

Doc. A/91

10 June 2001

ATSC Recommended Practice:

Implementation Guidelines for the ATSC Data

Broadcast Standard (Doc. A/90)

Advanced Television Systems Committee

1750 K Street, N.W.

Suite 1200

Washington, D.C. 20006

www.atsc.org

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

2

The Advanced Television Systems Committee (ATSC), is an international, non-profit
membership organization developing voluntary standards for the entire spectrum of advanced
television systems.

Specifically, ATSC is working to coordinate television standards among different
communications media focusing on digital television, interactive systems, and broadband
multimedia communications. ATSC is also developing digital television implementation
strategies and presenting educational seminars on the ATSC standards.

ATSC was formed in 1982 by the member organizations of the Joint Committee on
InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of
Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the
National Cable Television Association (NCTA), and the Society of Motion Picture and
Television Engineers (SMPTE). Currently, there are approximately 190 members representing
the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable,
satellite, and semiconductor industries.

ATSC Digital TV Standards include digital high definition television (HDTV), standard
definition television (SDTV), data broadcasting, multichannel surround-sound audio, and
satellite direct-to-home broadcasting.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

3

Table of Contents

1. SCOPE ...9

2. REFERENCES...9

3. ACRONYMS AND DEFINITIONS..10

3.1 Acronyms 10

3.2 Definitions 11

3.3 This Document’s Table Structure Format 11

4. INTRODUCTION TO THE IMPLEMENTATION GUIDELINES OF THE ATSC A/90 DATA BROADCAST
SPECIFICATION..11

5. INTRODUCTION TO THE ATSC A/90 DATA BROADCAST STANDARD..12

5.1 Data Service Definition 15

5.2 Data Encapsulations 15

5.2.1 Packetization of Data Entities 16

5.3 Encapsulation Protocol Selection Guidance 17

5.3.1 Bounded Data Blobs 18

5.3.2 Network Datagrams 18

5.3.3 Streaming Data 19

5.4 Constraints 20

5.5 Data Receiver Support 20

6. ATSC DATA BROADCAST ENCAPSULATION PROTOCOLS...20

6.1 ATSC Data Broadcast Encapsulation Protocols 20

6.1.1 Data Download Protocol 20

6.1.1.1 Overview 20

6.1.2 Identification and Versioning 22

6.1.3 Asynchronous Data Modules in the Data Download Protocol 23

6.1.4 Asynchronous Data Streaming in the Data Download Protocol 25

6.1.5 Non-Streaming Synchronized Data Modules (Synchronized Data Download Protocol) 25

6.1.6 Data Download Protocol Hierarchy 25

6.1.7 Data Download Protocol in an MPEG-2 Transport Stream Packet 26

6.1.8 DSMCC_section 27

6.1.9 DownloadServerInitiate (DSI) 28

6.1.10 DownloadInfoIndication (DII) 30

6.1.10.1 DII and DSI Descriptors 32

6.1.10.1.1 Module Link Descriptor 33

6.1.10.1.2 CRC32 Descriptor 33

6.1.10.1.3 Group Link Descriptor 34

6.1.11 DownloadDataBlock (DDB) 34

6.1.12 DownloadCancel (DC) 37

6.1.13 PSIP Announcement of the Data Download Protocol 38

6.1.13.1 Data Service Descriptor in PSIP 39

6.1.13.2 PID Count Descriptor 39

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

4

6.1.14 Discovery of a Data Download Protocol Program Element 39

6.1.14.1 PSIP Service Location Descriptor (SLD) and the Program Map Table (PMT) 39

6.1.15 Binding of a Data Download Protocol Program Element 40

6.1.15.1 Protocol Encapsulation 40

6.1.15.2 Download Descriptor 40

6.1.16 DSMCC_section CRC32 / Checksum Calculation 41

6.1.16.1 CRC32 Calculation 41

6.1.16.2 Checksum Encoding and Decoding 41

6.2 The ATSC DSM-CC Addressable Section 42

6.2.1 Overview 42

6.2.2 LLC Encapsulation 43

6.2.3 Datagram Transport 44

6.2.4 DSM-CC Addressable Section Stream Syntax 45

6.2.5 Data Transport Specification Usage 46

6.2.6 DSM-CC Addressable Section Mapping into MPEG-2 Transport Stream Packets 48

6.2.7 PSIP Announcement of the DSM-CC Addressable Section 49

6.2.7.1 Data Service Descriptor in PSIP 49

6.2.7.2 PID Count Descriptor 49

6.2.8 Discovery of a DSM-CC Addressable Section Program Element 50

6.2.8.1 PSIP Service Location Descriptor (SLD) and the Program Map Table (PMT) 50

6.2.9 Binding of a DSM-CC Addressable Section Program Element 50

6.2.9.1 Protocol Encapsulation 50

6.2.9.2 Multiprotocol Encapsulation Descriptor 51

6.3 Synchronous and Synchronized Data Streaming 51

6.3.1 Definitions 52

6.3.2 Encapsulation of PES Packets in Transport Stream Packets 52

6.3.3 Synchronous Data Streaming 53

6.3.4 Synchronous Data Streaming of Network Datagrams 58

6.3.5 Synchronized Data Streaming 59

6.3.6 Synchronized Data Streaming of Network Datagrams 63

6.3.7 PSIP Announcement of Synchronized and Synchronous Data Streams 64

6.3.7.1 Data Service Descriptor in PSIP 65

6.3.7.2 PID Count Descriptor 65

6.3.8 Discovery of Synchronous and Synchronized Data Streaming Program Elements 65

6.3.8.1 PSIP Service Location Descriptor (SLD) and the Program Map Table (PMT) 65

6.3.9 Binding of the Synchronized and Synchronous Data Streaming Program Elements 66

6.4 Data Piping 66

6.4.1 PSIP Announcement of the Data Piping Protocol 66

6.4.1.1 Data Service Descriptor in PSIP 67

6.4.1.2 PID Count Descriptor 67

6.4.2 Discovery of a Data Piping Protocol Program Element 67

6.4.2.1 PSIP Service Location Descriptor (SLD) and Program Map Table (PMT) 67

6.4.3 Binding of a Data Piping Protocol Program Element 68

6.4.3.1 Protocol Encapsulation 68

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

5

7. PSIP DATA SERVICE EVENT ANNOUNCEMENT ..68

7.1 Data Service Descriptor 70

7.2 PID Count Descriptor 71

8. DATA SERVICE PROGRAM ELEMENT DISCOVERY AND BINDING ...71

8.1 Association Tag Descriptor 76

8.2 Data Service Discovery–The Basic Algorithm 76

8.2.1 PSIP Structures 76

8.2.2 MPEG-2 Structures 77

8.2.3 A/90 Service Description Framework Information 77

8.3 Data Service Table (DST) 77

8.3.1 Tap Structures 81

8.4 Network Resource Table (NRT) 83

8.5 Service Discovery and Binding—Putting It All Together 85

9. BUFFER MODEL...87

9.1 Buffer Model for Asynchronous Data Elementary Streams 88

9.2 Smoothing Buffer Descriptor 89

9.3 Maximum Bitrate Descriptor 90

