by the user agent during the process
of content navigation, whether navigation is initiated by the end-user or by script content.

Script content shall not rely upon the user agent retaining more than four global navigation
history entries.

A user agent may cache the decoded representation of documents referenced by non-
current entries in the global navigation history list; alternatively, it may retain only the resource
reference (i.e., the URI) of the document, in which case navigation to an entry will require
reloading the document.

Script content shall not rely upon the user agent to retain the decoded representation of
document referenced by non-current entries in the global navigation history list.

Note: The following paragraph provides an expository description of the internal semantics

of the History object’s state. Elements of this description are further referenced below in

the description of this object’s properties and methods.

When the user agent is initialized, this global navigation history list is set to an empty state

and an internal state variable, here termed currentIndex, is set to null, indicating that there is no
current entry. When navigation occurs to a new document by replacing (1) the current document
in the case of a non-frameset document, (2) the top-level frameset of a frameset document, or (3)
a frame of a frameset document, then either the first entry or the entry at currentIndex is replaced
by a reference to the new document, according to whether currentIndex is null or non-null,
respectively. If currentIndex is null, then it is set to an unspecified, but non-null value indicating
that the current entry is the first entry; otherwise, currentIndex is not modified. If currentIndex was
not modified by this operation and currentIndex does not refer to the last entry, then all entries
after currentIndex are removed, making currentIndex refer to the last entry.

The following subsections describe the entirety of History interface semantics.

5.3.1.2.9.1.1 History::back

This void valued method shall cause navigation to the previous entry in the global navigation
history list.

In the case that the global navigation history list is non-empty and the current document is
not the first entry in this list, then the internal state variable currentIndex is modified to refer to the

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 67

previous entry and the document referenced by this previous entry replaces the current document
or frame. Otherwise, if the list is empty or the current document is the first entry in the list, then no
side effect is produced.

5.3.1.2.9.1.2 History::forward

This void valued method shall cause navigation to the next entry in the global navigation
history list.

In the case that the global navigation history list is non-empty and the current document is
not the first last in this list, then the internal state variable currentIndex is modified to refer to the
next entry and the document referenced by this next entry replaces the current document or
frame. Otherwise, if the list is empty or the current document is the last entry in the list, then no
side effect is produced.

5.3.1.2.9.1.3 History::go

This void valued method shall cause navigation to a previous or subsequent entry in the
global navigation history list or shall cause the current document to be reinstantiated (i.e.,
reloaded), where the index parameter specifies a relative offset in the global navigation history list
with respect to the internal state variable currentIndex.

If the value of index is zero, then it refers to the current entry in the list. If it is negative, it
refers to the Nth prior entry in the list, where N is the absolute value of index. If it is positive, it
refers to the Nth subsequent entry in the list. If N refers to an entry prior to the first entry or
subsequent to the last entry, then no side effect is produced. Otherwise, the internal state
variable currentIndex is modified to reference the specified entry and the document referenced by
this entry replaces the current document or frame. If currentIndex is not modified due to index
being zero, then the current document is reinstantiated (reloaded).

If the argument to this method is string valued and does not have a valid interpretation as a
non-negative integer value, then the argument shall be interpreted as a URI. In this case, this

method shall have the same effect as if the value of top.location.href were set to this URI.

5.3.1.2.9.1.4 History::length

This immutable, number valued property shall be either zero, if the global navigation history
list is empty, or a positive integer denoting the length of the non-empty list.

Note: Although script content may not mutate this property directly, the user agent will
mutate this property as a side effect of content navigation operations. This mutation by the
user agent will occur asynchronously with respect to script content evaluation.

5.3.1.2.9.2 Location Object

A Location object provides information about the constituents of a URI. It implements the
following interface:

interface Location
{
 /* read-write properties */
 attribute DOMString hash;
 attribute DOMString host;
 attribute DOMString hostname;
 attribute DOMString href;
 attribute DOMString pathname;
 attribute DOMString port;
 attribute DOMString protocol;
 attribute DOMString search;
};

The following subsections describe the entirety of Location interface semantics.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 68

5.3.1.2.9.2.1 Location::[[DefaultValue]]

The internal [[DefaultValue]] method for the Location object shall return the value of

Location::href in the form of a primitive string value irrespective of the value of hint. See
[ECMASCRIPT], Section 8.6.2.6.

5.3.1.2.9.2.2 Location::hash

This mutable, string valued property denotes the fragment portion of the parsed

representation of the Location object’s href property value, including the '#' delimiter (pound
sign) that precedes the fragment. See [URI], Section 4.1.

When mutating the value of this property, if the new value does not adhere to the fragment

syntax specified by [URI] including the '#' delimiter (pound sign) that precedes fragment, then

the user agent shall cause a SYNTAX_ERR exception to be raised.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of Location::href.

If the Location object is bound to Window::location, then mutation of this property’s value
shall additionally produce a side effect of navigating to the specified fragment, provided the

fragment exists in the Window object’s document instance.

Note: In the preceding paragraph, navigating means to cause the referenced fragment to
be displayed and moving focus (if active) to the referenced fragment.

5.3.1.2.9.2.3 Location::host

This mutable, string valued property denotes the hostport portion of the parsed

representation of the Location object’s href property value. See [URI], Section 3.2.2.

When mutating the value of this property, if the new value does not adhere to the hostport

syntax specified by [URI], then the user agent shall cause a SYNTAX_ERR exception to be raised.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of Location::href.

If the Location object is bound to Window::location, then mutation of this property’s value
shall additionally produce a side effect of navigating to the newly constructed value of

Location::href.

Note: In the preceding paragraph, navigating means to cause the application resource

referenced by the URI value of Location::href to replace the Window object’s current

document instance.

If this property is mutated so as to produce an identical value of Location::href as existed
prior to mutation, then no navigation side effect should result.

5.3.1.2.9.2.4 Location::hostname

This mutable, string valued property denotes the host portion of the parsed representation of

the Location object’s href property value. See [URI], Section 3.2.2.

When mutating the value of this property, if the new value does not adhere to the host

syntax specified by [URI], then the user agent shall cause a SYNTAX_ERR exception to be raised.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of Location::href and Location::host.

If the Location object is bound to Window::location, then mutation of this property’s value
shall additionally produce a side effect of navigating to the newly constructed value of

Location::href.

Note: In the preceding paragraph, navigating means to cause the application resource

referenced by the URI value of Location::href to replace the Window object’s current

document instance.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 69

If this property is mutated so as to produce an identical value of Location::href as existed
prior to mutation, then no navigation side effect should result.

5.3.1.2.9.2.5 Location::href

This mutable, string valued property denotes the entire URI as represented by the Location
object. See [URI].

When mutating the value of this property, if the new value does not adhere to the URI

syntax specified by [URI], then the user agent shall cause a SYNTAX_ERR exception to be raised.

Mutation of this property’s value shall be reflected in any dependent property of the

Location object.

If the Location object is bound to Window::location, then mutation of this property’s value

shall additionally produce a side effect of navigating to the new value of Location::href.

Note: In the preceding paragraph, navigating means to cause the application resource

referenced by the URI value of Location::href to replace the Window object’s current

document instance.

If this property is mutated so as to produce an identical value of Location::href as existed
prior to mutation, then no navigation side effect should result.

5.3.1.2.9.2.6 Location::pathname

This mutable, string valued property denotes the abs_path or rel_path portion of the parsed

representation of the Location object’s href property value, depending on whether the URI is an
absoluteURI or relativeURI, respectively. See [URI], Sections 3 and 5.

When mutating the value of this property, if the new value does not adhere to the abs_path

or rel_path syntax specified by [URI], then the user agent shall cause a SYNTAX_ERR exception to
be raised.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of Location::href.

If the Location object is bound to Window::location, then mutation of this property’s value
shall additionally produce a side effect of navigating to the newly constructed value of

Location::href.

Note: In the preceding paragraph, navigating means to cause the application resource

referenced by the URI value of Location::href to replace the Window object’s current

document instance.

If this property is mutated so as to produce an identical value of Location::href as existed
prior to mutation, then no navigation side effect should result.

5.3.1.2.9.2.7 Location::port

This mutable, string valued property denotes the port portion of the parsed representation of

the Location object’s href property value. See [URI], Section 3.2.2.

When mutating the value of this property, if the new value does not adhere to the port

syntax specified by [URI], then the user agent shall cause a SYNTAX_ERR exception to be raised.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of Location::href and Location::host.

If the Location object is bound to Window::location, then mutation of this property’s value
shall additionally produce a side effect of navigating to the newly constructed value of

Location::href.

Note: In the preceding paragraph, navigating means to cause the application resource

referenced by the URI value of Location::href to replace the Window object’s current

document instance.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 70

If this property is mutated so as to produce an identical value of Location::href as existed
prior to mutation, then no navigation side effect should result.

5.3.1.2.9.2.8 Location::protocol

This mutable, string valued property denotes the scheme portion of the parsed

representation of the Location object’s href property value, including the ':' delimiter (colon)
that follows the scheme. See [URI], Section 3.

When mutating the value of this property, if the new value does not adhere to the scheme

syntax specified by [URI] including the ':' delimiter (colon) that follows scheme, then the user

agent shall cause a SYNTAX_ERR exception to be raised.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of Location::href.

If the Location object is bound to Window::location, then mutation of this property’s value
shall additionally produce a side effect of navigating to the newly constructed value of

Location::href.

Note: In the preceding paragraph, navigating means to cause the application resource

referenced by the URI value of Location::href to replace the Window object’s current

document instance.

If this property is mutated so as to produce an identical value of Location::href as existed
prior to mutation, then no navigation side effect should result.

5.3.1.2.9.2.9 Location::search

This mutable, string valued property denotes the query portion of the parsed representation

of the Location object’s href property value, including the '?' delimiter (question mark) that
precedes the query. See [URI], Sections 3 and 3.4.

When mutating the value of this property, if the new value does not adhere to the query

syntax specified by [URI] including the '?' delimiter (question mark) that precedes query, then

the user agent shall cause a SYNTAX_ERR exception to be raised.

Mutation of this property’s value shall be reflected in any subsequent reference to the value

of Location::href and Location::pathname.

If the Location object is bound to Window::location, then mutation of this property’s value
shall additionally produce a side effect of navigating to the newly constructed value of

Location::href.

Note: In the preceding paragraph, navigating means to cause the application resource

referenced by the URI value of Location::href to replace the Window object’s current

document instance.

If this property is mutated so as to produce an identical value of Location::href as existed
prior to mutation, then no navigation side effect should result.

5.3.1.2.9.3 Navigator Object

A Navigator object provides information about the user agent. It implements the following
interface:

interface Navigator
{
 /* read-only properties */
 readonly attribute DOMString appName;
 readonly attribute DOMString appVersion;
 readonly attribute DOMString appCodeName;
 readonly attribute DOMString userAgent;
 readonly attribute DOMString ddeBackChannel;
 readonly attribute DOMString ddeContentLevel;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 71

 readonly attribute DOMString ddeSourceId;
 /* read-write properties */
 attribute boolean ddeEnabled;
 attribute boolean ddeReleasable;
};

The following subsections describe the entirety of Navigator interface semantics.

5.3.1.2.9.3.1 Navigator::appCodeName

This immutable, string valued property shall have a value specified by the application
environment implementer.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.9.3.2 Navigator::appName

This immutable, string valued property shall have a value specified by the application
environment implementer.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.9.3.3 Navigator::appVersion

This immutable, string valued property shall have a value specified by the application
environment implementer.

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.9.3.4 Navigator::ddeBackChannel

This immutable, string valued property shall have a value as follows: if the DASE Application

is not a legacy application or does not contain a Transcoded-From-Profile meta element with

the value "SMPTE DDE-1", then the value shall be null; otherwise, the value shall be one of the

following: "permanent", "connected", "disconnected", or "unavailable", in which case the

default value of this property shall be "unavailable" unless prescribed otherwise by a DASE
Extension.

Note: This property is provided to obtain interoperability with certain legacy content. Its
use is deprecated for non-legacy applications.

5.3.1.2.9.3.5 Navigator::ddeContentLevel

This immutable, string valued property shall have a value "1.0".

Note: This property is provided to obtain interoperability with certain legacy content. Its
use is deprecated for non-legacy applications.

5.3.1.2.9.3.6 Navigator::ddeEnabled

This mutable, boolean valued property shall have a default value of true. If the DASE

Application is not a legacy application or does not contain a Transcoded-From-Profile meta

element with the value "SMPTE DDE-1", then the value of this property shall not affect the

declarative application environment behavior; otherwise, if the value of this property is set to

false, a declarative application environment shall not dispatch script triggers to the DASE

Application.

Note: See Section 4.5.2 for further information on script trigger processing.

Note: This property is provided to obtain interoperability with certain legacy content. Its
use is deprecated for non-legacy applications.

5.3.1.2.9.3.7 Navigator::ddeSourceId

This immutable, string valued property property shall have a value as follows: if the DASE

Application is not a legacy application or does not contain a Transcoded-From-Profile meta

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 72

element with the value "SMPTE DDE-1", then the value shall be null; otherwise, the value shall be

identical to the value of the uuid attribute of the identifier element of the DASE Application's

metadata resource in accordance with [DASE], Section 6.1.1.6.10.

Note: This property is provided to obtain interoperability with certain legacy content. Its
use is deprecated for non-legacy applications.

5.3.1.2.9.3.8 Navigator::ddeReleasable

This mutable, boolean valued property shall have a default value of false. If the DASE

Application is not a legacy application or does not contain a Transcoded-From-Profile meta

element with the value "SMPTE DDE-1", then the value of this property shall not affect the

declarative application environment behavior; otherwise, if the value of this property is set to

true, then the declarative application environment shall behave as if an atsc-dynamic-refresh

style property with the value of auto had been associated with the root html element of the

document.

Note: See Section 5.2.1.8.3.1 for further information on the atsc-dynamic-refresh style

property.

Note: This property is provided to obtain interoperability with certain legacy content. Its
use is deprecated for non-legacy applications.

5.3.1.2.9.3.9 Navigator::userAgent

This immutable, string valued property shall have a value that adheres to the syntax

prescribed by [HTTP], Section 14.43, for the value of the User-Agent request header.

Furthermore, this value shall contain the product token "DASE-1/1.0".

Note: This property is provided to obtain lexical interoperability with legacy [DOM0]
content.

5.3.1.2.9.4 Window Object

The Window object serves as the Global object for all script content evaluation. Each

frameset and frame in a multi-frame document is associated with a distinct Window object. In the

case of a non-frame document, only one Window object is instantiated. A Window object
implements the following interface:

typedef unsigned long TimerId;

interface Window
{
 /* read-only properties */
 readonly attribute Navigator navigator;
 readonly attribute History history;
 readonly attribute Window window;
 readonly attribute Window self;
 readonly attribute Window parent;
 readonly attribute Window top;
 readonly attribute HTMLCollection frames;
 readonly attribute long length;
 readonly attribute DOMString name;
 readonly attribute HTMLDocument document;
 /* read-write properties */
 attribute Location location;
 attribute DOMString status;
 attribute DOMString defaultStatus;
 attribute Window opener;
 /* methods */
 void alert(in DOMString message);
 boolean confirm(in DOMString message);
 DOMString prompt(in DOMString message, in DOMString defaultResponse);
 TimerId setTimeout(in DOMString statement, in unsigned long delay);

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 73

 void clearTimeout(in TimerId timerId);
 void close();
 Window open(in DOMString url, in DOMString name, in DOMString features);
};

The following subsections describe the entirety of Window interface semantics.

5.3.1.2.9.4.1 Window::alert

This void valued method shall cause the presentation of message to the end-user.

This method may be implemented as a modal dialog with a single OK button.

5.3.1.2.9.4.2 Window::clearTimeout

This void valued method shall cause the scheduled statement timer identified by timerId to
be removed from the set of scheduled statement timers if the timer has not already fired and the
statement evaluated; otherwise, if the timer has already fired and the statement evaluated, then
no side effect shall be produced.

5.3.1.2.9.4.3 Window::close

This null valued method shall cause a top-level Window object to be destroyed. If invoked on

a Window object which is not a top-level Window object, then no side effect shall result.

If a top-level Window object is closed by this method, then (1) all user interactivity with the

Window and its descendant Window objects shall be disabled; (2) all automatic reformatting and

redisplay functions for the Window object and its descendant Window objects shall be disabled; (3)
an unload event shall be dispatched to each document associated with the Window object and its

descendant Window objects; (4) all scheduled statement timers associated with the Window and

its descendant Window objects shall be cleared; and (5) if the Window object is the current top-

level Window object associated with an application, then the underlying application shall be
terminated.

A user agent may disallow the semantics of this method (i.e., not close a window) if the

current Window object was not created by or for the current application. In this case, the user

agent shall cause a NO_CLOSE_ALLOWED_ERR exception to be raised.