9.4 Buffer Model for Synchronous Data Elementary Streams 90

9.5 Buffer Model For Synchronized Data Services 91

9.5.1 T-STD for Synchronized Program Elements 91

9.5.2 Data Service Levels 94

9.5.2.1 Synchronized Stream Calculation Pseudo Code 95

Annex A: A Descriptor Location Matrix

1. SERVICE DESCRIPTION FRAMEWORK (SDF) DESCRIPTOR LOCATIONS96

1.1 Data Download Protocol Descriptor Location Matrix 96

Annex B: ATSC Data Broadcast Encapsulation Protocols

1. SCOPE ...97

1.1 Data Download Protocol Messages 97

1.1.1 DSM-CC Section 97

1.1.1.1 DSM-CC Message Header and DSM-CC Download Data Header 98

1.1.1.2 Download Server Initiate Message 100

1.1.1.3 Download Info Indication Message 102

1.1.1.4 Download Cancel Message 103

1.1.1.5 Download Data Block Message 104

1.1.1.6 Encapsulating Download Messages into MPEG-2 Transport Stream Packets 105

Annex C: Sample Encapsulations

1. DATA DOWNLOAD PROTOCOL EXAMPLE...107

1.1 Sample Tables 107

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

6

1.1.1 Sample DSI 107

1.1.2 Sample DII for Group 1 (English) 109

1.1.3 Sample DDB (for English module) 111

1.1.4 Sample DII for Group 1 (French) 113

1.1.5 Sample DDB (for French module) 115

1.2 DSM-CC Addressable Section Example 116

1.3 Data Piping Example 118

Annex D: ATSC Data Broadcast Encapsulation Protocols

1. SCOPE ...120

1.1 ATSC Table Hierarchy Discussion 121

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

7

Index of Tables and Figures

Table 5.1 Encapsulation Protocol Selection Matrix 17

Table 6.1 TransactionId Subfields 23

Table 6.2 MPEG-2 Transport Stream Packet Header for DSM-CC Section 27

Table 6.3 DSI Message 28

Table 6.4 DII Message 30

Table 6.5 II and DSI Descriptors 33

Table 6.6 Module Link Descriptor Syntax 33

Table 6.7 CRC32 Descriptor Syntax 34

Table 6.8 Group Link Descriptor Syntax 34

Table 6.9 DDB Message 35

Table 6.10 DC Message 37

Table 6.11 Download Descriptor Syntax 41

Table 6.12 DSMCC_addressable_section Syntax 46

Table 6.13 MPEG-2 Transport Packet Header for DSM-CC addressable section 49

Table 6.14 Multiprotocol Encapsulation Descriptor Syntax 51

Table 6.15 Synchronous Data in PES 54

Table 6.17 Synchronized Streaming Data in PES 60

Table 6.18 Synchronous and Synchronized Protocol_Encapsulation Field Values 66

Table 7.1 Data Service Descriptor Syntax 71

Table 7.2 PID Count Descriptor Syntax 71

Table 8.1 Association Tag Descriptor 76

Table 8.2 Data Services Table 78

Table 8.3 Network Resources Table 84

Table 9.1 Smoothing Buffer Descriptor Location Matrix 90

Table 9.2 Maximum Bitrate Descriptor Location Matrix 90

Table A1 SDF Descriptor Location Matrix 96

Table A2 Data Download Protocol Descriptor Location Matrix 96

Table B1 DSM-CC Section Format 98

Table B2 DSM-CC Message Header 99

Table B3 DSM-CC Download Data Header 99

Table B4 DSM-CC Adaptation Header 100

Table B5 Download Server Initiate Message 101

Table B6 Group Link Descriptor 102

Table B7 Download Info Indication Message 102

Table B8 Module Link Descriptor 103

Table B9 CRC32 Descriptor 103

Table B10 Download Cancel Message 104

Table B11 Download Data Block Message 104

Table B12 MPEG-2 Transport Stream Packet Header 105

Table C1 Sample DSI 107

Table C2 Sample DII for Group 1 (English) 110

Table C3 Sample DDB (for English module) 111

Table C4 Sample DII for Group 1 (French) 113

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

8

Table C5 Sample DDB (for French module) 115

Table C6 DSM-CC Addressable Section Example 117

Table C7 Data Piping Example 119

Figure 5.1 Graphical encapsulation overview and relation to other standards. 13

Figure 5.2 Data service components. 14

Figure 5.3 ATSC Data Broadcast protocol packetization, synchronization, and protection layers. 15

Figure 6.1 Structure of the one-layer and two-layer download scenarios. 22

Figure 6.2 Cyclic transmission of information in a data carousel. 24

Figure 6.3 Data download protocol module fragmentation. 26

Figure 6.4 LLC encapsulation. 43

Figure 6.5 SNAP header. 43

Figure 6.6 LLC/SNAP encapsulation. 44

Figure 6.7 Device ID mapping. 45

Figure 6.8 DSM-CC addressable section syntax. 46

Figure 6.9 A DSMCC_addressable_section encapsulated and mapped into one or more MPEG-2 Transport
Stream packets. 48

Figure 6.10 Encapsulation of synchronous PES packets in MPEG-2 Transport Stream packets. 53

Figure 6.11 Encapsulation of IP packets for synchronous data streaming using PES frames. 59

Figure 6.12 Encapsulation of IP packets for synchronized data streaming using PES frames. 64

Figure 7.1 Event Table hierarchy. 69

Figure 8.1 The Relationship of the VCT, PMT, DST, and NRT in the SDF 75

Figure 8.2 Service description block diagram.. 86

Figure 9.1 Transport system target data decoder model for asynchronous data elementary streams. 88

Figure 9.2 System target data decoder buffer model for synchronized data services. 92

Figure B1 Packing DSM-CC Sections into MPEG-2 Transport Stream Packets 106

Figure D1 Example ATSC table hierarchy. 120

Significant Contributors to this Document

John R. Mick Jr., SkyStream Networks Corporation
Rich Chernock, IBM Corporation
Regis Crinon, Sharp Laboratories of America/Intel Corporation
Edwin Heredia, Samsung Information Systems America/Microsoft Corporation
Art Allison, National Association of Broadcasters
Michael A. Dolan, DIRECTV

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

9

Recommended Practice:

Implementation Guidelines
for the ATSC Data Broadcast Standard

1. SCOPE

This document provides a set of guidelines for the use and implementation of the Advanced
Television Systems Committee (ATSC) Data Broadcast Standard. These guidelines are intended
to be recommendations for the usage of the ATSC Data Broadcast Standard as described in the
ATSC Standard, A/90 (2000), “Data Broadcast Standard” [1]. As such, they facilitate the
efficient and reliable implementation of data broadcast services. The information contained
herein applies to data service providers as the primary entity that assembles the elements of each
data channel. It also applies to broadcasters, network operators, and infrastructure manufacturers.
The rules are specified in the form of constraints on the data broadcast implementation.

The specification of these functions in no way prohibits end consumer device manufacturers
from including additional features, and should not be interpreted as stipulating any form of upper
limit to the performance.

The document uses the terminology defined in ATSC Data Broadcast Standard [1] and
should be read in conjunction with [1].

2. REFERENCES

[1] ATSC Standard A/90 (2000), “ ATSC Data Broadcast Standard”

[2] ISO/IEC 13818-1: “Information technology—Generic coding of moving pictures and
associated audio information, Part 1: Systems—International Standard (IS)”

[3] ISO/IEC 13818-2: “Information technology—Generic coding of moving pictures and
associated audio information, Part 2: Video—International Standard (IS)”

[4] ISO/IEC 13818-6: “Information technology—Generic coding of moving pictures and
associated audio information, Part 6: Extension for Digital Storage Media Command and
Control (DSM-CC), International Standard (IS)”

[5] IETF RFC 791: “Internet Protocol”, J. Postel, 01.09.1981

[6] ATSC Standard A/65A (2000), “Program and System Information Protocol (PSIP) for
Terrestrial Broadcast and Cable”

[7] IETF RFC 1112: “Host Extensions for IP Multicasting”

[8] ISO/IEC 8802-2 (ANSI/IEEE standard 802.2), “Information technology—
Telecommunications and information exchange between systems, Local and metropolitan
area networks, Specific requirements, Part 2: Logical link control”

[9] IETF RFC1042: “A standard for the Transmission of IP Datagrams over IEEE 802
Networks,” J. Postel and J. Reynolds, February 1988.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

10

3. ACRONYMS AND DEFINITIONS

3.1 Acronyms

The following acronyms are used within this document:

ATSC Advanced Television Systems Committee

ATVEF Advanced Television Enhancement Forum

CRC Cyclic Redundancy Check

DAU Data Access Unit

DAVIC Digital Auido Visual Council

DC DownloadCancel

DDB DownloadDataBlock

DEBn Data Elementary Stream Buffer

DET Data Event Table

DII DownloadInfoIndication

DSI DownloadServerInitiate

DST Data Service Table

DSM-CC Digital Storage Media Command and Control

DTV Digital Television

EIT Event Information Table

EPG Electronic Program Guide

ES Elementary Stream

ESCR Elementary Stream Clock Reference

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Organization for Standardization

IPX Internetwork Packet Exchange

LLC/SNAP Logical Link Control and Subnetwork Attachment Point

LSB Least Significant Byte

LTST Long Term Service Table

MGT Master Guide Table

MPEG Moving Picture Experts Group

MTU Maximum Transmission Unit

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

11

NRT Network Resources Table

PAT Program Association Table

PCR Program Clock Reference

PES Packetized Elementary Stream

PID Packet Identification

PMT Program Map Table

PSIP Program and System Information Protocol

PTS Presentation Time Stamp

RFC Request For Comment

SBn Smoothing Buffer

SDF Service Description Framework

SLD Service Location Descriptor

TBn Transport Buffer

TS Transport Stream

U-N User to Network

VCT Virtual Channel Table

3.2 Definitions

For definitions used in this document, see the ATSC Data Broadcast Standard [1].

3.3 This Document’s Table Structure Format

The syntactic tables located in this document have been constructed such that the data structure
definitions are centralized within the description. Thus, a table element having sub-elements has
been described sequentially within the table so that implementers can easily reference all the data
elements of the data structure. The typical syntax lists the name of the “major” element and then
indents for all elements and sub-elements of the data structure.

Binary field values in tables are sometimes designated by single quotes, such as ‘0’ or ‘01’,
and sometimes by a ‘b’ suffix, such as 0b or 01b.

4. INTRODUCTION TO THE IMPLEMENTATION GUIDELINES OF THE ATSC A/90 DATA
BROADCAST SPECIFICATION

This document contains recommendations on the usage of the Advanced Television Systems
Committee (ATSC) Data Broadcast Standard [1]. The Implementation Guide examines in detail
many of the components of the ATSC Data Broadcast Standard [1]. The Implementation Guide
is organized as follows:

• Section 5 provides a high-level general overview of the ATSC Data Broadcast Standard
[1] including criteria for selecting the appropriate encapsulation protocol.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

12

• Section 6 explores in detail each encapsulation protocol including the examination of
each field of the encapsulation protocol. Additionally, suggestions regarding the usage of
the fields are provided, along with the field ranges and other valuable information.

• Section 7 focuses on the announcement of a Data Service in the ATSC environment using
the Program and System Information Protocol (PSIP).

• Section 8 examines the Service Description Framework (SDF) used by applications to
discover their resources and to bind the resources to the applications.

• Section 9 focuses on the buffer models specified by the ATSC Data Broadcast Standard
[1].

Additionally, the Implementation Guideline contains four annexes. The annexes cover the
following:

• Annex A contains a matrix of the descriptors used by the ATSC Data Broadcast Standard
[1] and the table locations in which they may be used.

• Annex B describes the messages that are used for the data broadcast encapsulation
protocols defined in the ATSC Data Broadcast Standard [1].

• Annex C provides examples showing the encoding of a simple two-layer asynchronous
non-streaming Data Service via the non-flow controlled download scenario.

• Annex D provides an example of the Service Description Framework’s (SDF)
construction of a Data Service that contains the Program elements of Annex C. The SDF
example illustrates the Program elements announcement using PSIP and the Program
elements discovery along with the application’s binding to the Program elements.

The Implementation Guide should be read in conjunction with the ATSC Data Broadcast
Standard [1]. In the case of any discrepancies between the two documents then the ATSC Data
Broadcast Standard [1] takes precedence.

5. INTRODUCTION TO THE ATSC A/90 DATA BROADCAST STANDARD

The ATSC A/90 Data Broadcast Standard [1] describes the available encapsulation protocols
used to transport data within the ATSC MPEG-2 Transport multiplex. The specification explains
the Service Description Framework (SDF) used for the discovery of Program elements and the
binding of applications to their Program Elements. Additionally, the specification describes the
additions to the ATSC Program and System Information Protocol (PSIP) standard [6] such that a
Data Service may be announced within the existing Electronic Program Guide (EPG)
mechanisms. The specification also explains the use of elements in MPEG-2 PSI to aide the SDF
for binding of applications to their Program Elements. It must also be noted that the ATSC
Program and System Information (PSIP) standard [6] and MPEG-2 PSI (PAT and PMT) aid the
SDF with the discovery of Program Elements. Figure 5.1 provides an overview of the ATSC
Data Broadcast Standard as described in [1].