Note: This specification does not require a user agent to support multiple simultaneous
applications.

5.3.1.2.9.4.4 Window::confirm

This boolean valued method shall cause the presentation of message to the end-user,

returning true if the user selects OK, otherwise returning false.

This method may be implemented as a modal dialog with an OK button and a CANCEL
button.

5.3.1.2.9.4.5 Window::defaultStatus

This mutable, string valued property denotes a default status message intended to be
presented to the end-user in a status bar when no other status message is available.

If a user agent implements this facility and provides a status bar or status bar like
functionality, then the user agent should present this property’s value to the end-user when no
other status message is available. The manner in which this value is presented to the end-user is
not defined by this specification.

In a frameset document, the frame which has active focus should be used to determine the
default status message to be presented to the end-user.

Script content shall not rely on a user agent to present the value of this property to the end-
user.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 74

5.3.1.2.9.4.6 Window::document

This immutable, object valued property shall reference a mutable HTMLDocument object

that represents the Window object’s current document instance. See Section 5.3.1.2.3.3.

Note: Although script content may not mutate this property, the user agent will mutate this

property as a side effect of replacing the Window object’s current document instance, e.g.,

as a result of navigating to a new document by mutating Window::location.

5.3.1.2.9.4.7 Window::frames

This immutable, object value property shall reference an immutable HTMLCollection object
that, in turn, references zero or more mutable Window objects. In the case that the current

Window object’s document instance is a frameset document, then this collection of Window objects
shall be the frames of that frameset document in content order; otherwise, this collection shall be
empty.

Note: Although script content may not mutate the referenced HTMLCollection object,

the user agent will mutate this object as a side effect of loading the frameset document
and the individual frames referenced by this document. This mutation of the referenced

HTMLCollection object by the user agent will occur asynchronously with respect to

script content evaluation.

Script content which references the HTMLCollection object referenced by this property may
do so reliably only after the onload event has been fired for the frameset.

For each named Window object the user agent adds to the referenced HTMLCollection

object, a new property shall be added to the current Window object, where the name of the

property is the value of the name property of that Window object and the value of the property is

the Window object itself. If an identically named property already exists on the current Window
object, then a property shall not be added and the value of the pre-existing, identically named
property shall not be changed.

5.3.1.2.9.4.8 Window::history

This immutable, object valued property shall reference an immutable History object shared

by all Window objects within a top-level viewing window. See Section 5.3.1.2.9.1.

5.3.1.2.9.4.9 Window::location

This mutable, object valued property shall reference a mutable Location object. See
Section 5.3.1.2.9.2.

The semantics of mutation of this property shall be as follows: (1) the new value shall be
subjected to ToString type conversion (see [ECMASCRIPT], Section 9.8); (2) the resulting string

shall be used to mutate the value of Window::location.href producing navigation side effects
as described in Section 5.3.1.2.9.2.5.

Note: When mutating the value of this property, the reference to the Location object

may or may not change in accordance with implementation dependent conditions. That is,

the user agent implementation may choose to reuse the existing Location object and

simply change its properties as opposed to instantiating a new Location object.

5.3.1.2.9.4.10 Window::length

This immutable, number valued property shall have the same value as Window::-

frames.length. For non-frameset documents, its value shall be zero.

Note: Although script content may not mutate this property, the user agent will mutate this
property as a side effect of loading a frameset document and the individual frames
referenced by the document. This mutation by the user agent will occur asynchronously
with respect to script content evaluation.

Script content which references this property may do so reliably only after the onload event
has been fired for the frameset.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 75

5.3.1.2.9.4.11 Window::name

This immutable, string valued property denotes the name of a frame in a frameset
document. The value of this property shall be the normalized value of the name attribute of the
associated frame element of a frameset document, if present, otherwise it shall be the empty
string.

5.3.1.2.9.4.12 Window::navigator

This immutable, object valued property shall reference an immutable, shared Navigator
object. See Section 5.3.1.2.9.3.

5.3.1.2.9.4.13 Window::open

This object valued method shall either (1) in the case that name identifies an existing

Window object (i.e., if name is the same as Window::name for some Window object instance),

cause navigation to the document referenced by url in that existing Window object, or (2) in the

case that name does not identify an existing Window object, cause loading of the document

referenced by url into a newly created Window object associated with a new top-level viewing

window. A reference to the existing or newly created Window object is returned.

The name argument shall be restricted to tokens consisting of the Latin alphabetic letters (a-
zA-Z) or any of the following specially named frame targets according to [HTML], Section 6.16:

• _blank

• _self

• _parent

• _top

If url is null or the empty string, then an empty document (i.e., a Document instance with no
nodes) shall be associated with the Window object. If url is a non-empty string, then it shall

adhere to the form of the parameter entity %URI.datatype; as described in Section A.1.

A user agent need not support the instantiation of multiple viewing windows. In the case that
a user agent does not support instantiation of multiple viewing windows and this method is

invoked with a name which does not identify an existing Window object, then the user agent shall

cause a NOT_SUPPORTED_ERR exception to be raised.

Note: This specification does not define the manner in which multiple viewing windows are
presented to an end-user in the case that a user agent does support multiple viewing
windows.

If a user agent supports multiple viewing windows, then it should maintain a distinct History
object for each top-level viewing window.

5.3.1.2.9.4.14 Window::opener

This mutable, object valued property shall initially reference the Window object which caused

this Window object to be created by means of calling Window::open(); otherwise, it shall be null if

(1) created by other means than calling Window::open() or (2) window.self is not equal to

window.top.

This property may be set to null. An attempt to set this property to a value other than null
shall cause a NO_MODIFICATION_ALLOWED_ERR exception to be raised.

5.3.1.2.9.4.15 Window::parent

This immutable, object valued property shall reference the parent Window object, in the case

that the current Window object is not the top-most frame in a frameset document, or the Window

object itself, in the case that the current Window object is the top-most frame in a frameset
document or the document is not a frameset document.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 76

5.3.1.2.9.4.16 Window::prompt

This string valued method shall cause the presentation of message to and solicit a response
from the end-user where the default response is defaultResponse, returning the actual response.
If this operation is cancelled by the user or the user does not modify the default response, then
the default response shall be returned; otherwise, the modified response is returned.

This method may be implemented as a modal dialog with an OK button and a CANCEL
button.

5.3.1.2.9.4.17 Window::self

This immutable, object valued property shall reference the Window object itself.

5.3.1.2.9.4.18 Window::setTimeout

This number valued method shall cause the one-time evaluation of statement to occur in
delay milliseconds, returning a unique, opaque numeric identifier which may be subsequently

used by Window::clearTimeout.

The form of statement shall be in accordance with the StatementList non-terminal of
[ECMASCRIPT], Section 12.1; in particular, statement shall be syntactically valid for use as the
content of the Block non-terminal.

The execution context for evaluating statement shall be in accordance with the global code

type of [ECMASCRIPT], Section 10.2.1, with the global object being the current Window object in
whose context this method is invoked.

If one or more statements scheduled by this method remain outstanding at the time the

current Window is destroyed, then those statements shall be descheduled; i.e., an implicit

Window::clearTimeout shall be applied to each outstanding scheduled statement timer.

Note: Certain constraints apply to the semantics of host objects when those objects are
accessed or their methods invoked by a scheduled statement timer; in particular, see

Section 5.3.1.2.3.3.11.

Script content shall not rely on the relative order or precise timing of the evaluation of
scheduled statement timers. For example, if this method is invoked twice in immediate
succession with the same delay parameter, then it cannot be assured that the first scheduled
statement will be evaluated before the second scheduled statement.

5.3.1.2.9.4.19 Window::status

This mutable, string valued property denotes a status message intended to be presented to
the end-user in a status bar.

If a user agent implements this facility and provides a status bar or status bar like
functionality, then the user agent should present this property’s value to the end-user. The
manner in which this value is presented to the end-user is not defined by this specification.

If a user agent presents this status message to the end-user, then mutation of this property

in any Window object of a frameset document should be presented to the end-user. No

serialization order for the presentation of this value among multiple Window objects is defined by
this specification.

Script content shall not rely on a user agent to present the value of this property to the end-
user.

5.3.1.2.9.4.20 Window::top

This immutable, object valued property shall reference the top-most Window object, in the
case that the current Window object is not the top-most frame in a frameset document, or the

Window object itself, in the case that the current Window object is the top-most frame in a frameset
document or the document is not a frameset document.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 77

5.3.1.2.9.4.21 Window::window

This immutable, object valued property shall reference the Window object itself.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 78

ANNEX A. DOCUMENT TYPE DEFINITIONS

The entirety of this section and its subsections is normative.

This annex specifies a document type definition according to [XTHMLMOD] for use with
markup content.

A.1 XDML Document Type

This document type defines the declarative application markup language.

A.1.1 DTD Driver

<!-- ::: -->
<!-- XDML 1.0 DTD Driver -->
<!-- ::: -->

<!--
 This is XDML 1.0, an XHTML Host Language Document Type specified for
 use with ATSC DASE Declarative Applications.

 This module shall be identified by the following formal public identifier:

 "-//ATSC//DTD XHTML XDML 1.0//EN"
-->

<!-- ::: -->
<!-- XHTML Driver Parameters -->
<!-- ::: -->

<!ENTITY % XHTML.version "-//ATSC//DTD XHTML XDML 1.0//EN">
<!ENTITY % XHTML.profile "">

<!ENTITY % XHTML.dtd.sysid.base
 "http://www.w3.org/TR/xhtml-modularization/DTD/">

<!-- ::: -->
<!-- Framework -->
<!-- ::: -->

<!-- Framework Parameter: Include BIDI support -->
<!ENTITY % XHTML.bidi "INCLUDE">

<!-- Framework Parameter: Include intrinsic event attributes -->
<!ENTITY % xhtml-events.module "INCLUDE">

<!-- Framework Parameter: Define Content Model -->
<!ENTITY % xhtml-model.mod
 PUBLIC "-//ATSC//ENTITIES XDML Content Model 1.0//EN"
 "xdml-model-1.ent">

<!-- Framework Parameter: %Core.attrib; extensions -->
<!ENTITY % base.attrib "xml:base CDATA #IMPLIED">
<!ENTITY % style.attrib "style CDATA #IMPLIED">
<!ENTITY % Core.extra.attrib "%base.attrib; %style.attrib;">

<!-- Framework Parameter: missing qnames -->
<!ENTITY % frameset.qname "frameset">

<!-- Modular Framework Module -->
<!ENTITY % xhtml-framework.mod
 PUBLIC "-//W3C//ENTITIES XHTML Modular Framework 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-framework-1.mod">
%xhtml-framework.mod;

<!-- ::: -->
<!-- Element Modules -->
<!-- ::: -->

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 79

<!-- Basic Text Module -->
<!ENTITY % xhtml-text.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Text 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-text-1.mod">
%xhtml-text.mod;

<!-- Hypertext Module -->
<!ENTITY % xhtml-hypertext.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Hypertext 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-hypertext-1.mod">
%xhtml-hypertext.mod;

<!-- Lists Module -->
<!ENTITY % xhtml-list.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Lists 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-list-1.mod">
%xhtml-list.mod;

<!-- Presentation Module -->
<!ENTITY % xhtml-pres.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Presentation 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-pres-1.mod">
%xhtml-pres.mod;

<!-- BIDI Override Element Module -->
<!ENTITY % xhtml-bdo.mod
 PUBLIC "-//W3C//ELEMENTS XHTML BIDI Override Element 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-bdo-1.mod">
%xhtml-bdo.mod;

<!-- Forms Module -->
<!ENTITY % xhtml-form.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Forms 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-form-1.mod">
%xhtml-form.mod;

<!-- Tables Module -->
<!ENTITY % xhtml-table.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Tables 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-table-1.mod">
%xhtml-table.mod;

<!-- Param Element Module -->
<!ENTITY % xhtml-param.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Param Element 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-param-1.mod">
%xhtml-param.mod;

<!-- Object Element Module -->
<!ENTITY % xhtml-object.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Embedded Object 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-object-1.mod">
%xhtml-object.mod;

<!-- Image Element Module -->
<!ENTITY % xhtml-image.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Images 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-image-1.mod">
%xhtml-image.mod;

<!-- Client-side Image Map Module -->
<!ENTITY % xhtml-csismap.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Client-side Image Maps 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-csismap-1.mod">
%xhtml-csismap.mod;

<!-- Link Element Module -->
<!ENTITY % xhtml-link.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Link Element 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-link-1.mod">
%xhtml-link.mod;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 80

<!-- Base Element Module -->
<!ENTITY % xhtml-base.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Base Element 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-base-1.mod">
%xhtml-base.mod;

<!-- Document Metainformation Module -->
<!ENTITY % xhtml-meta.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Metainformation 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-meta-1.mod">
%xhtml-meta.mod;

<!-- Scripting Module -->
<!ENTITY % xhtml-script.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Scripting 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-script-1.mod">
%xhtml-script.mod;

<!-- Stylesheets Module -->
<!ENTITY % xhtml-style.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Style Sheets 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-style-1.mod">
%xhtml-style.mod;

<!-- Target Attribute Module -->
<!ENTITY % xhtml-target.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Target 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-target-1.mod">
%xhtml-target.mod;

<!-- Frames Module -->
<!ENTITY % xhtml-frames.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Frames 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-frames-1.mod">
%xhtml-frames.mod;

<!-- Document Structure Module -->
<!ENTITY % xhtml-struct.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Document Structure 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-struct-1.mod">
%xhtml-struct.mod;

<!-- Name Identifier Module -->
<!ENTITY % xhtml-nameident.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Name Identifier 1.0//EN"
 "%XHTML.dtd.sysid.base;xhtml-nameident-1.mod">
%xhtml-nameident.mod;

<!-- ::: -->
<!-- Non-Parameterized Extensions -->
<!-- ::: -->

<![%legend.attlist;[
<!ATTLIST %legend.qname;
 align (top | bottom | left | right) #IMPLIED
>
]]>

<![%param.attlist;[
<!ATTLIST %param.qname;
 %base.attrib;
>
]]>

<![%meta.attlist;[
<!ATTLIST %meta.qname;
 %base.attrib;
>
]]>

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 81

<![%script.attlist;[
<!ATTLIST %script.qname;
 %base.attrib;
>
]]>

<![%style.attlist;[
<!ATTLIST %style.qname;
 %base.attrib;
>
]]>

<![%title.attlist;[
<!ATTLIST %title.qname;
 %base.attrib;
>
]]>

<![%head.attlist;[
<!ATTLIST %head.qname;
 %base.attrib;
>
]]>

<![%html.attlist;[
<!ATTLIST %html.qname;
 %base.attrib;
>
]]>

<!-- ::: -->
<!-- END END END -->
<!-- ::: -->

A.1.2 Document (Content) Model

<!-- ::: -->
<!-- XDML 1.0 Document (Content) Model -->
<!-- ::: -->

<!--
 This is the XDML 1.0 Document (Content) Model Module for use with the
 XDML 1.0 Document Type specified for ATSC DASE Declarative Applications.

 This module declares certain parameter entities that define groupings
 of elements employed in the definition of XDML 1.0 content models.