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

13

MPEG-2 Transport Stream

PES MPEG-2 Private Section

ATSC

data

piping

Application

level interface

: Service specific

: ATSC defined

: Other standards (IETF,ISO)

: DSM-CC defined

ATSC

data

streaming

service

specific

DSM-CC addressable

section encapsulation

service

specific

datagram

spec. (eg IP/IPX)

DSM-CC

data download

service

specific

ATSC

data download

service

specific

Applications

Data

Piping

Protocol encapsulation: Data

Streaming

Addressable Section

Encapsulation

Data

Download

DSM-CC

Section

Figure 5.1 Graphical encapsulation overview and relation to other standards.

The basis of the ATSC Data Broadcast Standard [1] is formed by the MPEG-2 Transport
Stream (TS) as defined in ISO/IEC 13818-1 (MPEG-2 systems) [2] and amendments 1 and 2
specifying registration procedures for the copyright identifier and the format identifier,
respectively. Data information can be transported within this MPEG-2 TS by means of the
following encapsulation protocols:

• Data Piping

• Data Streaming

• Addressable Sections

• Data Download

Figure 5.1 identifies what is standardized and by which body. ISO has standardized the
MPEG-2 TS in ISO/IEC 13818-1 [2] and the DSM-CC framework in ISO/IEC 13818-6 [4]. The
IETF has standardized the Internet Protocol (IP) in RFC 791 [5]. The ATSC has specified within
the ATSC Data Broadcast Standard [1] the ATSC Data Piping protocol, the ATSC data
streaming encapsulation, the ATSC DSM-CC addressable section encapsulation, and the ATSC
Download protocol. Within Figure 5.1, the encapsulation of the Internet Protocol (IP) is just an
example. Other network protocols can also be encapsulated.

As shown in Figure 5.1, the ATSC Data Broadcast Standard [1] specifies different
encapsulation protocols for different application areas.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

14

The Data Piping specification provides minimal information on how to acquire and assemble
the data bytes from the MPEG-2 TS. It only specifies how to put data into the MPEG-2
Transport Stream packets.

The data streaming specification provides additional functionality, especially for timing. It is
possible to achieve synchronous data broadcast or synchronized data broadcast (see Section 5.3).
The data streaming specification is based on PES packets as defined in MPEG-2 ISO/IEC 13818-
1 [2].

The ATSC DSM-CC addressable section encapsulation and the ATSC Download protocol
specifications are built using the DSM-CC framework of MPEG-2 ISO/IEC 13818-6 [4]. The
mapping of the DSM-CC protocols onto MPEG-2 TS utilizes the MPEG-2 Private Sections as
defined in MPEG-2 ISO/IEC 13818-1 [2].

The ATSC Data Broadcast Standard [1] has added specific information in order for the
framework to work within the ATSC environment, especially in conjunction with the Program
and System Information Protocol (PSIP) [6].

In the ATSC Data Broadcast standard, each data service may be composed of one or more
applications integrated to the remaining ATSC infrastructure by means of Announcement,
Discovery, and Binding functions (See Figure 5.2).

Figure 5.2 Data service components.

The announcement and discovery specification is part of the ATSC A/65 Program and
System Information Protocol (PSIP) specification [6], along with the new elements documented
in the ATSC Data Broadcast Standard [1]. Additionally, further discovery definition and
application binding are part of the Service Description Framework (SDF) that is described in the
ATSC Data Broadcast Standard [1]. Finally, data delivery is part of the ATSC Data Broadcast
Standard [1].

Figure 5.3 illustrates the packetization, synchronization, and protection layers of the ATSC
Data Broadcast protocols as per [1].

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

15

MPEG-2 Transport Stream

Data

Piping

SDF

MPEG-2

sections

PSIP

checksum

CRC32

Non-flow

 controlled

DSM-CC

sections

checksum

CRC32

MPEG-2

 PTS

data

carousel

DSM-CC

download

LLC/

SNAP

DSM-CC

addressable

sections

checksum

CRC32

IP

PES packets

MPEG-2 PTS

A IPV
LLC/

SNAP

Figure 5.3 ATSC Data Broadcast protocol packetization, synchronization, and
protection layers.

The following paragraphs provide a set of implementation guidelines regarding how to utilize
the different encapsulation protocols.

5.1 Data Service Definition

A Data Service is the collection of applications and associated resources signaled in the Data
Service Table (DST) of the Service Description Framework. A Data Service is required to have
one program element (data elementary stream) conveying the DST and optionally the Network
Resources Table (NRT). A virtual channel, as described by the PSIP Virtual Channel Table
(VCT), may include a maximum of a single Data Service. The minor_channel_number of a data-only
channel (service_type 0x04 in the VCT) must be in the range 100-999. A Data Service may be
composed of any number of program elements and other resources, and the program elements
may include any combination of the encapsulation protocols specified in the ATSC Data
Broadcast Standard.

The discovery of a Data Service in an ATSC Transport multiplex is independent of the
announcement of a Data Service. The announcement procedure formalizes the technique used to
signal the Data Service event (i.e., the start time and the duration) during which the Data Service
is active. The discovery procedure formalizes the mechanism used for identifying the presence of
a Data Service and for identifying the components comprising the Data Service. The binding
mechanism describes a way to provide application specific parameters and resource signaling.
The announcement of a Data Service is documented in Section 7 herein and Section 11 of the
ATSC Data Broadcast Standard [1]. The discovery and binding of a Data Service is discussed in
Section 8 of this document and Section 12 of the ATSC Data Broadcast Standard [1].

5.2 Data Encapsulations

As illustrated in Figure 5.1 and Figure 5.3, there are multiple ways to encapsulate data within the
ATSC Transport multiplex. The mechanisms have different characteristics concerning timing,

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

16

filtering, overhead, size, etc. The selection of the appropriate mechanism is based on the specific
requirements of the target application.

The level of detail of the ATSC Data Broadcast Standard [1] varies for the different
encapsulation protocols. In the case of the DSM-CC addressable section encapsulation (see
Section 6.2 of this document and Section 8 of the ATSC Data Broadcast Standard [1]) and the
Download protocol (see Section 6.1 of this document and Section 7 of the ATSC Data Broadcast
Standard [1]), the specification is very detailed. Thus, this Implementation Guideline only
requires very few application specific definitions. In the case of the other protocols, there is
significant freedom for implementers to make their own decisions.

5.2.1 Packetization of Data Entities

Generally, data of any protocol is transmitted in a packetized form (“data entities”). These data
entities may have different lengths. If the data is not packetized or the packetization method is
irrelevant or hidden to the ATSC transmission chain the most appropriate way of transmission is
Data Piping (see Section 6.4 of this document and Section 10 of the ATSC Data Broadcast
Standard [1]).

At the MPEG-2 Transport Stream layer, data is transmitted within MPEG-2 Transport
Stream packets with a fixed length of 188 bytes (184 bytes payload); therefore, data entities of
higher layers must often be split at the transmission side and must be re-assembled at the
reception device. For the splitting of the data entities, there are several possible packetization
mechanisms:

• Private mechanisms based on the Data Piping

• MPEG-2 Packetized Elementary Streams (PES)

• MPEG-2 Private Sections

• DSM-CC Data Download Blocks

MPEG-2 PES provides a mechanism to transmit data entities of variable size with a
maximum length of 64 Kbytes. Additionally, it provides the facility to synchronize different data
streams accurately (as used in MPEG-2 for synchronization of Video and Audio). MPEG-2 PES
was chosen by ATSC Data Broadcast Standard [1] for the transmission of all synchronous data
streams and for synchronized data streaming (see Section 6.3 in this document and Section 9 of
the ATSC Data Broadcast Standard [1]).

MPEG-2 Private Sections can be used to transmit data entities of variable size with a
maximum length for each data entity of just less than 4 Kbytes (encapsulation specific). The
transmission is asynchronous. Data entities can be recombined to form larger data objects (for
example, modules reassembled from download data blocks). MPEG-2 Private Sections are built
in a way that MPEG-2 demultiplexers currently available on the market can filter out single
sections in hardware, thereby reducing the required software processing power of the receiver.
This concept is the main reason why the MPEG-2 Private Sections have been chosen as the
mechanism for the transmission of asynchronous network protocols and data downloads
(Download protocol). The Download protocol provides a means of re-assembling sections
(DownloadDataBlocks) into modules, where the section data may be up to 4066 bytes in size.
DSM-CC Addressable sections are used for the carriage of data entities like IP datagrams. Again,
these sections are designed to engage the section filtering capability of receivers.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

17

5.3 Encapsulation Protocol Selection Guidance

The following text offers guidance for when a particular encapsulation technique might be
selected. The list is not all encompassing; it is provided as a starting point for the selection of an
encapsulation mechanism.

Table 5.1 provides a generalized guide for determining the recommended encapsulation
method. The column headings represent the data size characteristics. The row headings represent
the data timing or synchronization requirements.

Table 5.1 Encapsulation Protocol Selection Matrix

 Bounded Unbounded/Streaming Network Datagram

Asynchronous Asynchronous Module
Download Protocol

Asynchronous Data Streaming
Download Protocol

DSM-CC Addressable
Sections

Synchronous Synchronous Data Streaming (PES) Synchronous Data
Streaming (PES)

Synchronized Synchronized Data
Download Protocol

Synchronized Data Streaming (PES) Synchronized Data
Streaming (PES)

The delivery of asynchronous data elementary streams is not subject to any timing
constraints derived from the presence of MPEG-2 Systems timestamps in the ATSC Transport
Stream. In essence, asynchronous data elementary streams are not time sensitive streams and the
bytes of such streams are delivered at a fixed leak rate from a well-defined Transport System
Target Decoder (T-STD) buffer model to the data receiver. Asynchronous data elementary
streams have stream_type value 0x0B, 0x0D or 0x95.

Synchronous data elementary streams are used for applications requiring continuous
streaming of data to the receiver at a regular and piece-wise constant data rate. Synchronous data
is delivered as a stream of 2-byte data access units, each data access unit being associated with a
precise delivery time derived directly from the PTS field in the PES packet header and a leak rate
specified either in the PES packet header or the synchronous data header structure at the
beginning of the PES packet payload. The Presentation Time Stamps in the PES packets
specifies the time of delivery of the first synchronous data access unit in the PES packet relative
to the System Time Clock (STC) reconstructed from the PCR fields in the ATSC Transport
Stream. The leak rate is then used to infer the delivery time for each of the following
synchronous access units within the same PES packet. Delivery of the synchronous data access
units in the next PES packet starts at the time specified by the PTS of that next PES packet. The
PCR timestamps may be delivered in the Transport Packets conveying the synchronous data
elementary stream. The delivery of synchronous data access units is governed by a well-defined
T-STD buffer model. The difference between synchronous data and asynchronous data is the fact
that synchronous data access units have been defined for the sole purpose of delivering bytes out
of the T-STD buffer model according to a strict timing tied to the 27 MHz System Time Clock of
the receiver. Synchronous data elementary streams have stream_type value 0xC2.

Synchronized data elementary streams are used for applications requiring presentation of
data at precise but not necessarily regular instants. The presentation times are typically, but not
necessarily, associated with some other reference video, audio or data elementary stream.
Synchronized data is delivered as a series of Data Access Units spanning one or several PES
packets. The time separating two consecutive synchronized Data Access Units is arbitrary. A
synchronized data elementary stream includes Presentation Time Stamps. The Program Clock
Reference timestamps are typically delivered in the MPEG-2 Transport Stream packets of a

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

18

reference elementary stream, but they may be in the same elementary stream as the synchronized
data. The purpose of the PTS timestamps is to specify the instant in time, relative to the STC, at
which a data access unit must be rendered/displayed in the receiver. The T-STD for
synchronized data elementary streams includes an additional buffer for re-assembling data bytes
into synchronized Decoding Access Units. Therefore, as opposed to synchronous data access
units, synchronized data access units have been defined for the purpose of presenting data at
precise times. Also, as opposed to synchronous data access units, consecutive synchronized data
access units may not be of the same size. Consequently, the T-STD for synchronized data
elementary streams goes one step further by providing a buffer for collecting data bytes
pertaining to a Data Access Unit before it is decoded and presented at a precise instant of the
receiver System Time Clock. Synchronized data elementary streams have stream_type value 0x06
or 0x14.

5.3.1 Bounded Data Blobs

A data blob or a data module could be a representation of a file, a group of files, a directory of
files, a group of directories containing files, a module, a hierarchy of modules, an object, a group
of objects, or a bounded data entity whose boundaries are known to the content author. The
definition of a data module is not defined by this document or by the ATSC Data Broadcast
Standard [1]. However, for the purpose of this section, a data module can generally be viewed to
represent a finite sized entity that is to be delivered to a data receiver. Data modules that have no
synchronization requirements associated with them should be delivered using the asynchronous
module delivery method of the Download protocol. (See Section 6.1.3 of this document and
Section 7 of the ATSC Data Broadcast Standard [1] for additional information.)

Data modules that are to be repetitively delivered should use the data carousel option of the
asynchronous Download protocol. Otherwise, the non-flow controlled scenario of the Download
protocol should be used.

Synchronized data modules should be delivered using the synchronized Download protocol.
(See Section 6.1 of this document and Section 7 of the ATSC Data Broadcast Standard [1] for
additional information.)