 This module shall be idenitifed by the following formal public identifier:

 "-//ATSC//ENTITIES XDML Content Model 1.0//EN"
-->

<!-- ::: -->
<!-- Non-Empty Content Group Classes -->
<!-- ::: -->

<!ENTITY % BlkStruct.class "%p.qname;
 |%div.qname;">

<!ENTITY % InlStruct.class "%br.qname;
 |%span.qname;">

<!-- ::: -->
<!-- Optionally Empty Content Group Classes -->
<!-- ::: -->

<!ENTITY % Anchor.class "|%a.qname;">

<!ENTITY % BlkPhras.class "|%pre.qname;
 |%blockquote.qname;
 |%address.qname;">

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 82

<!ENTITY % BlkPres.class "|%hr.qname;">

<!ENTITY % Heading.class "|%h1.qname;
 |%h2.qname;
 |%h3.qname;
 |%h4.qname;
 |%h5.qname;
 |%h6.qname;">

<!ENTITY % I18n.class "|%bdo.qname;">

<!ENTITY % InlPhras.class "|%abbr.qname;
 |%acronym.qname;
 |%cite.qname;
 |%code.qname;
 |%dfn.qname;
 |%em.qname;
 |%kbd.qname;
 |%q.qname;
 |%samp.qname;
 |%strong.qname;
 |%var.qname;">

<!ENTITY % InlPres.class "|%b.qname;
 |%big.qname;
 |%i.qname;
 |%small.qname;
 |%sub.qname;
 |%sup.qname;
 |%tt.qname;">

<!ENTITY % InlForm.class "|%input.qname;
 |%select.qname;
 |%textarea.qname;
 |%label.qname;
 |%button.qname;">

<!ENTITY % InlSpecial.class "|%map.qname;
 |%img.qname;
 |%object.qname;">

<!ENTITY % List.class "|%ul.qname;
 |%ol.qname;
 |%dl.qname;">

<!ENTITY % Table.class "|%table.qname;">

<!ENTITY % Misc.class "|%script.qname;
 |%noscript.qname;">

<!-- ::: -->
<!-- Optionally Empty Content Group Class Extras -->
<!-- ::: -->

<!ENTITY % Block.extra "%Table.class;
 |%form.qname;
 |%fieldset.qname;">

<!ENTITY % BlkNoForm.extra "%Table.class;">

<!ENTITY % BlkNoTable.extra "|%form.qname;
 |%fieldset.qname;">

<!ENTITY % Inline.extra "">

<!-- ::: -->
<!-- Aggregate Content Group Classes -->
<!-- ::: -->

<!ENTITY % Block.class "%BlkStruct.class;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 83

 %BlkPhras.class;
 %BlkPres.class;
 %Block.extra;">

<!ENTITY % BlkNoForm.class "%BlkStruct.class;
 %BlkPhras.class;
 %BlkPres.class;
 %BlkNoForm.extra;">

<!ENTITY % BlkNoTable.class "%BlkStruct.class;
 %BlkPhras.class;
 %BlkPres.class;
 %BlkNoTable.extra;">

<!ENTITY % Inline.class "%InlStruct.class;
 %I18n.class;
 %InlPhras.class;
 %InlPres.class;
 %InlSpecial.class;
 %InlForm.class;
 %Inline.extra;
 %Anchor.class;">

<!ENTITY % InlNoAnchor.class "%InlStruct.class;
 %I18n.class;
 %InlPhras.class;
 %InlPres.class;
 %InlSpecial.class;
 %InlForm.class;
 %Inline.extra;">

<!-- ::: -->
<!-- Content Group Mixes -->
<!-- ::: -->

<!ENTITY % Block.mix "%Block.class;
 %List.class;
 %Heading.class;
 %Misc.class;">

<!ENTITY % BlkNoForm.mix "%BlkNoForm.class;
 %List.class;
 %Heading.class;
 %Misc.class;">

<!ENTITY % BlkNoTable.mix "%BlkNoTable.class;
 %List.class;
 %Heading.class;
 %Misc.class;">

<!ENTITY % HeadOpts.mix "(%script.qname;
 |%style.qname;
 |%meta.qname;
 |%link.qname;
 |%object.qname;)*">

<!ENTITY % Flow.mix "%Block.class;
 %List.class;
 %Heading.class;
 |%Inline.class;
 %Misc.class;">

<!ENTITY % FlowNoTable.mix "%BlkNoTable.class;
 %List.class;
 %Heading.class;
 |%Inline.class;
 %Misc.class;">

<!ENTITY % Inline.mix "%Inline.class;
 %Misc.class;">

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 84

<!ENTITY % InlNoAnchor.mix "%InlNoAnchor.class;
 %Misc.class;">

<!-- ::: -->
<!-- Element Content Model Predeclarations -->
<!-- ::: -->

<!ENTITY % html.content "(%head.qname;,
 (%body.qname; | %frameset.qname;))">

<!ENTITY % noscript.content "(#PCDATA | %Flow.mix;)*">

<!ENTITY % blockquote.content "(#PCDATA | %Flow.mix;)*">

<!-- ::: -->
<!-- END END END -->
<!-- ::: -->

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 85

ANNEX B. DEFAULT STYLESHEET

The entirety of this section and its subsections is normative.

This annex specifies a default stylesheet which is recommended for use by user agents in

the presentation of XHTML content. The content type of this stylesheet is text/css.

B.1 Stylesheet

In the following stylesheet, the font-relative length unit em shall be interpreted according to a
reference font of size 24 pixels on a reference display of 480 pixels in height.

@media atsc-tv {

/* non-contextual rules */
abbr { font-variant: small-caps; letter-spacing: 0.1em }
acronym { font-variant: small-caps; letter-spacing: 0.1em }
address { display: block; font-style: italic }
a[href] { text-decoration: underline }
b { font-weight: bolder }
big { font-size: 1.33em }
blockquote { display: block; margin: 1.33em 12.70mm 0 }
body { display: block; padding: 8px; line-height: 1.33 }
br:before { content: "\a" }
caption { text-align: center }
cite { font-style: italic }
code { font-family: monospace }
dd { display: block; margin-left: 12.70mm }
div { display: block }
dl { display: block; margin: 1.33em 0 }
dt { display: block }
em { font-style: italic }
fieldset { display: block; margin: 1.33em 0 }
form { display: block; margin: 1.33em 0 }
frame { display: block }
frameset { display: block }
h1 { display: block; font-weight: bolder; font-size: 2.67em; margin: 0.67em 0 }
h2 { display: block; font-weight: bolder; font-size: 2.00em; margin: 0.83em 0 }
h3 { display: block; font-weight: bolder; font-size: 1.33em; margin: 1.00em 0 }
h4 { display: block; font-weight: bolder; font-size: 1.00em; margin: 1.33em 0 }
h5 { display: block; font-weight: bolder; font-size: 0.75em; margin: 1.67em 0 }
h6 { display: block; font-weight: bolder; font-size: 0.50em; margin: 2.33em 0 }
head { display: none }
hr { display: block; border: 2px inset }
i { font-style: italic }
kbd { font-family: monospace }
noframes { display: block }
object { display: block }
ol { display: block; list-style-type: decimal; margin: 1.33em 12.70mm 0 }
p { display: block; margin: 1.33em 0 }
pre { display: block; font-family: monospace; white-space: pre }
samp { font-family: monospace }
small { font-size: 0.75em }
strong { font-weight: bolder }
sub { font-size: 0.75em; vertical-align: sub }
sup { font-size: 0.75em; vertical-align: super }
th { font-weight: bolder; text-align: center }
tt { font-family: monospace }
ul { display: block; list-style-type: disc; margin: 1.33em 12.70mm 0 }
var { font-style: italic }

/* contextual rules */
ol ol { margin-top: 0; margin-bottom: 0 }
ol ul { margin-top: 0; margin-bottom: 0 }
ul ol { margin-top: 0; margin-bottom: 0 }
ul ul { margin-top: 0; margin-bottom: 0 }

}

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 86

B.2 Default Fonts

It is recommended that a user agent provide built-in fonts of serif, sans-serif, and
monospace logical font families, with plain, italic (or oblique), bold, and bold-italic (or bold-
oblique) faces, in sizes of 8, 12, 18, 24, 32, 48, and 64 reference pixels, where a reference pixel
is a pixel on a reference display of 480 pixels in height.

It is recommended that a user agent employ [TIRESIAS] for sans serif, plain face usage.

At a minimum, built-in fonts shall support the display of all Unicode characters in the range
of 0x0021 through 0x007E and 0x00A0 through 0x00FF (i.e., ISO Latin 1 printable characters).

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 87

ANNEX C. DOCUMENT OBJECT MODEL INTERFACES

The entirety of this section and its subsections is normative.

This annex contains the complete [IDL] specification for the document object model
interface definitions specified in this document. The definitions are divided into Native Extensions,
Core Extensions, Environment Extensions, Events Extensions, HTML Extensions, and View
Extensions modules.

In addition to the following modules, this specification incorporates, by reference, the [IDL]
specification of certain document object model interfaces defined by [DOM2]; in particular, the
following modules specified by [DOM2], [DOM2-HTML], [DOM2-VIEWS], [DOM2-STYLE], and
[DOM2-EVENTS] IDL Definitions. Inclusion of a particular [DOM2] interface module does not
mean that all interfaces specified by that module must be supported by a user agent. See Section
 5.3.1.2 for information on which interfaces must be supported by a user agent.

Note: See [DOM0] for further information regarding Environment module functionality.

C.1 Native Extensions Module

// File: native.idl
#ifndef _NATIVE_IDL_
#define _NATIVE_IDL_

#pragma prefix "org.atsc.dom"

module native
{

 interface String;

 interface StringExt
 {
 /* methods */
 String anchor(in String name);
 String big();
 String blink();
 String bold();
 String fixed();
 String fontcolor(in String color);
 String fontsize(in String size);
 String italics();
 String link(in String href);
 String small();
 String strike();
 String sub();
 String sup();
 };
};

#endif // _NATIVE_IDL_

C.2 Core Extensions Module

// File: core.idl
#ifndef _CORE_IDL_
#define _CORE_IDL_

#pragma prefix "org.atsc.dom"

#include "dom.idl"

module core
{

 const unsigned short VALIDATION_ERR = 1;
 const unsigned short NO_CLOSE_ALLOWED_ERR = 2;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 88

 exception DOMExceptionExt
 {
 unsigned short codeExtension;
 };

};

#endif // _CORE_IDL_

C.3 Environment Extensions Module

// File: environment.idl
#ifndef _ENVIRONMENT_IDL_
#define _ENVIRONMENT_IDL_

#pragma prefix "org.atsc.dom"

#include "dom.idl"
#include "html.idl"

module environment
{

 typedef dom::DOMString DOMString;
 typedef html::HTMLCollection HTMLCollection;
 typedef html::HTMLDocument HTMLDocument;
 typedef long TimerId;

 interface History;
 interface Location;
 interface Navigator;
 interface Window;

 interface History
 {
 /* read-write properties */
 readonly attribute long length;
 /* methods */
 void back();
 void forward();
 void go(in long index);
 void go(in DOMString uri);
 };

 interface Location
 {
 /* read-write properties */
 attribute DOMString hash;
 attribute DOMString host;
 attribute DOMString hostname;
 attribute DOMString href;
 attribute DOMString pathname;
 attribute DOMString port;
 attribute DOMString protocol;
 attribute DOMString search;
 };

 interface Navigator
 {
 /* read-only properties */
 readonly attribute DOMString appName;
 readonly attribute DOMString appVersion;
 readonly attribute DOMString appCodeName;
 readonly attribute DOMString userAgent;
 readonly attribute DOMString ddeBackChannel;
 readonly attribute DOMString ddeContentLevel;
 readonly attribute DOMString ddeSourceId;
 /* read-write properties */
 attribute boolean ddeEnabled;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 89

 attribute boolean ddeReleasable;
 };

 interface Window
 {
 /* read-only properties */
 readonly attribute Navigator navigator;
 readonly attribute History history;
 readonly attribute Window window;
 readonly attribute Window self;
 readonly attribute Window parent;
 readonly attribute Window top;
 readonly attribute HTMLCollection frames;
 readonly attribute long length;
 readonly attribute DOMString name;
 readonly attribute HTMLDocument document;
 /* read-write properties */
 attribute Location location;
 attribute DOMString status;
 attribute DOMString defaultStatus;
 attribute Window opener;
 /* methods */
 void alert(in DOMString message);
 boolean confirm(in DOMString message);
 DOMString prompt(in DOMString message, in DOMString defaultResponse);
 TimerId setTimeout(in DOMString statement, in unsigned long delay);
 void clearTimeout(in TimerId timerId);
 void close();
 Window open(in DOMString url, in DOMString name, in DOMString features);
 };

};

#endif // _ENVIRONMENT_IDL_

C.4 Events Extensions Module

// File: events.idl
#ifndef _EVENTS_IDL_
#define _EVENTS_IDL_

#pragma prefix "org.atsc.dom"

#include "dom.idl"

module events
{

 const unsigned short VALIDATION_ERR = 1;
 const unsigned short NO_CLOSE_ALLOWED_ERR = 2;

 interface KeyEvent
 {
 /* read-write properties */
 attribute DOMString outputString;
 attribute unsigned long keyVal;
 attribute unsigned long virtKeyVal;
 attribute boolean visibleOutputGenerated;
 attribute boolean numPad;
 /* methods */
 void initKeyEvent(
 in DOMString type,
 in boolean canBubble,
 in boolean cancelable,
 in views::AbstractView view,
 in long detail,
 in DOMString outputString,
 in unsigned long keyVal,
 in unsigned long virtKeyVal,
 in boolean visibleOutputGenerated,
 in boolean numPad);

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 90

 void initModifier(in unsigned long modifier, in boolean value);
 boolean checkModifier(in unsigned long modifier);
 };

 interface KeyModifiers
 {
 const unsigned long MOD_NONE = 0;
 const unsigned long MOD_SHIFT = 1;
 const unsigned long MOD_CONTROL = 2;
 const unsigned long MOD_META = 4;
 const unsigned long MOD_ALT = 8;
 };

 interface VirtualKeys
 {
 const unsigned long VK_UNDEFINED = 0;
 const unsigned long VK_CANCEL = 3;
 const unsigned long VK_BACK_SPACE = 8;
 const unsigned long VK_TAB = 9;
 const unsigned long VK_ENTER = 10;
 const unsigned long VK_CLEAR = 12;
 const unsigned long VK_SHIFT = 16;
 const unsigned long VK_CONTROL = 17;
 const unsigned long VK_ALT = 18;
 const unsigned long VK_PAUSE = 19;
 const unsigned long VK_CAPS_LOCK = 20;
 const unsigned long VK_KANA = 21;
 const unsigned long VK_FINAL = 24;
 const unsigned long VK_KANJI = 25;
 const unsigned long VK_ESCAPE = 27;
 const unsigned long VK_CONVERT = 28;
 const unsigned long VK_NONCONVERT = 29;
 const unsigned long VK_ACCEPT = 30;
 const unsigned long VK_MODECHANGE = 31;
 const unsigned long VK_SPACE = 32;
 const unsigned long VK_PAGE_UP = 33;
 const unsigned long VK_PAGE_DOWN = 34;
 const unsigned long VK_END = 35;
 const unsigned long VK_HOME = 36;
 const unsigned long VK_LEFT = 37;
 const unsigned long VK_UP = 38;
 const unsigned long VK_RIGHT = 39;
 const unsigned long VK_DOWN = 40;
 const unsigned long VK_COMMA = 44;
 const unsigned long VK_PERIOD = 46;
 const unsigned long VK_SLASH = 47;
 const unsigned long VK_0 = 48;
 const unsigned long VK_1 = 49;
 const unsigned long VK_2 = 50;
 const unsigned long VK_3 = 51;
 const unsigned long VK_4 = 52;
 const unsigned long VK_5 = 53;
 const unsigned long VK_6 = 54;
 const unsigned long VK_7 = 55;
 const unsigned long VK_8 = 56;
 const unsigned long VK_9 = 57;
 const unsigned long VK_SEMICOLON = 59;
 const unsigned long VK_EQUALS = 61;
 const unsigned long VK_A = 65;
 const unsigned long VK_B = 66;
 const unsigned long VK_C = 67;
 const unsigned long VK_D = 68;
 const unsigned long VK_E = 69;
 const unsigned long VK_F = 70;
 const unsigned long VK_G = 71;
 const unsigned long VK_H = 72;
 const unsigned long VK_I = 73;
 const unsigned long VK_J = 74;
 const unsigned long VK_K = 75;
 const unsigned long VK_L = 76;
 const unsigned long VK_M = 77;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 91

 const unsigned long VK_N = 78;
 const unsigned long VK_O = 79;
 const unsigned long VK_P = 80;
 const unsigned long VK_Q = 81;
 const unsigned long VK_R = 82;
 const unsigned long VK_S = 83;
 const unsigned long VK_T = 84;
 const unsigned long VK_U = 85;
 const unsigned long VK_V = 86;
 const unsigned long VK_W = 87;
 const unsigned long VK_X = 88;
 const unsigned long VK_Y = 89;
 const unsigned long VK_Z = 90;
 const unsigned long VK_OPEN_BRACKET = 91;
 const unsigned long VK_BACK_SLASH = 92;
 const unsigned long VK_CLOSE_BRACKET = 93;
 const unsigned long VK_NUMPAD0 = 96;
 const unsigned long VK_NUMPAD1 = 97;
 const unsigned long VK_NUMPAD2 = 98;
 const unsigned long VK_NUMPAD3 = 99;
 const unsigned long VK_NUMPAD4 = 100;
 const unsigned long VK_NUMPAD5 = 101;
 const unsigned long VK_NUMPAD6 = 102;
 const unsigned long VK_NUMPAD7 = 103;
 const unsigned long VK_NUMPAD8 = 104;
 const unsigned long VK_NUMPAD9 = 105;
 const unsigned long VK_MULTIPLY = 106;
 const unsigned long VK_ADD = 107;
 const unsigned long VK_SEPARATER = 108;
 const unsigned long VK_SUBTRACT = 109;
 const unsigned long VK_DECIMAL = 110;
 const unsigned long VK_DIVIDE = 111;
 const unsigned long VK_F1 = 112;
 const unsigned long VK_F2 = 113;
 const unsigned long VK_F3 = 114;
 const unsigned long VK_F4 = 115;
 const unsigned long VK_F5 = 116;
 const unsigned long VK_F6 = 117;
 const unsigned long VK_F7 = 118;
 const unsigned long VK_F8 = 119;
 const unsigned long VK_F9 = 120;
 const unsigned long VK_F10 = 121;
 const unsigned long VK_F11 = 122;
 const unsigned long VK_F12 = 123;
 const unsigned long VK_DELETE = 127;
 const unsigned long VK_NUM_LOCK = 144;
 const unsigned long VK_SCROLL_LOCK = 145;
 const unsigned long VK_PRINTSCREEN = 154;
 const unsigned long VK_INSERT = 155;
 const unsigned long VK_HELP = 156;
 const unsigned long VK_META = 157;
 const unsigned long VK_BACK_QUOTE = 192;
 const unsigned long VK_QUOTE = 222;
 const unsigned long VK_COLORED_KEY_0 = 403;
 const unsigned long VK_COLORED_KEY_1 = 404;
 const unsigned long VK_COLORED_KEY_2 = 405;
 const unsigned long VK_COLORED_KEY_3 = 406;
 const unsigned long VK_COLORED_KEY_4 = 407;
 const unsigned long VK_COLORED_KEY_5 = 408;
 const unsigned long VK_POWER = 409;
 const unsigned long VK_DIMMER = 410;
 const unsigned long VK_REWIND = 412;
 const unsigned long VK_STOP = 413;
 const unsigned long VK_EJECT_TOGGLE = 414;
 const unsigned long VK_PLAY = 415;
 const unsigned long VK_RECORD = 416;
 const unsigned long VK_FAST_FWD = 417;
 const unsigned long VK_PLAY_SPEED_UP = 418;
 const unsigned long VK_PLAY_SPEED_DOWN = 419;
 const unsigned long VK_PLAY_SPEED_RESET = 420;
 const unsigned long VK_RECORD_SPEED_NEXT = 421;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 92

 const unsigned long VK_GO_TO_START = 422;
 const unsigned long VK_GO_TO_END = 423;
 const unsigned long VK_TRACK_PREV = 424;
 const unsigned long VK_TRACK_NEXT = 425;
 const unsigned long VK_RANDOM_TOGGLE = 426;
 const unsigned long VK_CHANNEL_UP = 427;
 const unsigned long VK_CHANNEL_DOWN = 428;
 const unsigned long VK_STORE_FAVORITE_0 = 429;
 const unsigned long VK_STORE_FAVORITE_1 = 430;
 const unsigned long VK_STORE_FAVORITE_2 = 431;
 const unsigned long VK_STORE_FAVORITE_3 = 432;
 const unsigned long VK_RECALL_FAVORITE_0 = 433;
 const unsigned long VK_RECALL_FAVORITE_1 = 434;
 const unsigned long VK_RECALL_FAVORITE_2 = 435;
 const unsigned long VK_RECALL_FAVORITE_3 = 436;
 const unsigned long VK_CLEAR_FAVORITE_0 = 437;
 const unsigned long VK_CLEAR_FAVORITE_1 = 438;
 const unsigned long VK_CLEAR_FAVORITE_2 = 439;
 const unsigned long VK_CLEAR_FAVORITE_3 = 440;
 const unsigned long VK_SCAN_CHANNELS_TOGGLE = 441;
 const unsigned long VK_PINP_TOGGLE = 442;
 const unsigned long VK_SPLIT_SCREEN_TOGGLE = 443;
 const unsigned long VK_DISPLAY_SWAP = 444;
 const unsigned long VK_SCREEN_MODE_NEXT = 445;
 const unsigned long VK_VIDEO_MODE_NEXT = 446;
 const unsigned long VK_VOLUME_UP = 447;
 const unsigned long VK_VOLUME_DOWN = 448;
 const unsigned long VK_MUTE = 449;
 const unsigned long VK_SURROUND_MODE_NEXT = 450;
 const unsigned long VK_BALANCE_RIGHT = 451;
 const unsigned long VK_BALANCE_LEFT = 452;
 const unsigned long VK_FADER_FRONT = 453;
 const unsigned long VK_FADER_REAR = 454;
 const unsigned long VK_BASS_BOOST_UP = 455;
 const unsigned long VK_BASS_BOOST_DOWN = 456;
 const unsigned long VK_INFO = 457;
 const unsigned long VK_GUIDE = 458;
 const unsigned long VK_TELETEXT = 459;
 const unsigned long VK_SUBTITLE = 460;
 };

};

#endif // _EVENTS_IDL_

C.5 HTML Extensions Module

// File: html.idl
#ifndef _HTML_IDL_
#define _HTML_IDL_

#pragma prefix "org.atsc.dom"

#include "dom.idl"

module html
{

 typedef dom::DOMString DOMString;
 typedef environment::Window Window;

 interface HTMLAnchorElementExt
 {
 /* read-write properties */
 attribute DOMString hash;
 attribute DOMString host;
 attribute DOMString hostname;
 attribute DOMString pathname;
 attribute DOMString port;
 attribute DOMString protocol;
 attribute DOMString search;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 93

 };

 interface HTMLDocumentExt
 {
 /* read-only properties */
 readonly attribute DOMString location;
 readonly attribute DOMString lastModified;
 readonly attribute Window window;
 /* read-write properties */
 attribute DOMString alinkColor;
 attribute DOMString vlinkColor;
 attribute DOMString linkColor;
 attribute DOMString bgColor;
 attribute DOMString fgColor;
 /* methods */
 void clear();
 };

 interface HTMLFormElementExt
 {
 /* read-write properties */
 attribute DOMString encoding;
 };

 interface HTMLImageElementExt
 {
 /* read-only properties */
 readonly attribute boolean complete;
 /* read-write properties */
 attribute DOMString lowsrc;
 };

 interface HTMLObjectElementExt
 {
 /* read-only properties */
 readonly attribute boolean complete;
 /* read-write properties */
 attribute DOMString lowsrc;
 attribute DOMString src;
 };

 interface HTMLTriggerObjectElementExt
 {
 /* read-only properties */
 readonly attribute DOMString backChannel;
 readonly attribute DOMString contentLevel;
 readonly attribute DOMString sourceId;
 /* read-write properties */
 attribute boolean enabled;
 attribute boolean releasable;
 };

};

#endif // _HTML_IDL_

C.6 Views Extensions Module

// File: views.idl
#ifndef _VIEWS_IDL_
#define _VIEWS_IDL_

#pragma prefix "org.atsc.dom"

#include "dom.idl"

module views
{

 interface DocumentViewExt
 {

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 94

 /* read-only properties */
 readonly attribute double refWidthMm;
 readonly attribute double refHeightMm;
 readonly attribute double gfxPosX;
 readonly attribute double gfxPosY;
 readonly attribute double gfxWidth;
 readonly attribute double gfxHeight;
 readonly attribute unsigned long gfxWidthPx;
 readonly attribute unsigned long gfxHeightPx;
 readonly attribute double vidPosX;
 readonly attribute double vidPosY;
 readonly attribute double vidWidth;
 readonly attribute double vidHeight;
 readonly attribute unsigned long vidWidthPx;
 readonly attribute unsigned long vidHeightPx;
 readonly attribute unsigned long sampleBitsR;
 readonly attribute unsigned long sampleBitsG;
 readonly attribute unsigned long sampleBitsB;
 readonly attribute unsigned long sampleBitsA;
 /* read-write properties */
 attribute boolean refreshOnChange;
 /* methods */
 boolean refresh(in DOMString id);
 };

};

#endif // _VIEWS_IDL

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 95

ANNEX D. DOCUMENT OBJECT MODEL BINDINGS

The entirety of this section and its subsections is normative.

This annex contains the complete ECMAScript binding for the document object model
interface definitions specified in this document as well as certain [DOM2] interfaces. The bindings
are divided according to the modules in which their [IDL] interfaces are defined.

In addition to the following bindings, this specification incorporates, by reference, the
bindings of certain document object model interfaces defined by [DOM2]; in particular, the
bindings for the following modules specified by [DOM2]], [DOM2-HTML], [DOM2-VIEWS],
[DOM2-STYLE], and [DOM2-EVENTS] ECMAScript Language Bindings. Inclusion of a particular
[DOM2] module binding does not mean that all objects, methods, and properties specified by that
binding must be supported by a user agent. See Section 5.3.1.2 for information on which objects,
methods, and properties must be supported by a user agent.

Note: See [DOM0] for further information regarding Environment module bindings.

D.1 Native Extensions Module Bindings

Object String
The String object has the following additional methods (in addition to native methods):

anchor(name)
This method returns a String. The name parameter is of type String.

big()
This method returns a String.

blink()
This method returns a String.

bold()
This method returns a String.

fixed()
This method returns a String.

fontcolor(color)
This method returns a String. The color parameter is of type String.

fontsize(size)
This method returns a String. The size parameter is of type String.

italics()
This method returns a String.

link(href)
This method returns a String. The href parameter is of type String.

small()
This method returns a String.

strike()
This method returns a String.

sub()
This method returns a String.

sup()
This method returns a String.

D.2 Core Extensions Module Bindings

Exception DOMException
The DOMException exception object has the following additional properties (in addition to
those derived from [DOM2] bindings):

codeExtension
This property is of type Number.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 96

Class DOMException
The DOMException object class (prototype object) has the following additional properties (in
addition to those derived from [DOM2] bindings):

VALIDATION_ERR
This constant property is of type Number and its value is 1.

NO_CLOSE_ALLOWED_ERR
This constant property is of type Number and its value is 2.

D.3 Environment Extensions Module Bindings

Object History
The History object has the following methods and properties:

length
This property is of type Number.

back()
This method returns a void.

forward()
This method returns a void.

go(where)
This method returns a void. The where parameter is of type Number or String.

Object Location
The Location object has the following properties:

hash
This property is of type String.

host
This property is of type String.

hostname
This property is of type String.

href
This property is of type String.

pathname
This property is of type String.

port
This property is of type String.

protocol
This property is of type String.

search
This property is of type String.

Object Navigator
The Navigator object has the following properties:

appName
This property is of type String.

appVersion
This property is of type String.

appCodeName
This property is of type String.

userAgent
This property is of type String.

ddeBackChannel
This property is of type String.

ddeContentLevel
This property is of type String.

ddeSourceId
This property is of type String.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 97

ddeEnabled
This property is of type Boolean.

ddeReleasable
This property is of type Boolean.

Object Window
The Window object has the following additional methods and properties:

navigator
This property is of type Navigator.

history
This property is of type History.

window
This property is of type Window.

self
This property is of type Window.

parent
This property is of type Window or void.

top
This property is of type Window.

opener
This property is of type Window.

frames
This property is of type HTMLCollection.

length
This property is of type Number.

name
This property is of type String.

document
This property is of type HTMLDocument.

status
This property is of type String.

defaultStatus
This property is of type String.

opener
This property is of type Window.

alert(message)
This method returns a void. The message parameter is of type String.

confirm(message)
This method returns a boolean. The message parameter is of type String.

prompt(message, defaultResponse)
This method returns a String. The message parameter is of type String. The
defaultResponse parameter is of type String.

setTimeout(statement, delay)
This method returns a Number. The statement parameter is of type String. The
delay parameter is of type Number.

clearTimeout(timerId)
This method returns a void. The timerId parameter is of type Number.

close()
This method returns a void.

open(url, name, features)
This method returns a Window or void. The url parameter is of type String. The
name parameter is of type String. The features parameter is of type String.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 98

D.4 Events Extensions Module Bindings

Object KeyEvent
The KeyEvent object has the following methods and properties (in addition to those derived

from the [DOM2-EVENTS] UIEvent interface bindings):
outputString

This property is of type String.
keyVal

This property is of type Number.
virtKeyVal

This property is of type Number.
visibleOutputGenerated

This property is of type Boolean.
numPad

This property is of type Boolean.
initKeyEvent(type, canBubble, cancelable, view, detail, outputString, keyVal,

virtKeyVal, visibleOutputGenerated, numPad)
This method returns a void. The type and outputString parameters are of type
String. The canBubble, cancelable, visibleOutputGenerated, and numPad
parameters are of type Boolean. The detail, keyVal, and virtKeyVal parameters are
of type Number. The view parameter is of type AbstractView.

initModifier(modifier, value)
This method returns a void. The modifier parameter is of type Number. The value
parameter is of type Boolean.

checkModifier(modifier)
This method returns a Boolean. The modifier parameter is of type Number.

Class KeyModifiers
The KeyModifiers object class (prototype object) has the following properties:

MOD_NONE
This constant property is of type Number and its value is 0.

MOD_SHIFT
This constant property is of type Number and its value is 1.

MOD_CONTROL
This constant property is of type Number and its value is 2.

MOD_META
This constant property is of type Number and its value is 4.

MOD_ALT
This constant property is of type Number and its value is 8.

Class VirtualKeys
The VirtualKeys object class (prototype object) has the following properties:

VK_UNDEFINED
This constant property is of type Number and its value is 0.

VK_CANCEL
This constant property is of type Number and its value is 3.

VK_BACK_SPACE
This constant property is of type Number and its value is 8.

VK_TAB
This constant property is of type Number and its value is 9.

VK_ENTER
This constant property is of type Number and its value is 10.

VK_CLEAR
This constant property is of type Number and its value is 12;

VK_SHIFT
This constant property is of type Number and its value is 16;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 99

VK_CONTROL
This constant property is of type Number and its value is 17;

VK_ALT
This constant property is of type Number and its value is 18;

VK_PAUSE
This constant property is of type Number and its value is 19;

VK_CAPS_LOCK
This constant property is of type Number and its value is 20;

VK_KANA
This constant property is of type Number and its value is 21;

VK_FINAL
This constant property is of type Number and its value is 24;

VK_KANJI
This constant property is of type Number and its value is 25;

VK_ESCAPE
This constant property is of type Number and its value is 27;

VK_CONVERT
This constant property is of type Number and its value is 28;

VK_NONCONVERT
This constant property is of type Number and its value is 29;

VK_ACCEPT
This constant property is of type Number and its value is 30;

VK_MODECHANGE
This constant property is of type Number and its value is 31;

VK_SPACE
This constant property is of type Number and its value is 32;

VK_PAGE_UP
This constant property is of type Number and its value is 33;

VK_PAGE_DOWN
This constant property is of type Number and its value is 34;

VK_END
This constant property is of type Number and its value is 35;

VK_HOME
This constant property is of type Number and its value is 36;

VK_LEFT
This constant property is of type Number and its value is 37;

VK_UP
This constant property is of type Number and its value is 38;

VK_RIGHT
This constant property is of type Number and its value is 39;

VK_DOWN
This constant property is of type Number and its value is 40;

VK_COMMA
This constant property is of type Number and its value is 44;

VK_PERIOD
This constant property is of type Number and its value is 46;

VK_SLASH
This constant property is of type Number and its value is 47;

VK_0
This constant property is of type Number and its value is 48;

VK_1
This constant property is of type Number and its value is 49;

VK_2
This constant property is of type Number and its value is 50;

VK_3
This constant property is of type Number and its value is 51;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 100

VK_4
This constant property is of type Number and its value is 52;

VK_5
This constant property is of type Number and its value is 53;

VK_6
This constant property is of type Number and its value is 54;

VK_7
This constant property is of type Number and its value is 55;

VK_8
This constant property is of type Number and its value is 56;

VK_9
This constant property is of type Number and its value is 57;

VK_SEMICOLON
This constant property is of type Number and its value is 59;

VK_EQUALS
This constant property is of type Number and its value is 61;

VK_A
This constant property is of type Number and its value is 65;

VK_B
This constant property is of type Number and its value is 66;

VK_C
This constant property is of type Number and its value is 67;

VK_D
This constant property is of type Number and its value is 68;

VK_E
This constant property is of type Number and its value is 69;

VK_F
This constant property is of type Number and its value is 70;

VK_G
This constant property is of type Number and its value is 71;

VK_H
This constant property is of type Number and its value is 72;

VK_I
This constant property is of type Number and its value is 73;

VK_J
This constant property is of type Number and its value is 74;

VK_K
This constant property is of type Number and its value is 75;

VK_L
This constant property is of type Number and its value is 76;

VK_M
This constant property is of type Number and its value is 77;

VK_N
This constant property is of type Number and its value is 78;

VK_O
This constant property is of type Number and its value is 79;

VK_P
This constant property is of type Number and its value is 80;

VK_Q
This constant property is of type Number and its value is 81;

VK_R
This constant property is of type Number and its value is 82;

VK_S
This constant property is of type Number and its value is 83;

VK_T
This constant property is of type Number and its value is 84;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 101

VK_U
This constant property is of type Number and its value is 85;

VK_V
This constant property is of type Number and its value is 86;

VK_W
This constant property is of type Number and its value is 87;

VK_X
This constant property is of type Number and its value is 88;

VK_Y
This constant property is of type Number and its value is 89;

VK_Z
This constant property is of type Number and its value is 90;

VK_OPEN_BRACKET
This constant property is of type Number and its value is 91;

VK_BACK_SLASH
This constant property is of type Number and its value is 92;