5.3.2 Network Datagrams

Network datagrams, for example Internet Protocol (IP) datagrams or Internetwork Packet
Exchange (IPX) datagrams, can be encapsulated in various manners. The different encapsulation
methods are intended to meet specific needs of different applications.

ATSC DSM-CC addressable sections are the method of delivery for asynchronous network
datagrams. Datagrams that do not have any timing or synchronization requirements associated
with them should be delivered using the DSM-CC addressable sections encapsulation. (See
Section 6.2 in this document and Section 8 of the ATSC Data Broadcasting Standard [1] for
additional information.) For example, this method of delivery would be useful for delivering web
pages, providing turbo-internet service, or for delivering Advanced Television Enhancement
Forum (ATVEF) content.

Datagrams that are synchronized to a program by using a Presentation Time Stamp (PTS) are
conveyed in the synchronized streaming protocol. (See Section 6.3.5 in this document and
Section 9 of the ATSC Data Broadcasting Specification [1] for additional information Examples
of synchronized datagrams include datagram triggers, and audio/video associated enhanced data.

Synchronous datagrams are carried using the synchronous streaming protocol.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

19

5.3.3 Streaming Data

Streaming data can be synchronous, synchronized, or asynchronous. Asynchronous streaming
data should be carried by the asynchronous data Download protocol. (See Section 6.1.4 in this
document and Section 7 of the ATSC Data Broadcast Standard [1] for additional information.)

The delivery of asynchronous data elementary streams is not subject to any timing
constraints derived from the presence of MPEG-2 Systems timestamps in the ATSC Transport
Stream. In essence, asynchronous data elementary streams are not time sensitive streams and the
bytes of such streams are delivered at a fixed leak rate from a well-defined Transport System
Target Decoder (T-STD) buffer model to the data receiver. Asynchronous data elementary
streams have stream_type value 0x0B, 0x0D or 0x95.

All data that is synchronous is carried using the synchronous streaming encapsulation where
the data is transported in Packetized Elementary Stream (PES) packets. The synchronous data
streaming protocol has been harmonized with SCTE DVS132. (See Section 6.3.3 in this
document and Section 9 of the ATSC Data Broadcast Standard [1] for additional information.)
Synchronous data elementary streams are used for applications requiring continuous streaming
of data to the receiver at a regular and piece-wise constant data rate. Synchronous data is
delivered as a stream of 2-byte synchronous_data_access_units, each synchronous_data_access_unit being
associated with a precise delivery time derived directly from the PTS field in the PES packet
header and a leak rate specified either in the PES packet header or the synchronous data header
structure at the beginning of the PES packet payload. The Presentation Time Stamps in the PES
packets specifies the time of delivery of the first synchronous_data_access_unit in the PES packet
relative to the System Time Clock (STC) reconstructed from the PCR fields in the ATSC
Transport Stream. The leak rate is then used to infer the delivery time for each of the following
synchronous_data_access_units. The PCR timestamps may be delivered in the Transport Packets
conveying the synchronous data elementary stream. The delivery of synchronous_data_access_units
is governed by a well-defined T-STD buffer model. The difference between synchronous data
and asynchronous data is the fact that synchronous_data_access_units have been defined for the sole
purpose of delivering bytes out of the T-STD buffer model according to a strict timing tied to the
27 MHz System Time Clock of the receiver. Synchronous data elementary streams have
stream_type value 0xC2.

Synchronized data should be carried in the synchronized streaming protocol. The
synchronized streaming protocol has been harmonized with DVB. (See Sections 6.3.5 and 6.1.5
respectively, and Sections 9 and 7 respectively of the ATSC Data Broadcast Standard [1] for
additional information.) Synchronized data elementary streams are used for applications
requiring presentation of data at precise but not necessarily regular instants and in connection to
a reference video, an audio or another data elementary stream. Synchronized data is delivered as
a series of Data Access Units spanning one or several PES packets. The time separating two
consecutive synchronized Data Access Units is arbitrary. A synchronized data elementary stream
includes Presentation Time Stamps. The Program Clock Reference timestamps are delivered in
the MPEG-2 Transport Stream packets of the reference elementary stream. The purpose of the
PTS timestamps is to specify the instant in time, relative to the STC, at which a data access unit
must be rendered/displayed in the receiver. The T-STD for synchronized data elementary
streams includes an additional buffer for re-assembling data bytes into synchronized Decoding
Access Units. Therefore, as opposed to synchronous data access units, synchronized data access
units have been defined for the purpose of presenting data concurrently with another media
stream. Consequently, the T-STD for synchronized data elementary streams goes one step further
by providing a buffer for collecting data bytes pertaining to a Data Access Unit before it is

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

20

decoded and presented at a precise instant of the receiver System Time Clock. Synchronized data
elementary streams have stream_type value 0x06 or 0x14.

5.4 Constraints

Section 1.3 of the ATSC Data Broadcast Specification A/90 [1] constrains the data broadcast
standard in the following fashion:

“This standard shall not be used for the carriage of the following elementary streams:

• Video elementary streams with stream_type 0x02

• Audio elementary streams with stream_type 0x81

Other ATSC standards define transmission of elementary streams of these two stream types.”

The purpose of these constraints is to prevent the use of A/90 to transmit program video and
audio in non-ATSC authorized forms and was not intended to prevent non-programmatic video
and audio from being transmitted as data.

5.5 Data Receiver Support

A data receiver may support any combination of the encapsulation protocols. A data receiver that
encounters an unsupported encapsulation protocol, or any other unsupported data item delivered
via the Transport multiplex, should seamlessly discard the unsupported information.

6. ATSC DATA BROADCAST ENCAPSULATION PROTOCOLS

The following sections describe the ATSC Data Broadcast Standard [1] encapsulation protocols
described in Sections 7, 8, 9, and 10 of [1].

6.1 ATSC Data Broadcast Encapsulation Protocols

The following sections describe the ATSC Data Broadcast Standard [1] encapsulation protocols
described in Sections 7, 8, 9, and 10 of [1].

6.1.1 Data Download Protocol

The data download protocol is specified in Section 7 of the ATSC Data Broadcast Standard [1].

6.1.1.1 Overview

The ATSC Data Broadcast Standard uses the DSM-CC User-To-Network Download Protocol, as
defined in 13818-6 [4], to carry four different types of data:

• Carousel delivery (cyclic transmission) of finite data modules to a receiver

• One time, non-flow controlled delivery of finite data modules to a receiver

• Non-flow controlled, asynchronous delivery of streaming data to a receiver

• Non-flow controlled, synchronized delivery of non-streaming data to a receiver

This section provides an introduction to the general features of the data download protocol that
are common to all of these four types of data download scenario.