VK_CLOSE_BRACKET
This constant property is of type Number and its value is 93;

VK_NUMPAD0
This constant property is of type Number and its value is 96;

VK_NUMPAD1
This constant property is of type Number and its value is 97;

VK_NUMPAD2
This constant property is of type Number and its value is 98;

VK_NUMPAD3
This constant property is of type Number and its value is 99;

VK_NUMPAD4
This constant property is of type Number and its value is 100;

VK_NUMPAD5
This constant property is of type Number and its value is 101;

VK_NUMPAD6
This constant property is of type Number and its value is 102;

VK_NUMPAD7
This constant property is of type Number and its value is 103;

VK_NUMPAD8
This constant property is of type Number and its value is 104;

VK_NUMPAD9
This constant property is of type Number and its value is 105;

VK_MULTIPLY
This constant property is of type Number and its value is 106;

VK_ADD
This constant property is of type Number and its value is 107;

VK_SEPARATER
This constant property is of type Number and its value is 108;

VK_SUBTRACT
This constant property is of type Number and its value is 109;

VK_DECIMAL
This constant property is of type Number and its value is 110;

VK_DIVIDE
This constant property is of type Number and its value is 111;

VK_F1
This constant property is of type Number and its value is 112;

VK_F2
This constant property is of type Number and its value is 113;

VK_F3
This constant property is of type Number and its value is 114;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 102

VK_F4
This constant property is of type Number and its value is 115;

VK_F5
This constant property is of type Number and its value is 116;

VK_F6
This constant property is of type Number and its value is 117;

VK_F7
This constant property is of type Number and its value is 118;

VK_F8
This constant property is of type Number and its value is 119;

VK_F9
This constant property is of type Number and its value is 120;

VK_F10
This constant property is of type Number and its value is 121;

VK_F11
This constant property is of type Number and its value is 122;

VK_F12
This constant property is of type Number and its value is 123;

VK_DELETE
This constant property is of type Number and its value is 127;

VK_NUM_LOCK
This constant property is of type Number and its value is 144;

VK_SCROLL_LOCK
This constant property is of type Number and its value is 145;

VK_PRINTSCREEN
This constant property is of type Number and its value is 154;

VK_INSERT
This constant property is of type Number and its value is 155;

VK_HELP
This constant property is of type Number and its value is 156;

VK_META
This constant property is of type Number and its value is 157;

VK_BACK_QUOTE
This constant property is of type Number and its value is 192;

VK_QUOTE
This constant property is of type Number and its value is 222;

VK_COLORED_KEY_0
This constant property is of type Number and its value is 403;

VK_COLORED_KEY_1
This constant property is of type Number and its value is 404;

VK_COLORED_KEY_2
This constant property is of type Number and its value is 405;

VK_COLORED_KEY_3
This constant property is of type Number and its value is 406;

VK_COLORED_KEY_4
This constant property is of type Number and its value is 407;

VK_COLORED_KEY_5
This constant property is of type Number and its value is 408;

VK_POWER
This constant property is of type Number and its value is 409;

VK_DIMMER
This constant property is of type Number and its value is 410;

VK_WINK
This constant property is of type Number and its value is 411;

VK_REWIND
This constant property is of type Number and its value is 412;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 103

VK_STOP
This constant property is of type Number and its value is 413;

VK_EJECT_TOGGLE
This constant property is of type Number and its value is 414;

VK_PLAY
This constant property is of type Number and its value is 415;

VK_RECORD
This constant property is of type Number and its value is 416;

VK_FAST_FWD
This constant property is of type Number and its value is 417;

VK_PLAY_SPEED_UP
This constant property is of type Number and its value is 418;

VK_PLAY_SPEED_DOWN
This constant property is of type Number and its value is 419;

VK_PLAY_SPEED_RESET
This constant property is of type Number and its value is 420;

VK_RECORD_SPEED_NEXT
This constant property is of type Number and its value is 421;

VK_GO_TO_START
This constant property is of type Number and its value is 422;

VK_GO_TO_END
This constant property is of type Number and its value is 423;

VK_TRACK_PREV
This constant property is of type Number and its value is 424;

VK_TRACK_NEXT
This constant property is of type Number and its value is 425;

VK_RANDOM_TOGGLE
This constant property is of type Number and its value is 426;

VK_CHANNEL_UP
This constant property is of type Number and its value is 427;

VK_CHANNEL_DOWN
This constant property is of type Number and its value is 428;

VK_STORE_FAVORITE_0
This constant property is of type Number and its value is 429;

VK_STORE_FAVORITE_1
This constant property is of type Number and its value is 430;

VK_STORE_FAVORITE_2
This constant property is of type Number and its value is 431;

VK_STORE_FAVORITE_3
This constant property is of type Number and its value is 432;

VK_RECALL_FAVORITE_0
This constant property is of type Number and its value is 433;

VK_RECALL_FAVORITE_1
This constant property is of type Number and its value is 434;

VK_RECALL_FAVORITE_2
This constant property is of type Number and its value is 435;

VK_RECALL_FAVORITE_3
This constant property is of type Number and its value is 436;

VK_CLEAR_FAVORITE_0
This constant property is of type Number and its value is 437;

VK_CLEAR_FAVORITE_1
This constant property is of type Number and its value is 438;

VK_CLEAR_FAVORITE_2
This constant property is of type Number and its value is 439;

VK_CLEAR_FAVORITE_3
This constant property is of type Number and its value is 440;

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 104

VK_SCAN_CHANNELS_TOGGLE
This constant property is of type Number and its value is 441;

VK_PINP_TOGGLE
This constant property is of type Number and its value is 442;

VK_SPLIT_SCREEN_TOGGLE
This constant property is of type Number and its value is 443;

VK_DISPLAY_SWAP
This constant property is of type Number and its value is 444;

VK_SCREEN_MODE_NEXT
This constant property is of type Number and its value is 445;

VK_VIDEO_MODE_NEXT
This constant property is of type Number and its value is 446;

VK_VOLUME_UP
This constant property is of type Number and its value is 447;

VK_VOLUME_DOWN
This constant property is of type Number and its value is 448;

VK_MUTE
This constant property is of type Number and its value is 449;

VK_SURROUND_MODE_NEXT
This constant property is of type Number and its value is 450;

VK_BALANCE_RIGHT
This constant property is of type Number and its value is 451;

VK_BALANCE_LEFT
This constant property is of type Number and its value is 452;

VK_FADER_FRONT
This constant property is of type Number and its value is 453;

VK_FADER_REAR
This constant property is of type Number and its value is 454;

VK_BASS_BOOST_UP
This constant property is of type Number and its value is 455;

VK_BASS_BOOST_DOWN
This constant property is of type Number and its value is 456;

VK_INFO
This constant property is of type Number and its value is 457;

VK_GUIDE
This constant property is of type Number and its value is 458;

VK_TELETEXT
This constant property is of type Number and its value is 459;

VK_SUBTITLE
This constant property is of type Number and its value is 460;

D.5 HTML Extensions Module Bindings

Object HTMLAnchorElement
The HTMLAnchorElement object has the following additional properties (in addition to those
derived from [DOM2] bindings):

hash
This property is of type String.

host
This property is of type String.

hostname
This property is of type String.

pathname
This property is of type String.

port
This property is of type String.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 105

protocol
This property is of type String.

search
This property is of type String.

Object HTMLDocumentElement
The HTMLDocumentElement object has the following additional methods and properties (in
addition to those derived from [DOM2] bindings):

location
This property is of type String.

lastModified
This property is of type String.

alinkColor
This property is of type String.

vlinkColor
This property is of type String.

linkColor
This property is of type String.

bgColor
This property is of type String.

fgColor
This property is of type String.

clear()
This method returns a void.

Object HTMLFormElement
The HTMLFormElement object has the following additional properties (in addition to those
derived from [DOM2] bindings):

encoding
This property is of type String.

Object HTMLImageElement
The HTMLImageElement object has the following additional methods and properties (in
addition to those derived from [DOM2] bindings):

complete
This property is of type Boolean.

lowsrc
This property is of type String.

Object HTMLObjectElement
The HTMLObjectElement object has the following additional methods and properties (in
addition to those derived from [DOM2] bindings):

complete
This property is of type Boolean.

lowsrc
This property is of type String.

src
This property is of type String.

The HTMLObjectElement object has the following additional properties in certain cases

described in Section 5.3.1.2.3.7:

backChannel
This property is of type String.

contentLevel
This property is of type String.

sourceId
This property is of type String.

enabled
This property is of type Boolean.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 106

releasable
This property is of type Boolean.

D.6 Views Extensions Module Bindings

Object DocumentView
The DocumentView object has the following additional properties (in addition to those
derived from [DOM2] bindings):

refWidthMm
This property is of type Number.

refHeightMm
This property is of type Number.

gfxPosX
This property is of type Number.

gfxPosY
This property is of type Number.

gfxWidth
This property is of type Number.

gfxHeight
This property is of type Number.

gfxWidthPx
This property is of type Number.

gfxHeightPx
This property is of type Number.

refreshOnChange
This property is of type Boolean.

sampleBitsR
This property is of type Number.

sampleBitsG
This property is of type Number.

sampleBitsB
This property is of type Number.

sampleBitsA
This property is of type Number.

vidPosX
This property is of type Number.

vidPosY
This property is of type Number.

vidWidth
This property is of type Number.

vidHeight
This property is of type Number.

vidWidthPx
This property is of type Number.

vidHeightPx
This property is of type Number.

refresh(id)
This method returns a boolean. The id parameter is of type String.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 107

ANNEX E. UNSUPPORTED HTML FEATURES

The entirety of this section and its subsections is informative.

This annex describes features of [HTML] which are only partially supported or are entirely
unsupported by this specification. These features are divided into syntactic and semantic
features. Syntactic features pertain to the lexical grammar of [HTML], while semantic features
pertain to the vocabulary of [HTML]; i.e., the collection of elements and attributes defined by
[HTML] and their implicit or explicit meaning.

Note: Features of [HTML] which are not directly supported by this specification, but are

indirectly supported through transcoding are not specified in this annex. See ANNEX F,

Transcoding HTML to XDML, for further information on transcoding of [HTML] features.

E.1 Syntax

This section describes unsupported syntactic features of [HTML].

E.1.1 Case Insensitivity

The syntax of [HTML] is derived from [SGML], which specifies that the names of elements
and attributes are not sensitive to distinctions in case (i.e., uppercase and lowercase name
characters are interpreted as identical for the purpose of name matching). This case insensitivity

is not supported by application/xhtml+xml content, being derived from [XML] which is case
sensitive in all names.

E.1.2 Markup Minimization

The syntax of [HTML] is derived from [SGML], which provides a syntactic feature known as
the (markup) minimization feature. Two specific types of the minimization feature, OMITTAG and
SHORTTAG, are partially supported by [HTML] but not by [XML], from which the markup content
defined of this specification is derived.

E.1.2.1 OMITTAG

The OMITTAG feature permits the elision of either the start or end tag of elements in certain
contexts. This feature, fully supported by [HTML] according to the specific element declarations of
the [HTML] document types, is not supported by this specification.

E.1.2.1.1 Omitted Start Tag

The OMITTAG feature permits omission of a start tag if the element is a contextually
required element and any other elements that could occur are contextually optional elements,
except if the element type has a required attribute or the content of the instance of the element is
empty. See [SGML], Clause 7.3.1.1. This omission is not supported by this specification.

Example: The following shows the omission permissible by [HTML] and the equivalent,

more constrained syntax required by [XML] as expressed in application/xhtml+xml content.
Note that in the text/html example, the start tags of the html, head, and body elements are
missing even though the end tags are present.

text/html:

<title>Title</title>
</head>
<p>Some Text</p>
</body>
</html>

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 108

application/xhtml+xml:

<html>
<head>
<title>Title</title>
</head>
<body>
<p>Some Text</p>
</body>
</html>

E.1.2.1.2 Omitted End Tag

The OMITTAG feature permits omission of an end tag if the element is followed by the end
of the document entity, the end tag of another open element, or by an element or SGML
character that is not allowed in its content. See [SGML], Clause 7.3.1.2. This omission is not
supported by this specification.

Example: The following shows the omission permissible by [HTML] and the equivalent,

more constrained syntax required by [XML] as expressed in application/xhtml+xml content.

Note that in the text/html example, the end tags of html, head, body, and p elements are
missing even though the start tags are present. The appearance of the p element’s start tag
automatically closes the head element. The appearance of the end of the document entity
automatically closes the p, body, and html elements.

text/html:

<html>
<head>
<title>Title</title>
<body>
<p>Some Text

application/xhtml+xml:

<html>
<head>
<title>Title</title>
</head>
<body>
<p>Some Text</p>
</body>
</html>

E.1.2.2 SHORTTAG

The SHORTTAG feature permits the elision of parts of attribute specifications in certain
contexts. This feature, partially supported by [HTML] according to the specific attribute
declarations of the [HTML] document types, is not supported by this specification.

E.1.2.2.1 Omitted Attribute Name

The SHORTTAG feature permits omission of an attribute name from an attribute
specification if the attribute value specification is an undelimited name token that is a member of
a group specified in the declared value for that attribute. See [SGML], Clause 7.9.1.2. This
omission is not supported by this specification.

Example: The following shows the omission permissible by [HTML] and the equivalent,

more constrained syntax required by [XML] as expressed in application/xhtml+xml content.

text/html:

<object declare>

application/xhtml+xml:

<object declare="declare">

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 109

E.1.2.2.2 Omitted Attribute Value Literal Delimiters

The SHORTTAG feature permits omission of delimiters from an attribute value literal if the
attribute value contains nothing but name characters. See [SGML], Clause 7.9.3.1. This omission
is not supported by this specification.

Example: The following shows the omission permissible by [HTML] and the equivalent,

more constrained syntax required by [XML] as expressed in application/xhtml+xml content.

text/html:

<object data=obj.png>

application/xhtml+xml:

<object data="obj.png">

E.1.3 Reference End

The syntax of [HTML], being derived from [SGML], permits a character reference to omit the

reference end (either refc or RE) if the reference is not followed by a character that could be
interpreted as the omitted reference end. See [SGML], Clause 9.4.5. This omission is not
supported by this specification.

Example: The following shows the omission permissible by [HTML] and the equivalent,

more constrained syntax required by [XML] as expressed in application/xhtml+xml content. In
the following, the character reference found in the content attribute value has omitted the

reference close (refc) delimiter ';' since the closing attribute value literal delimiter (lit) '"'
cannot be part of the character reference. In contrast, the delimiter must be present in

application/xhtml+xml content.

text/html:

<meta name="eg" content="<">

application/xhtml+xml:

<meta name="eg" content="<"/>

E.2 Semantics

This section describes constraints on partially supported attributes and elements as well as
entirely unsupported attributes and elements.

E.2.1 Constrained Attribute Interpretation

The semantics of the following attributes are constrained. A consequence of this lack of
support is that the information expressed by these attributes will be lost in certain well-defined
cases when performing round-trip transcoding from [HTML] to XDML and back to [HTML].

Note: Notwithstanding the above, it is possible to retain this information through a round-
trip mapping by the use of either structured comments or processing instructions. This
requires (1) that no subsequent process remove these comments or processing
instructions prior to reverse transcoding and (2) that the reverse transcoding process be
aware of the precise nature of this mapping process. This specification does not define a
standard form for such a mapping.

E.2.1.1 alt attribute

The alt attribute on the applet element is not supported if the applet element has non-

whitespace #PCDATA content or has child elements which are not param elements.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 110

E.2.2 Unsupported Attributes

The semantics of the following attributes is not supported. A consequence of this lack of
support is that the information expressed by these attributes will be lost when performing round-
trip transcoding from [HTML] to XDML and back to [HTML].

Note: Notwithstanding the above, it is possible to retain this information through a round-
trip mapping by the use of either structured comments or processing instructions. This
requires (1) that no subsequent process remove these comments or processing
instructions prior to reverse transcoding and (2) that the reverse transcoding process be
aware of the precise nature of this mapping process. This specification does not define a
standard form for such a mapping.

E.2.2.1 cite attribute

The cite attribute on del and ins elements is not supported.

E.2.2.2 compact attribute

The compact attribute on dir, dl, menu, ol, and ul elements is not supported.

E.2.2.3 datetime attribute

The datetime attribute on del and ins elements is not supported.

E.2.2.4 ismap attribute

The ismap attribute on img and input elements is not supported.

E.2.3 Constrained Element Interpretation

The semantics of the following elements are constrained. A consequence of this lack of
support is that the information expressed by these elements will be lost in certain well-defined
cases when performing round-trip transcoding from [HTML] to XDML and back to [HTML].

Note: Notwithstanding the above, it is possible to retain this information through a round-
trip mapping by the use of either structured comments or processing instructions. This
requires (1) that no subsequent process remove these comments or processing
instructions prior to reverse transcoding and (2) that the reverse transcoding process be
aware of the precise nature of this mapping process. This specification does not define a
standard form for such a mapping.

E.2.3.1 basefont element

The basefont element is not supported in any context other than as a child of the body
element.

E.2.3.2 input element

The input element is not supported when the value of the type attribute is file.

E.2.3.3 isindex element

The isindex element is not supported as a child of the head element.

E.2.3.4 noframes element

The noframes element is not supported in any context other than as a child of the frameset
element.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 111

E.2.3.5 script element

The script element is not supported when the value of the type attribute is not

text/ecmascript.

E.2.3.6 style element

The style element is not supported when the value of the type attribute is not text/css.

E.2.4 Unsupported Elements

The semantics of the following elements is not supported. A consequence of this lack of
support is that the information expressed by these elements will be lost when performing round-
trip transcoding from [HTML] to XDML and back to [HTML].

Note: Notwithstanding the above, it is possible to retain this information through a round-
trip mapping by the use of either structured comments or processing instructions. This
requires (1) that no subsequent process remove these comments or processing
instructions prior to reverse transcoding and (2) that the reverse transcoding process be
aware of the precise nature of this mapping process. This specification does not define a
standard form for such a mapping.

E.2.4.1 iframe element

The functionality of the iframe element is not supported. The content of the iframe element
is retained as alternate content to be presented to the end-user.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 112

ANNEX F. TRANSCODING HTML TO XDML

The entirety of this section and its subsections is informative.

This annex describes a simple process by means of which legacy content based on [HTML]
may be transcoded into XDML, the XHTML-based markup language content defined by this
specification.

The process described below is one of a number of possible processes which support
transcoding of [HTML] into XDML. This process is intentionally made simple in order to support
real-time transcoding prior to transmission. In particular, it does not require multiple passes or the
generation of a full, in-memory representation of the document. Furthermore, it does not require
look ahead by the source parser.

The transcoding process consists of the following steps, which consist of two pre-processing
steps (1-2) and one primary mapping step (3):

(1) validate source document;
(2) if document is invalid, apply fix-ups then repeat step (1);
(3) for each comment, processing instruction, document type declaration, start tag, end tag,

named character reference, numeric character reference, marked section, and
contiguous sequence of #PCDATA content parsed in the valid source document, output a
result string to the target document as described in the following subsections; while
performing this step, maintain a stack of open elements in order to (a) imply start tags
omitted from the source document; (b) imply end tags omitted from the source document;
and (c) provide ancestor context in order to effect certain contextual constraints

described in ANNEX E.

If the source document is known a priori to be valid, then pre-processing steps (1) and (2)
can be omitted.

Note: In the following subsections, the transcoding of certain presentation-oriented
markup is accomplished by mapping this information to style properties expressed with
the inline style attribute. A transcoding process may wish to coalesce all such generated
style attributes into a single stylesheet embedded within the generated, target document,
using either an id attribute or a class attribute to associate an element with its
corresponding stylesheet rule.

Note: When generating style properties, a transcoder should take into account the
potential for conflicts of cascading order between synthesized styles specified by use of
the inline style attribute and styles specified using style rules which appear in the source
document.

F.1 Syntax

The syntax of HTML is based on [SGML], whereas the syntax of XDML is based on
[XHTMLMOD] a reformulation of HTML using [XML]. The syntax of an XDML document instance
is a subset of the syntax of an HTML document instance. In order to transcode HTML source
documents into XDML target documents, it is necessary to account for certain differences in the
syntax permitted by [XML] from that permitted by [SGML]. The following subsections describe
how to transcode syntactic elements between these two syntaxes.

F.1.1 Character Encodings

If the character encoding system of the source document is ISO-8859-1, then map to a
target document using ISO-8859-1; otherwise, map to a target document using UTF-8,
performing character transcoding as required.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 113

F.1.2 Comments

With the exception of comments in script and style elements, map comments and their
content to the null string. See Sections F.2.2.70 and F.2.2.76 for treatment of comments in script
and style elements.

F.1.3 Processing Instructions

Map processing instructions and their content to the null string.

F.1.4 Document Type Declaration

When transcoding a document as opposed to a document fragment, map the document
type declaration to a valid XDML document type declaration according to Section 5.1.1.4. In
particular, map the public and system identifiers to valid target identifiers and map the internal
declaration subset, if present, to a null string. When transcoding a document fragment, do not
generate a document type declaration in the target fragment.

In the case that the source document specifies the strict, frameset, or transitional document
types of [HTML], the target document uses the XDML document type.

Note: Although [SGML] permits an SGML application, such as [HTML], to specify an
internal declaration subset, [HTML] itself does not explicitly support the use of an internal
declaration subset. Since very few HTML user agents support the use of an internal
declaration subset, it is safe to ignore such usage.

F.1.5 Elements

Map the start tag of elements declared to have empty content to an empty element tag
[XML:44]. Map implicit or explicit start and end tags of elements not declared to have empty
content to valid XML start and end tags [XML:40 and XML:42].

F.1.6 Character References

Map named character references directly: all named character references defined by
[HTML] are also present in XDML. Map numeric character references directly only if it can be
ascertained that the source document uses character numbers which adhere to the document
character set of [HTML]; otherwise, map numeric character references to a substitution character,

e.g., '?'.

If a source character reference omits the reference end, then a refc delimiter ';' is to be
supplied in the target character reference. See Section E.1.3.

F.1.7 Marked Sections

If an included marked section appears in the source document, then map the marked
section’s delimiters to the null string, transcoding the content of the marked section. If an ignored
marked section appears in the source document, then map the marked section and its contents to

the null string. If a CDATA marked section appears in the source document, then map the marked
section (delimiters and content) to the target document without alteration; that is, do not perform

transcoding on the marked section’s contents. If an RCDATA marked section appears in the source

document, then map the marked section (delimiters and content) to a CDATA marked section in
the target document while transcoding any embedded character references.

Note: An included marked section is a marked section whose effective status keyword is

INCLUDE or TEMP. An ignored marked section is a marked section whose effective status

keyword is IGNORE. A CDATA marked section is a marked section whose effective status

keyword is CDATA. An RCDATA marked section is a marked section whose effective

status keyword is RCDATA.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 114

F.2 Semantics

The semantics of [HTML] are determined by its vocabulary. This vocabulary comprises a
collection of common attributes, which apply to the majority of elements, and a collection of
elements. The vocabulary of XDML, the target content type for this transcoding process, is, at
present, a subset of the [HTML] vocabulary, being based on [XHTMLMOD], which ultimately
derives its vocabulary from [HTML]. Being a subset of the [HTML] vocabulary makes it relatively
straightforward to map the semantics of [HTML] to XDML. The instances where this mapping is
not trivial derive from the following: (1) the subset nature of XDML, and (2) the use of an XML
based markup language (XHTML) rather than an SGML based markup language.

F.2.1 Common Attributes

A majority of elements defined by [HTML] permit the use of a collection of common
attributes. Mappings for these attributes are described in the following subsections.

Note: Only the lang common attribute requires special treatment during transcoding.

F.2.1.1 class attribute

No special treatment is required; an identity mapping applies.

F.2.1.2 dir attribute

No special treatment is required; an identity mapping applies.

F.2.1.3 id attribute

No special treatment is required; an identity mapping applies.

F.2.1.4 lang attribute

Map to the xml:lang attribute, the value remaining unchanged.

F.2.1.5 on{click,dblclick,mouse*,key*} attributes

No special treatment is required; an identity mapping applies.

F.2.1.6 style attribute

No special treatment is required; an identity mapping applies.

F.2.1.7 title attribute

No special treatment is required; an identity mapping applies.

F.2.2 Elements

The following subsections specify mappings for each of the ninety-one (91) elements
defined by [HTML].

F.2.2.1 a element

Except for the href and common attributes, no special treatment is required; an identity
mapping applies.

If the URI value of the href attribute employs the "http:" URI scheme, then map the

scheme token to "lid:" and repackage the referenced resource as a local resource. If the URI

value employs the "javascript:" URI scheme, then map the scheme token to "ecmascript:".
Otherwise, an identity mapping applies for the attribute value.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 115

F.2.2.2 abbr element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.3 acronym element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.4 address element

With the exception of permissible content and common attributes, no special treatment is
required; an identity mapping applies. In regards to permissible content, if a p element appears in
the content of an address element in the source document, then each such p element is to be
mapped to a span element with block display semantics, where the span element’s content is the
content of the p element.

Block display semantics on a span element are obtained by using an inline style attribute

with the value "display: block".

If an align attribute appears on a p element which is mapped to a span element according to
the above process, then the align attribute is to be mapped to the inline style attribute on the span
element according to the procedure specified in Section F.2.2.64.

F.2.2.5 applet element

Map the applet element to the object element, and, with the exception of align, alt, code,
hspace, object, vspace, and common attributes, no special treatment is required; an identity
mapping applies.

Map the align attribute, if present and a valid, non-empty value, to an inline style attribute as

follows: (1) if an align attribute is present and its value is one of left | right, then map to an

inline style attribute with the value "float: <value>", where <value> is identical to the value of

the align attribute; or (2) if an align attribute is present and its value is bottom | middle | top,

then map to an inline style attribute with the value "vertical-align: <value>", where <value>
is identical to the value of the align attribute.

Map the alt attribute, if present, to either (1) #PCDATA content appearing as a child of the
target object element or (2) to the title attribute. If the source applet element has no non-

whitespace #PCDATA content and no child elements or if all child elements are param elements,

then the value of the alt attribute is to be mapped to #PCDATA content appearing as a child of the

target object element. Otherwise, if the source applet element has non-whitespace #PCDATA
content or has child elements which are not param elements, then map the alt attribute to the title
attribute, if no title attribute is present, or to a prefix or suffix of the value of the title attribute, if a
title attribute is present on the source applet element.

Map the code attribute, if present, to a classid attribute, where the value of the target object
element’s classid attribute is identical to the value of the source applet element’s code attribute. If

the URI value of the classid attribute employs the "http:" URI scheme, then map the scheme

token to "lid:" and repackage the referenced resource as a local resource.

Map the hspace attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "margin-left: <value>px; margin-right: <value>px", where <value> is
identical to the value of the hspace attribute.

Map the object attribute, if present, to a data attribute, where the value of the target object
element’s data attribute is identical to the value of the source applet element’s object attribute.

Map the vspace attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "margin-top: <value>px; margin-bottom: <value>px", where <value> is
identical to the value of the vspace attribute.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 116

If the above mappings would cause the creation of multiple inline style attributes, then the
values of these multiple attributes are to be collected and expressed in a single inline style
attribute.

F.2.2.6 area element

Except for the href and common attributes, no special treatment is required; an identity
mapping applies.

If the URI value of the href attribute employs the "http:" URI scheme, then map the

scheme token to "lid:" and repackage the referenced resource as a local resource. If the URI

value employs the "javascript:" URI scheme, then map the scheme token to "ecmascript:".
Otherwise, an identity mapping applies for the attribute value.

F.2.2.7 b element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.8 base element

Map the base element to an xml:base attribute, as described in [XMLBASE], on all
subsequent elements of the head element (i.e., the parent element of the base element) and on
the document’s sole body or frameset element.

If the URI value of the href attribute employs the "http:" URI scheme, then map the

scheme token to "lid:". Otherwise, an identity mapping applies for the attribute value.

F.2.2.9 basefont element

If a basefont element appears as a child of a body element in the source document, then
map the basefont element to a div element with an inline style attribute which expresses (1) inline
display semantics; (2) the value of the required size attribute; and (3) the values of the optional
color and face attributes, if present. If a basefont element appears anywhere other than as a child
of the body element, then map the basefont element to an empty string.

Inline display semantics are obtained by using an inline style attribute with the value

"display: inline".

Map the size attribute to an inline style attribute with the value "font-size: absolute

size", where absolute size is determined from the value of the size attribute according to
Table 7 Legacy Font Size Attribute Mappings:.

Map the color attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "color: color", where color is identical to the value of the color attribute.

Map the face attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "font-family: family", where family is identical to the value of the face
attribute, except that, if the value of the face attribute contains any whitespace characters, then

family is to be further quoted with single-quote (') characters or with an equivalent entity or

character reference, i.e., ' or '.

If the above mappings would cause the creation of multiple inline style attributes, then the
values of these multiple attributes are to be collected and expressed in a single inline style
attribute.

If a basefont element is mapped to a div element as described above, the start tag of the div
element replaces the basefont element (which has empty content, and, therefore, has only a start
tag and no end tag). The end tag of the div element is then inserted immediately prior to the
target mapping of the next sibling basefont element, if any exists; otherwise, it is inserted
immediately prior to the end tag of the enclosing body element.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 117

If multiple basefont elements are mapped and those elements contain the optional color or
face attributes, then the values of these attributes are to be repeatedly mapped on subsequent
basefont element mappings unless the subsequent element specifies a new value for one of
these optional attributes. If a new value for one of these optional attributes is empty or is
otherwise invalid, then do not repeatedly map that optional attribute mapping; instead, reset any
repeated mapping of that optional attribute (i.e., discontinue repeated mapping for that attribute).

Note: The transcoding process described above may be implemented without requiring
either look ahead or a tree representation with full nesting context. Three state variables
suffice for implementing this algorithm: (1) a boolean valued variable indicating whether
the immediate parent element is a body element, (2) a string valued variable containing an
empty string or the value of a color attribute of the most recently mapped basefont
element which specified a color attribute, and (3) a string valued variable containing an
empty string or the value of a face attribute of the most recently mapped basefont element
which specified a face attribute.

Note: By using a less simplistic transcoding process, it is possible to eliminate the
restriction of mapping only those basefont elements that appear as children of a body
element. In particular, by creating a full tree representation of the source document, it can
be determined which elements would be affected by the semantics of basefont elements
independently of where the affected elements or the basefont elements appear in the tree.
Once the affected element set is determined, then an inline style attribute that reflects
basefont semantics can be instantiated on only those elements without introducing div
elements as placeholders for inheritable style properties.

Example: The following depicts a source and target fragment after performing the mappings
described above. Note that this example shows the repeated use of the optional color and face
attribute mappings as described in the previous paragraph.

Source Fragment:

<body>
<p>text1</p>
<basefont size="1">
<p>text2</p>
<basefont size="1" color="red">
<p>text3</p>
<basefont size="3" face="Arial Bold">
<p>text4</p>
<basefont size="4" color="blue" face="">
<p>text5</p>
</body>

Target Fragment:

<body>
<p>text1</p>
<!-- map 1st basefont -->
<div style="display: inline; font-size: xx-small">
<p>text2</p>
</div>
<!-- map 2nd basefont -->
<div style="display: inline; font-size: xx-small; color: red">
<p>text3</p>
</div>
<!-- map 3rd basefont -->
<div style="display: inline; font-size: medium; color: red; font-family: 'Arial Bold'">
<p>text4</p>
</div>
<!-- map 4th basefont -->
<div style="display: inline; font-size: large; color: blue">
<p>text5</p>
</div>
</body>

F.2.2.10 bdo element

Except for common attributes, no special treatment is required; an identity mapping applies.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 118

F.2.2.11 big element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.12 blockquote element

Except for the cite and common attributes, no special treatment is required; an identity
mapping applies.

If the URI value of the cite attribute employs the "http:" URI scheme, then map the

scheme token to "lid:" and repackage the referenced resource as a local resource.

F.2.2.13 body element

With the exception of permissible content, alink, background, bgcolor, link, text, vlink, and
common attributes, no special treatment is required; an identity mapping applies. In regards to

permissible content, if %Inline.mix; content or non-whitespace #PCDATA appears in the content
of a body element in the source document, then one or more div elements with inline display
semantics is to be inserted in the target document, with each div element’s content being the

original %Inline.mix; element content or the non-whitespace #PCDATA content.

Inline display semantics on a div element are obtained by using an inline style attribute with

the value "display: inline".

If non-whitespace #PCDATA is enclosed in a div element as described above, then any

whitespace #PCDATA that appears at the periphery (boundaries) of this non-whitespace #PCDATA
is also enclosed by the div element.

If multiple, contiguous sibling div elements would be inserted by following the process
described above, then these sibling elements may be collapsed into a single div element. In this

case, any whitespace #PCDATA which appears between children of the blockquote element in the
source document is also to appear in the content of the single target div element. Use of a single
target div element is preferred over multiple contiguous target div elements.

See Section A.1.2 for the definition of %Inline.mix; content.

Map the alink attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "color: <value>", where <value> is identical to the value of the alink attribute.
This value is to be expressed within a declarations non-terminal enclosed in curly braces within

two rules with the following selectors: (1) an a:link:active dynamic pseudo-class selector and

(2) an a:visited:active dynamic pseudo-class selector, with both rules being expressed
according to the syntax specified in Section 5.2.1.9.