Within the following discussion, the term module is a generic term to describe an ordered
collection of bytes. It should not be interpreted to imply a file or specific object boundary. The
nature of the items the term represents is outside the scope of ATSC Data Broadcast Standard [1]
and of this document.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

21

The Download Protocol is used to deliver modules. Each module is broken up into blocks for
the purpose of transmission. The blocks of a module must all be of the same size, except for the
last block of the module, which may be smaller. Each block may have up to 4066 bytes of data
for the data carousel scenario, one-time finite module scenario, or asynchronous streaming data
scenario, and up to 4058 bytes for the synchronized non-streaming data scenario. The maximum
number of blocks in a module is 65,535. Therefore, a module may contain up to 266,469,376
bytes in the first three scenarios and up to 265,945,088 bytes in the synchronized non-streaming
data scenario.

The modules are clustered into groups, and the groups in turn may be clustered into
supergroups. The supergroups are useful for two reasons:

• They can be used to provide a two level hierarchical structuring of the modules.

• They can be used to allow a larger number of modules in the download scenario than
would be possible with the group structure alone.

A group may contain up to 507 modules. A supergroup may contain up to 405 groups.
Therefore, a single download scenario may contain up to 205,335 modules.

There is a mechanism called the module_link_descriptor that can be used to link multiple
modules from the same group into a single logical data item, so it is possible to transmit
individual data items that are much larger than the maximum module size. There is also a
mechanism called the group_link_descriptor that can be used to link any subset of groups within a
supergroup into a single logical grouping.

The Download Protocol uses several types of messages to manage the delivery of the data:

• A DownloadDataBlock (DDB) message delivers an individual block of a module. It
includes an identifier of the module and a 16-bit block number giving the position of the
block in the module.

• A DownloadInfoIndication (DII) message describes the modules in a group. It uses a
moduleInfoBytes field to identify the modules in the group and give the size of the blocks
used to deliver the modules, the size and version number of each module, and possibly
other information about each module.

• A DownloadServerInitiate (DSI) message describes the groups in a supergroup. It uses a
groupInfoBytes field to identify the DII messages for the groups in the supergroup and
give the size, version number, and possibly other information about each group.

• A DownloadCancel (DC) message indicates the termination of a download scenario; i.e.,
it indicates that no more DDB, DII, or DSI messages will be forthcoming. (This allows a
receiver to reclaim all resources such as buffers, etc., allocated to the download scenario.)

All of the messages of a single download scenario must be in the same data elementary stream
(i.e., be contained in transport packets having the same PID).

The DownloadDataBlock message is usually called a download data message, while the
other three types of messages are usually called download control messages. Typically the DSI
and DII messages will be transmitted repeatedly, even when they have not changed, to
accommodate receivers that tune to the data service in the middle of a download scenario. Thus,
a receiver will often receive multiple instances of the same version of these messages.

A scenario consisting of only a single group is called a one-layer download scenario. A
scenario consisting of a supergroup containing multiple groups is called a two-layer download
scenario. In the case of a one-layer scenario the DII message is the top-level control message. In
the case of a two-layer scenario the DSI message is the top-level control message.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

22

A Data Service provider may use a one-layer or two-layer scenario, depending on the total
number of modules to be delivered and the perceived value of having a two-layer structuring for
them. A data receiver should support both one-layer and two-layer download scenarios.

Figure 6.1 illustrates both one-layer and two-layer download scenarios.

DDB DDB

DDB DDB DDB

DDB DDB DDB

DII message

DDB DDB

DDB DDB

DDB DDB DDB

DII message

DDB

DDB DDB

DSI message

DDB DDB

DDB DDB DDB

DDB DDB DDB

DII message

DDB

one-layer download scenario two-layer download scenario

SuperGroup

Group
Module

Block

DSI: DownloadServerInitiate

DII: DownloadInfoIndication

DDB: DownloadDataBlock message

Group

Block

Module

Figure 6.1 Structure of the one-layer and two-layer download scenarios.

Every module in the download scenario must be referenced by a DII message of the scenario.
It is also strongly recommended that in a two-layer download scenario every group should be
referenced by the DSI message of the scenario.

6.1.2 Identification and Versioning

Each download scenario has associated with it a 32-bit identifier called the downloadId, which
appears as a field in the DII, DC, and DDB messages of the scenario. This identifier may be
chosen arbitrarily, except that it must be unique within the transport stream.

Each module has associated with it a 16-bit identifier called the moduleId. This moduleId may be
selected arbitrarily, except that it may not be in the range 0xFFF0 to 0xFFFF, and it must be
unique within the download scenario to which the module belongs. This implies that groups can
share modules, since the moduleId is not scoped by the group.

The DII messages use the moduleId to reference the modules in the group. Also, each DDB
message uses the moduleId to identify the module to which the block in the DDB message
belongs.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

23

Each module has associated with it an 8-bit version number called the moduleVersion, which
appears in the DDB messages for the blocks of the module, and in the DII messages pointing to
the module. Neither the DSM-CC standard nor the ATSC Data Broadcast Standard specify how
module versioning should be handled, except for an implicit assumption that the moduleVersion
changes whenever the content of the module changes. The recommended practice is to increment
the moduleVersion whenever the content of the module changes, with wrap-around from 255 to 0.

Each download control message (DSI, DII, or DC) has associated with it a 32-bit number
called the transaction_id, which includes both a unique identifier and a version number for the
message. The subfields of this transaction_id are defined as shown in Table 6.1, where bit 31 is the
high order bit and bit 0 is the low order bit:

Table 6.1 TransactionId Subfields

Subfield No. of
Bits

Value

originator
(transaction_id[31..30])

2 ‘10’, indicating transaction_id is assigned by the server

version
(transaction_id[29..16])

14 arbitrary, but must be modified whenever message is changed

identification
(transaction_id[15..1])

15 0 for top-level control message (DSI message for two-layer scenario,
DII message for one-layer scenario)
non-zero value for other control messages (DII message for two-layer
scenario, DC message in all cases), unique within the download
scenario, serves as group identifier in two-layer download scenario.

updated_flag
(transaction_id[0])

1 must be toggled every time the control message is updated

The recommended practice is to increment the value in the version subfield whenever the
message is changed, with wraparound to 0 when the top of the range is reached, and to reflect the
lowest order bit of this subfield in the updated_flag subfield.

Note that a receiver can always locate the top-level control message of a data download
scenario by just looking for a control message with the identification subfield of the transaction_id
equal to 0.

The DSI messages use the transaction_id of the DII messages to reference the groups of the
supergroup.

It follows from this that a data receiver can detect any change to any module of a download
scenario by just monitoring the transaction_id of the top-level control message of the scenario; i.e.,
when any module of the download scenario changes, the version subfield of the transaction_id of
the top-level control message changes. It works like this: Whenever a module changes in any
way, the version number of the module changes. This causes a change in the DII message
referencing the module, so the version subfield of the transaction_id of that DII message changes as
well. In a two-layer download scenario, this causes a change in the DSI message for the scenario,
so the version subfield of its transaction_id changes.