Map the background attribute, if present and a valid, non-empty value, to an inline style

attribute with the value "background-image: url(<value>)", where <value> is identical to the
value of the background attribute. If an alink, link, or vlink attribute is present in the source
element, then this value is to be expressed within a declarations non-terminal enclosed in curly
braces without a selector according to the syntax specified in Section 5.2.1.9.

Map the bgcolor attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "background-color: <value>", where <value> is identical to the value of the
bgcolor attribute. If an alink, link, or vlink attribute is present in the source element, then this value
is to be expressed within a declarations non-terminal enclosed in curly braces without a selector
according to the syntax specified in Section 5.2.1.9.

Map the link attribute, if present and a valid, non-empty value, to an inline style attribute with

the value "color: <value>", where <value> is identical to the value of the link attribute. This
value is to be expressed within a declarations non-terminal enclosed in curly braces with an

a:link pseudo-class selector according to the syntax specified in Section 5.2.1.9.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 119

Map the text attribute, if present and a valid, non-empty value, to an inline style attribute with

the value "color: <value>", where <value> is identical to the value of the text attribute. If an
alink, link, or vlink attribute is present in the source element, then this value is to be expressed
within a declarations non-terminal enclosed in curly braces without a selector according to the
syntax specified in Section 5.2.1.9.

Map the vlink attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "color: <value>", where <value> is identical to the value of the vlink attribute.
This value is to be expressed within a declarations non-terminal enclosed in curly braces with an

a:visited link pseudo-class selector according to the syntax specified in Section 5.2.1.9.

If the above mappings would cause the creation of multiple inline style attributes, then the
values of these multiple attributes are to be collected and expressed in a single inline style
attribute.

Example: The following depicts a source and two equivalent target fragments after
performing the mappings described above. The first target fragment does not merge multiple,
contiguous sibling div elements, while the second target fragment does perform a merge. This
example also shows the use of the more complex form of inline style attribute syntax required to
specify inline rule-sets with pseudo-class selectors.

Source Fragment:

<body background="bg.png" text="blue" vlink="red">
text1
text2
text3
<p>text4</p>
</blockquote>

Target Fragment #1:

<body style="{ background-image: url(bg.png); color: blue } a:visited { color: red }">
<div style="display: inline">
text1
</div>
<div style="display: inline">
text2
</div>
<div style="display: inline">
text3
</div>
<p>text4</p>
</body>

Target Fragment #2:

<body style="{ background-image: url(bg.png); color: blue } a:visited { color: red }">
<div style="display: inline">
text1
text2
text3
</div>
<p>text4</p>
</body>

F.2.2.14 br element

Map the clear attribute to an inline style attribute as follows: (1) if a clear attribute is present

and its value is one of none | left | right, then map to an inline style attribute with the value

"clear: <value>", where <value> is identical to the value of the clear attribute; or (2) if a clear

attribute is present and its value is all, then map to an inline style attribute with the value

"clear: both". Otherwise, except for common attributes, no special treatment is required; an
identity mapping applies.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 120

F.2.2.15 button element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.16 caption element

With the exception of the align and common attributes, no special treatment is required; an
identity mapping applies.

Map the align attribute to an inline style attribute as follows: if an align attribute is present

and its value is one of top | bottom | left | right |, then map to an inline style attribute with

the value "caption-side: <value>", where <value> is identical to the value of the align
attribute.

F.2.2.17 center element

Map the center element to the div element with an inline style attribute with the value

"text-align: center". Otherwise, except for common attributes, no special treatment is
required; an identity mapping applies.

F.2.2.18 cite element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.19 code element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.20 col element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.21 colgroup element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.22 dd element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.23 del element

Map the ins element to the div element with block or inline display semantics, and, with the
exception of cite, datetime, and common attributes, no special treatment is required; an identity
mapping applies.

If the source ins element appears in block display context, then the target div element is to

specify block display semantics by using an inline style attribute with the value "display:

block". Otherwise, the target div element is to specify inline display semantics by using an inline

style attribute with the value "display: inline".

Map the cite attribute to the null string.

Map the datetime attribute to the null string.

F.2.2.24 dfn element

Except for common attributes, no special treatment is required; an identity mapping applies.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 121

F.2.2.25 dir element

Map the dir element to the ul element, and, with the exception of the compact and common
attributes, no special treatment is required; an identity mapping applies.

Map the compact attribute, if present, to the empty string.

F.2.2.26 div element

Map the align attribute to an inline style attribute as follows: if an align attribute is present

and its value is one of left | center | right | justify, then map to an inline style attribute

with the value "text-align: <value>", where <value> is identical to the value of the align
attribute. Otherwise, except for common attributes, no special treatment is required; an identity
mapping applies.

F.2.2.27 dl element

With the exception of the compact and common attributes, no special treatment is required;
an identity mapping applies.

Map the compact attribute, if present, to the empty string.

F.2.2.28 dt element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.29 em element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.30 fieldset element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.31 font element

Map the font element to the span element with an inline style attribute which expresses the
values of the size, color, and face attributes, if present. Otherwise, except for common attributes,
no special treatment is required; an identity mapping applies.

If a size attribute is present and has an integral value in the range 1 through 7, then map the

size attribute to an inline style attribute with the value "font-size: <absolute size>", where

<absolute size> is determined from the value of the size attribute according to Table 7 Legacy
Font Size Attribute Mappings.

If a size attribute is present and has a signed integral value of -0 or +0, then ignore the size
attribute; i.e., it is mapped to the empty string.

If a size attribute is present and has a signed integral value of -1 or +1, then map the size

attribute to an inline style attribute with the value "font-size: <relative size>", where

<relative size> is either smaller or larger depending upon the sign.

If a size attribute is present and has a signed integral value in the range -3 to -2, then
enclose the content of the target span element mapped by the source font element with either two

or one additional span element(s) with an inline style attribute with the value "font-size:

smaller".

If a size attribute is present and has a signed integral value in the range +3 to +2, then
enclose the content of the target span element mapped by the source font element with either two

or one additional span element(s) with an inline style attribute with the value "font-size:

larger".

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 122

Map the color attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "color: <value>", where <value> is identical to the value of the color attribute.

Map the face attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "font-family: <value>", where <value> is identical to the value of the face
attribute, except that, if the value of the face attribute contains any whitespace characters, then

<value> is to be further quoted with single-quote (') characters or with an equivalent entity or

character reference, i.e., ' or '.

If the above mappings would cause the creation of multiple inline style attributes, then the
values of these multiple attributes are to be collected and expressed in a single inline style
attribute.

Example: The following depicts a source and target fragment after performing the mappings
described above. This example shows the use of a relative font size and the generation of
multiple nested span elements to map the semantics of this usage.

Source Fragment:

text1

Target Fragment:

text1

F.2.2.32 form element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.33 frame element

Except for the longdesc, src and common attributes, no special treatment is required; an
identity mapping applies.

If the URI value of the longdesc attribute employs the "http:" URI scheme, then map the

scheme token to "lid:" and repackage the referenced resource as a local resource. Otherwise,
an identity mapping applies for the attribute value.

If the URI value of the src attribute employs the "http:" URI scheme, then map the

scheme token to "lid:" and repackage the referenced resource as a local resource. If the URI

value employs the "javascript:" URI scheme, then map the scheme token to "ecmascript:".
Otherwise, an identity mapping applies for the attribute value.

F.2.2.34 frameset element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.35 h1 element

Map the align attribute to an inline style attribute as follows: if an align attribute is present

and its value is one of left | center | right | justify, then map to an inline style attribute

with the value "text-align: <value>", where <value> is identical to the value of the align
attribute. Otherwise, except for common attributes, no special treatment is required; an identity
mapping applies.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 123

F.2.2.36 h2 element

Map the align attribute to an inline style attribute as follows: if an align attribute is present

and its value is one of left | center | right | justify, then map to an inline style attribute

with the value "text-align: <value>", where <value> is identical to the value of the align
attribute. Otherwise, except for common attributes, no special treatment is required; an identity
mapping applies.

F.2.2.37 h3 element

Map the align attribute to an inline style attribute as follows: if an align attribute is present

and its value is one of left | center | right | justify, then map to an inline style attribute

with the value "text-align: <value>", where <value> is identical to the value of the align
attribute. Otherwise, except for common attributes, no special treatment is required; an identity
mapping applies.

F.2.2.38 h4 element

Map the align attribute to an inline style attribute as follows: if an align attribute is present

and its value is one of left | center | right | justify, then map to an inline style attribute

with the value "text-align: <value>", where <value> is identical to the value of the align
attribute. Otherwise, except for common attributes, no special treatment is required; an identity
mapping applies.

F.2.2.39 h5 element

Map the align attribute to an inline style attribute as follows: if an align attribute is present

and its value is one of left | center | right | justify, then map to an inline style attribute

with the value "text-align: <value>", where <value> is identical to the value of the align
attribute. Otherwise, except for common attributes, no special treatment is required; an identity
mapping applies.

F.2.2.40 h6 element

Map the align attribute to an inline style attribute as follows: if an align attribute is present

and its value is one of left | center | right | justify, then map to an inline style attribute

with the value "text-align: <value>", where <value> is identical to the value of the align
attribute. Otherwise, except for common attributes, no special treatment is required; an identity
mapping applies.

F.2.2.41 head element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.42 hr element

With the exception of align, noshade, size, width, and common attributes, no special
treatment is required; an identity mapping applies.

Map the align attribute to an inline style attribute as follows: if an align attribute is present

and its value is one of left | center | right, then map to an inline style attribute with the value

"text-align: <value>", where <value> is identical to the value of the align attribute.

Map the noshade attribute, if present, to an inline style attribute with the value "color:

gray".

Map the size attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "height: <value>px", where <value> is identical to the value of the size
attribute.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 124

Map the width attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "width: <value>px", where <value> is identical to the value of the width
attribute.

If the above mappings would cause the creation of multiple inline style attributes, then the
values of these multiple attributes are to be collected and expressed in a single inline style
attribute.

F.2.2.43 html element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.44 i element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.45 iframe element

Map the iframe element to the div element, ignoring all attributes other than common
attributes, which are mapped as described above. See Section F.2.1

F.2.2.46 img element

Map the img element to the object element, and, with the exception of align, alt, border,
hspace, ismap, longdesc, src, vspace, and common attributes, no special treatment is required;
an identity mapping applies.

Map the align attribute, if present and a valid, non-empty value, to an inline style attribute as

follows: (1) if an align attribute is present and its value is one of left | right, then map to an

inline style attribute with the value "float: <value>", where <value> is identical to the value of

the align attribute; or (2) if an align attribute is present and its value is bottom | middle | top,

then map to an inline style attribute with the value "vertical-align: <value>", where <value>
is identical to the value of the align attribute.

Map the alt attribute, if present, to #PCDATA content appearing as a child of the target object
element.

Map the border attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "border: <value>px", where <value> is identical to the value of the border
attribute.

Map the hspace attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "margin-left: <value>px; margin-right: <value>px", where <value> is
identical to the value of the hspace attribute.

Map the ismap attribute, if present, to the null string.

Map the longdesc attribute, if present, to content appearing as a child of the target object
element such that the value of the longdesc attribute is expressed as the value of the href

attribute of a generated a (anchor) child element with the content of the a element being #PCDATA
that indicates the availability of further information. If an alt attribute was also present on the

source img element and mapped to #PCDATA content of the object element, then concatenate the
mapped data or enclose in separate p (paragraph) child elements.

Map the src attribute to a data attribute, where the value of the target object element’s data
attribute is identical to the value of the source img element’s src attribute. In addition, if the URI

value of the src attribute employs the "http:" URI scheme, then map the scheme token to

"lid:" and repackage the referenced resource as a local resource.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 125

Map the vspace attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "margin-top: <value>px; margin-bottom: <value>px", where <value> is
identical to the value of the vspace attribute.

If the above mappings would cause the creation of multiple inline style attributes, then the
values of these multiple attributes are to be collected and expressed in a single inline style
attribute.

Example: The following depicts a source and target fragment after performing the mapping
described above. Notice also the mapping of the URI for the long description reference to reflect
that the target will be transcoded to XDML.

Source Fragment:

Target Fragment:

<object data="foo.png">
<p>An Image</p>
<p>Click here for further information.</p>
</object>

F.2.2.47 input element

With the exception of align, ismap, src, type, and common attributes, no special treatment is
required; an identity mapping applies.

Map the align attribute, if present and a valid, non-empty value, to an inline style attribute as

follows: (1) if an align attribute is present and its value is one of left | right, then map to an

inline style attribute with the value "float: <value>", where <value> is identical to the value of

the align attribute; or (2) if an align attribute is present and its value is bottom | middle | top,

then map to an inline style attribute with the value "vertical-align: <value>", where <value>
is identical to the value of the align attribute.

Map the ismap attribute, if present, to the null string.

If the URI value of the src attribute employs the "http:" URI scheme, then map the

scheme token to "lid:" and repackage the referenced resource as a local resource.

If the value of the type attribute is file, then map this value to hidden in the target
element’s type attribute.

F.2.2.48 ins element

Map the ins element to the div element with block or inline display semantics, and, with the
exception of cite, datetime, and common attributes, no special treatment is required; an identity
mapping applies.

If the source ins element appears in block display context, then the target div element is to

specify block display semantics by using an inline style attribute with the value "display:

block". Otherwise, the target div element is to specify inline display semantics by using an inline

style attribute with the value "display: inline".

Map the cite attribute to the null string.

Map the datetime attribute to the null string.

F.2.2.49 isindex element

Map the isindex element to either an input element or the null string. If the isindex element
appears in block context, then map to an input element as described below; otherwise, map to
the null string.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 126

If the isindex element appears in block context, then perform the following steps: (1) map

the isindex element to an input element with a type attribute with the value text; (2) if no prompt

attribute is present or if it is present and non-empty, then use an #IMPLIED default value for the

prompt attribute, e.g., "Enter Search Keyword(s): "; (3) map the prompt attribute, if implied or

specified, to an enclosing p element containing two children: a #PCDATA node consisting of the
value of the prompt attribute and the target input element; (4) If the source isindex element is not
a child of a form element, then enclose the results of the previous step in a form element with an
action attribute with a value equal to the document’s base resource identifier.

Note: Consideration should be given to [WAI-UAAG] Checkpoint 9.2 regarding the use of
an explicit submit control; in particular, a transcoding process may wish to include within a
generated form element an additional input element with a type attribute with the value

submit.

Example: The following depicts a source and target fragment after performing the mapping
described above. The value of the action attribute of the form element in the target fragment
would be determined from the base resource identifier of the document containing the target
fragment.

Source Fragment:

<isindex prompt="Enter search phrase: ">

Target Fragment:

<form action="..."><p>Enter search phrase: <input type="text"/></p></form>

F.2.2.50 kbd element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.51 label element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.52 legend element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.53 li element

With the exception of the type, value and common attributes, no special treatment is
required; an identity mapping applies.

Map the type attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "list-style-type: <value> ", where <value> is determined from the value of
the type attribute according to the following table:

Table 17 List Element Type Attribute Mapping

1 decimal

a lower-latin

A upper-latin

i lower-roman

I upper-roman

disc disc

square square

circle circle

If the value of the type attribute is not one of the values shown in the first column of the
above table, then map the type attribute to the null string.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 127

Map the value attribute, if present and a valid, non-empty integral value, to an inline style

attribute with the value "counter-reset: item <value - 1>", where <value - 1> is identical
to the integral value of the value attribute minus one.

F.2.2.54 link element

If the rel attribute is present on the source link element and its value is stylesheet, then
map the link element to an xml-stylesheet processing instruction, as described in [XMLSTYLE];
otherwise, map the link element to the null string.

If the URI value of the href attribute employs the "http:" URI scheme, then map the

scheme token to "lid:" and repackage the referenced resource as a local resource.

F.2.2.55 map element

If no id attribute is present in the source map element, then create a new id attribute on the

target map element with a document unique ID value. It is recommended that this value be

formed by concatenating the value of the name value, a colon ':', and a document unique token

that adheres to NMTOKEN syntax. Otherwise, except for common attributes, no special treatment is
required; an identity mapping applies.

Example: The following depicts a source and target fragment after performing the mapping
described above.

Source Fragment:

<map name="map1">
<area href="go.html" alt="Click Here!" shape="rect" coords="100,100,200,200">
</map>

Target Fragment:

<map name="map1" id="map1:id12345">
<area href="go.xhtml" alt="Click Here!" shape="rect" coords="100,100,200,200"/>
</map>

F.2.2.56 menu element

Map the menu element to the ul element, and, with the exception of the compact and
common attributes, no special treatment is required; an identity mapping applies.

Map the compact attribute, if present, to the empty string.

F.2.2.57 meta element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.58 noframes element

With the exception of permissible context of use and common attributes, no special
treatment is required; an identity mapping applies. In regards to permissible context of use, if a
noframes element appears in any context other than as a child of a frameset element, then each
such noframes element is to be mapped to a div element with block display semantics, where the
div element’s content is the content of the noframes element.

Block display semantics on a div element are obtained by using an inline style attribute with

the value "display: block".

F.2.2.59 noscript element

Except for common attributes, no special treatment is required; an identity mapping applies.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 128

F.2.2.60 object element

With the exception of align, archive, border, classid, codebase, data, hspace, ismap,
vspace, and common attributes, no special treatment is required; an identity mapping applies.

Map the align attribute, if present and a valid, non-empty value, to an inline style attribute as

follows: (1) if an align attribute is present and its value is one of left | right, then map to an

inline style attribute with the value "float: <value>", where <value> is identical to the value of

the align attribute; or (2) if an align attribute is present and its value is bottom | middle | top,

then map to an inline style attribute with the value "vertical-align: <value>", where <value>
is identical to the value of the align attribute.

If the URI value of the archive, classid or data attributes employs the "http:" URI scheme,

then map the scheme token to "lid:" and repackage the referenced resource as a local

resource. If the URI value of the codebase attribute employs the "http:" URI scheme, then map

the scheme token to "lid:".

Map the border attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "border: <value>px", where <value> is identical to the value of the border
attribute.

Map the hspace attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "margin-left: <value>px; margin-right: <value>px", where <value> is
identical to the value of the hspace attribute.

Map the ismap attribute, if present, to the null string.

Map the vspace attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "margin-top: <value>px; margin-bottom: <value>px", where <value> is
identical to the value of the vspace attribute.

If the above mappings would cause the creation of multiple inline style attributes, then the
values of these multiple attributes are to be collected and expressed in a single inline style
attribute.

Note: Depending upon the content type of a source object’s data or code, it may be
necessary to transcode the referenced content as well as the value of the type and
codetype attributes in order to satisfy the limitations of content type support by DASE
Declarative Applications.

Note: The type attribute of trigger receiver objects contained in source content according

to [DDE-1] is mapped to application/dase-trigger. See 5.1.1.6.8.2 for further

information.

F.2.2.61 ol element

With the exception of the compact, start, type and common attributes, no special treatment
is required; an identity mapping applies.

Map the compact attribute, if present, to the empty string.

Map the start attribute, if present and a valid, non-empty integral value, to an inline style

attribute with the value "counter-reset: item <value - 1>", where <value - 1> is identical
to the integral value of the start attribute minus one.

Map the type attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "list-style-type: <value> ", where <value> is determined from the value of
the type attribute according to the following table:

Table 18 Ordered List Element Type Attribute Mapping

1 decimal

a lower-latin

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 129

A upper-latin

i lower-roman

I upper-roman

If the value of the type attribute is not one of the values shown in the first column of the
above table, then map the type attribute to the null string.

F.2.2.62 optgroup element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.63 option element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.64 p element

Map the align attribute to an inline style attribute as follows: if an align attribute is present

and its value is one of left | center | right | justify, then map to an inline style attribute

with the value "text-align: <value>", where <value> is identical to the value of the align
attribute. Otherwise, except for common attributes, no special treatment is required; an identity
mapping applies.

F.2.2.65 param element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.66 pre element

With the exception of the width and common attributes, no special treatment is required; an
identity mapping applies.

Map the width attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "width: <value>em", where <value> is identical to the value of the width
attribute.

F.2.2.67 q element

Except for the cite and common attributes, no special treatment is required; an identity
mapping applies.

If the URI value of the cite attribute employs the "http:" URI scheme, then map the

scheme token to "lid:" and repackage the referenced resource as a local resource.

F.2.2.68 s element

Map the s element to the span element with an inline style attribute with the value "text-

decoration: line-through". Otherwise, except for common attributes, no special treatment is
required; an identity mapping applies.

F.2.2.69 samp element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.70 script element

With the exception of element content and the event, for, language, src and common
attributes, no special treatment is required; an identity mapping applies.

Map the CDATA content of the script element to #PCDATA content as follows: (1) remove

markup declaration open (mdo) followed immediately by comment open (co), i.e., "<!--", and

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 130

markup declaration close (mdc) preceded immediately by comment close, i.e., "-->"; and (2)

either substitute entity references for each occurrence of '<' and '&', e.g., using < and

&, respectively, or enclose the result of step (1) in a CDATA marked section.

Map the reserved event attribute, if present, to the null string.

Map the reserved for attribute, if present, to the null string.

Map the language attribute, if present and a valid, non-empty value, to either the type
attribute or the empty string. If the language attribute value specifies a script language that is
syntactically and semantically a subset of [ECMASCRIPT] and no type attribute is present on the
source script element, then create a type attribute on the target script element with the value

text/ecmascript. If a type attribute is present on the source script element and its value is

text/ecmascript, then map the language attribute to the empty string. Otherwise, map the
entire element, including its content, to the null string.

If the URI value of the src attribute employs the "http:" URI scheme, then map the

scheme token to "lid:" and repackage the referenced resource as a local resource. Otherwise,
an identity mapping applies for the attribute value.

Example: The following depicts a source and target fragments after performing the
mappings described above. Two example targets are shown, one using entity references to map

delimiters otherwise recognized in #PCDATA content, the other using a CDATA marked section to

disable #PCDATA delimiter recognition.

Source Fragment:

<script language="Javascript 1.0">
<!--
x &= y << 1;
-->
</script>

Target Fragment #1:

<script type="text/ecmascript">
x &= y << 1;
</script>

Target Fragment #2:

<script type="text/ecmascript">
<![CDATA[
x &= y << 1;
]]>
</script>

F.2.2.71 select element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.72 small element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.73 span element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.74 strike element

Map the strike element to the span element with an inline style attribute with the value

"text-decoration: line-through". Otherwise, except for common attributes, no special
treatment is required; an identity mapping applies.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 131

F.2.2.75 strong element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.76 style element

With the exception of element content and the type and common attributes, no special
treatment is required; an identity mapping applies.

Map the CDATA content of the script element to #PCDATA content as follows: (1) remove

markup declaration open (mdo) followed immediately by comment open (co), i.e., "<!--", and

markup declaration close (mdc) preceded immediately by comment close, i.e., "-->"; and (2)

either substitute entity references for each occurrence of '<' and '&', e.g., using < and

&, respectively, or enclose the result of step (1) in a CDATA marked section.

If the value of the type attribute is not text/css, then map the entire element, including its
content, to the null string.

F.2.2.77 sub element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.78 sup element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.79 table element

With the exception of the align, bgcolor and common attributes, no special treatment is
required; an identity mapping applies.

Map the align attribute to an inline style attribute as follows: if an align attribute is present

and its value is one of left | center |, then map to an inline style attribute with the value

"text-align: <value>", where <value> is identical to the value of the align attribute.

Map the bgcolor attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "background-color: <value>", where <value> is identical to the value of the
bgcolor attribute.

If the above mappings would cause the creation of multiple inline style attributes, then the
values of these multiple attributes are to be collected and expressed in a single inline style
attribute.

F.2.2.80 tbody element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.81 td element

With the exception of the bgcolor, height, nowrap, width and common attributes, no special
treatment is required; an identity mapping applies.

Map the bgcolor attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "background-color: <value>", where <value> is identical to the value of the
bgcolor attribute.

Map the height attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "height: <value>px", where <value> is identical to the value of the height
attribute.

Map the nowrap attribute, if present, to an inline style attribute with the value "white-

space: nowrap".

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 132

Map the width attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "width: <value>px", where <value> is identical to the value of the width
attribute.

If the above mappings would cause the creation of multiple inline style attributes, then the
values of these multiple attributes are to be collected and expressed in a single inline style
attribute.

F.2.2.82 textarea element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.83 tfoot element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.84 th element

With the exception of the bgcolor, height, nowrap, width and common attributes, no special
treatment is required; an identity mapping applies.

Map the bgcolor attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "background-color: <value>", where <value> is identical to the value of the
bgcolor attribute.

Map the height attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "height: <value>px", where <value> is identical to the value of the height
attribute.

Map the nowrap attribute, if present, to an inline style attribute with the value "white-

space: nowrap".

Map the width attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "width: <value>px", where <value> is identical to the value of the width
attribute.

If the above mappings would cause the creation of multiple inline style attributes, then the
values of these multiple attributes are to be collected and expressed in a single inline style
attribute.

F.2.2.85 thead element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.86 title element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.87 tr element

With the exception of the bgcolor and common attributes, no special treatment is required;
an identity mapping applies.

Map the bgcolor attribute, if present and a valid, non-empty value, to an inline style attribute

with the value "background-color: <value>", where <value> is identical to the value of the
bgcolor attribute.

If the above mappings would cause the creation of multiple inline style attributes, then the
values of these multiple attributes are to be collected and expressed in a single inline style
attribute.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 133

F.2.2.88 tt element

Except for common attributes, no special treatment is required; an identity mapping applies.

F.2.2.89 u element

Map the u element to the span element with an inline style attribute with the value "text-

decoration: underline". Otherwise, except for common attributes, no special treatment is
required; an identity mapping applies.

F.2.2.90 ul element

With the exception of the compact, type and common attributes, no special treatment is
required; an identity mapping applies.

Map the compact attribute, if present, to the empty string.

Map the type attribute to an inline style attribute as follows: if a type attribute is present and

its value is one of disc | circle | square, then map to an inline style attribute with the value

"list-style-type: <value>", where <value> is identical to the value of the type attribute.

F.2.2.91 var element

Except for common attributes, no special treatment is required; an identity mapping applies.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 134

ANNEX G. ACCESSIBILITY CONSIDERATIONS

This section is informative.

Wherever possible, authors of a declarative application should follow the guidelines
prescribed by Web Content Accessibility Guidelines 1.0 [WAI-WCAG]. In particular, declarative
applications should adhere to all applicable Priority 1 and 2 checkpoints.

Note: This specification makes certain design choices which force or encourage
adherence to certain [WAI-WCAG] checkpoints: certain legacy, presentation markup (e.g.,
the font element) is not supported, forcing the use of style sheets to represent
presentation information; server-side image maps are not supported, etc.

Wherever possible, implementers of an authoring tool for declarative applications (including
tools used to transcode legacy content into the content types defined by this specification) should
follow the guidelines prescribed by Authoring Tool Accessibility Guidelines 1.0 [WAI-ATAG].

Wherever possible, implementers of a declarative application environment should follow the
guidelines prescribed by User Agent Accessibility Guidelines 1.0 [WAI-UAAG].

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 135

ANNEX H. EXAMPLES OF OBJECT ELEMENT USAGE

The entirety of this section and its subsections is informative.

This annex presents examples of the use of the object element defined by this specification.
See Section 5.1.1.6.8.1 for additional information.

H.1 Active Object Content Example

This example depicts an object element used to reference a MacroMedia Flash™ 5 Movie
which will be decoded and presented by an application specified content decoder implemented as

a Java TV Xlet. The base URI of the containing document is "lid://xyz.com/apps/current/"
for the purpose of this example.

<object

 archive="flash5.jar"

 classid="com/acme/decoder/Flash.class"

 codetype="application/javatv-xlet"

 data="movie.swf"

 type="application/octet-stream"

 alt="A Macromedia Flash Movie"

>

 <param name="arg.0" value="play: true"/>

 <param name="arg.1" value="loop: true"/>

 <param name="arg.2" value="quality: high"/>

</object>

When the Xlet specified by this object element instance is initialized, it will be provided
access via its XlexContext to a set of properties derived from the following:

• "org.atsc.xlet.obj.codebase", "lid://xyz.com/apps/current/"

• "org.atsc.xlet.obj.data", "movie.swf"

• "org.atsc.xlet.obj.type", "application/octet-stream"

• "javax.tv.xlet.args[0]", "play: true"

• "javax.tv.xlet.args[1]", "loop: true"

• "javax.tv.xlet.args[2]", "quality: high"

Note: This example presumes that it is possible to construct a decoder for the Flash 5
content type using facilities permitted by [DASE], Section 4.1.3. Limitations of receiver
performance may restrict the utility of such a decoder.

H.2 Trigger Content Object Element Example

This example depicts an object element which serves as a target for script triggers as
supported by Section 4.5. This object element produces no rendered content except as a
possible side effect of decoding and executing script content contained in triggers which are
targeted to this object element instance.

<object id="target1" type="application/dase-trigger"/>

Note: In general, the use of a trigger content object element is not required in order to use
script triggers; rather, the purpose of the trigger content object element is to support
certain legacy application content.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 136

CHANGES

This section is informative.

Changes from Candidate Standard to Standard

The following table enumerates the changes between the issuance of the candidate
standard edition of this specification and the standard edition.

Table 19 Changes from Candidate Standard

Section Description

1 Change status to standard.

2.1 Add [XHTMLBASIC] normative reference.

2.1 Add [XHTMLMIME] normative reference.

2.1 Change [DOM2-HTML] to W3C Recommendation status.

2.2 Add [DOM2-ERR] informative reference.

4.7 Specify ecmascript resource identifier scheme.

5.1 Change application/xdml+xml to application/xhtml+xml per [XHTMLMIME].

5.1 Remove "Host Language" from XDML FPI to make consistent with [XHTMLMOD] naming rules.

5.1 Add XHTML Basic to list of supported document types per [XHTMLBASIC].

5.1 Merge XDML primary and frameset document types into single document type.

5.1 Specify full XHTML Family User Agent Conformance.

5.1 Genericize "XDML document" to "XHTML document" to account for generic XHTML UA conformance.

5.1 Improve consistency of recommendation to validate markup content.

5.1 Add recommendation to support additional XHTML host language conformant document types.

5.1 Clarify semantics of name attribute with regard to elements which require name attribute.

5.1 Clarify implied default value of name attribute.

5.1 Specify support for base, link, and image modules to facilitate XHTML Basic usage.

5.1 Specify ecmascript resource identifier usage for a (anchor) element.

5.1 Clarify active object xlet context property name usage.

5.1 Specify use of external stylesheet reference via link element, stylesheet relationship.

5.2 Add atsc-dynamic-refresh style property.

5.2 Add atsc-nav-{index,left,right,up,down} style properties.

5.2 Clarify usage of phrase non-standard with regard to W3C usage.

5.3 Deprecate use of StringExt interface functionality.

5.3 Note clarifications and corrections to [DOM2*] found in [DOM2-ERR].

5.3 Insure consistency of interface support tables 8, 10, 11 and 15.

5.3 Note rationale for permitting Attr::ownerElement to be null for defaulted attribute values.

5.3 Specify org.atsc.dom.events feature string for DOMImplementation::hasFeature.

5.3 Insure consistency of org.atsc.* feature strings.

5.3 Remove HTMLDOMImplementation due to removal from DOM-2 HTML CR.

5.3 Specify use of HTMLImageElement and HTMLOptionsCollection.

5.3 Add HTMLImageElementExt to support legacy properties on HTMLImageElement.

5.3 Clarify cookie attribute-value pair support per [HTTP-STATE].

5.3 Specify use of legacy expires cookie attribute-value pair.

5.3 Clarify semantics of HTMLDocument::images property with regards to img elements.

5.3 Note rationale for not specifying explicit HTMLDocumentExt::window binding in ECMAScript.

5.3 Add DocumentViewExt::refresh method.

5.3 Add KeyEvent, KeyModifiers, and VirtualKeys interfaces.

5.3 Add key and text event types: org.atsc.key{down,up}, org.atsc.textinput.

5.3 Add mutation event types: org.atsc.resourcechanged.

5.3 Clarify semantics of Navigator::ddeBackChannel.

5.3 Clarify semantics of Navigator::ddeEnabled.

5.3 Clarify semantics of Navigator::ddeSourceId.

5.3 Clarify semantics of Navigator::ddeReleasable.

5.3 Change Navigator::userAgent standard product token from XDML-UA/1.0 to DASE-1/1.0.

A Remove XDML frameset document type (now merged with standard XDML document type).

A.1 Insure validity of XDML document type against [XHTMLMOD] DTD fragments.

A.1 Add base, link, and image modules and respective content model support.

A.1 Parameterize inline form element class.

A.1 Insure consistency of blockquote content model with XHTML 1.0 Transitional.

ATSC DASE-1 Declarative Applications and Environment 09 Mar 2003

 PAGE 137

Section Description

A.1 Remove extraneous definition of label content model.

A.1 Add XHTML.dtd.sysid.base parameter entity to qualify XHTMLMOD system identifiers.

A.1 Move inclusion of XHTML Name Identification module to prevent errant pre-declarations.

C Add Events Extensions Module IDL definition.

C Add HTMLImageElementExt IDL definition.

C Add DocumentViewExt::method IDL definition.

D Add Events Extensions Module IDL ECMAScript binding.

D Add HTMLImageElementExt IDL ECMAScript binding.

D Add DocumentViewExt::method IDL ECMAScript binding.

F Specify transcoding mappings for "http:" and "javascript:" URI schemes in source document.

G Change annex to informative based on nature of recommendations and use of informative references.