6.1.3 Asynchronous Data Modules in the Data Download Protocol

The non-flow control scenario embodies the unidirectional, one time transmission of a bounded
data image to a data receiver. The data carousel cyclically repeats the contents of the carousel,
one or more times. If a data decoder wants to access a particular module from the data carousel,
it may simply wait for the next time that the data for the requested module is broadcast. Because

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

24

the non-flow controlled scenario is a sub-set of the data carousel, for the remainder of this
section references to the data carousel imply a reference to the non-flow controlled delivery case
as well.

Figure 6.2 illustrates a data carousel implementation of the Download protocol.

M3-1

M3-2

M8-3M8-0
M8-1

block_size

cycle_time

M2: “file1”

M3: “file2”

M8-7

M8-5

M8-6

M8-4

M2-0

M3-0

M8-8

M8-2

download data message (MX-Y):
DownloadDataBlock ()

X = module_id

Y = block_number

download control message:
DownloadInfoIndication ()

M8: “file3”

M2_size

M3_size

M8_size

Figure 6.2 Cyclic transmission of information in a data carousel.

Within a data carousel, the data is structured into modules, depicted (for example) in Figure
6.1 as M2, M3 and M8. This abstraction could represent the contents of a number of files, say
“file1”, “file2” and “file3” as in this example, or the module could be a complex data object. In
both cases, the definition of module is outside the scope of ATSC Data Broadcast Standard [1]
and of this document. Each module is divided to form the payload of one or more download data
messages each defined using the DSM-CC DownloadDataBlock (DDB) syntax. The number of
such messages depends on the size of the module and the maximum payload of each download
data message. Information describing each module and any logical grouping is provided by
download control messages, defined using the DSM-CC DownloadInfoIndication (DII) and
DownloadServerInitiate (DSI) syntax. A third control message, DownloadCancel (DC), can be
used to signal the end of a download.

In the above example, each download message has been inserted only once and the
DownloadDataBlocks from the same module have been inserted adjacent to one another and in
order. There are no restrictions on how often a particular message is inserted into a single loop of
the data carousel, the order, or the relative position of messages. This freedom allows the data
carousel to be created in whatever way best suits a particular use. In addition, the message
frequency and the order of insertion need not be fixed and can change dynamically as required.

The descriptions of the modules in the download protocol are provided by
DownloadInfoIndication messages. All the modules comprising a download scenario must be
announced in DownloadInfoIndication messages. An additional organizational layer is enabled
through the use of DownloadServerInitiate messages that provides a grouping capability for
modules.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

25

6.1.4 Asynchronous Data Streaming in the Data Download Protocol

Asynchronous data streaming services are carried via the DSM-CC Download protocol and are
identified by the module size being unspecified (zero value). The moduleId, moduleSize,
moduleVersion and moduleInfoLength fields associated with a data module conveying asynchronous
streaming data must appear in one of the DownloadInfoIndication messages and the value of the
moduleSize field must be set to 0. An example of the use of the asynchronous data streaming
might be the transmission of a stock ticker service or weather information.

6.1.5 Non-Streaming Synchronized Data Modules (Synchronized Data Download Protocol)

The non-flow controlled scenario of the data download protocol may also be used to convey non-
streaming, synchronized data modules. This mode is supported by adding time information in the
DSM-CC adaptation header in the DownloadDataBlock message as specified in [1]. The
resulting protocol is called the Synchronized Download protocol. Time information in the DSM-
CC adaptation header is in the form of a Presentation Time Stamp (PTS) as defined in [3]. It is
recommended that the section_syntax_indicator bit be set to 0 and the checksum field be set to
0x0000 to indicate that the checksum has not been calculated. The purpose of this
recommendation is to facilitate insertion of time-stamped DSM-CC sections into the ATSC
multiplex (or modification of an existing time-stamp in a synchronized module) by not requiring
the multiplexer to (re)calculate either a checksum or CRC32.

The payload_unit_start_indicator field in any MPEG-2 Transport Stream packet conveying the
beginning of a DSM-CC section containing non-streaming, synchronized data is set to 1. The
value of the pointer_field must always be set to 0. This condition indicates that the DSM-CC
section starts immediately after the pointer_field. The purpose of this constraint is to fix the
position of the PTS in the Transport Stream packets allowing the remultiplexing equipment to
modify the time stamp more easily. In addition, it is recommended that the transport packet
adaptation field not be used, in order to further ensure that the position of the PTS be located at a
fixed offset from the start of the packet. This recommendation results in a value for the
adaptation_field_control of 0x01, signifying “No adaptation_field, payload only”. Furthermore in this
case, an MPEG-2 Transport Stream packet must not include the beginning of more than one
DSM-CC section. The transmission of all sections belonging to a single synchronized data
module must be finished before the transmission of the next synchronized data module is
allowed to start.

6.1.6 Data Download Protocol Hierarchy

A download scenario will be encapsulated using the DSM-CC User-To-Network Download
protocol as represented in Figure 6.3.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

26

 Module Image

#1

Module Image #2

DII

DII

Section

M2T M2T M2T M2T M2T M2T M2T

DDB

Section

DDB

Section

DDB

Section

DDB DDB DDB

Figure 6.3 Data download protocol module fragmentation.

The DownloadInfoIndication (DII) message(s) publishes all the modules belonging to a
Group. The DII is encapsulated into one DSMCC_section and then fragmented into one or more
MPEG-2 Transport Stream packets (M2T). In the case where the data module listing information
is too large to fit within the payload of a single DSMCC_section, then the two-layer download
scenario mechanism must be used. (A two-layer download scenario incorporates a
DownloadServerInitiate (DSI) message describing a superGroup, where each of the Groups in a
superGroup is described by its own DII message.)

The encapsulated images are first segmented into one or more DownloadDataBlocks
(DDBs). In turn, the DDBs are encapsulated into DSMCC_sections and then fragmented into one or
more MPEG-2 Transport Stream packets identified by a common elementary_PID value.

All data download protocol messages, DSMCC_sections, and MPEG-2 Transport Stream
packets of the same download scenario will be placed in the same Transport Stream Packet
Identifier (PID) except for the PSI/SDF/PSIP information as required by the ATSC Data
Broadcast Standards [1] and [6].

6.1.7 Data Download Protocol in an MPEG-2 Transport Stream Packet

Each MPEG-2 Transport Stream packet will contain a portion of the data download protocol
encapsulation. The MPEG-2 Transport Stream packet header for those MPEG-2 Transport
Stream packets containing the start of a DSMCC_section is defined as follows:

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

27

Table 6.2 MPEG-2 Transport Stream Packet Header for DSM-CC Section

Field Name No. of
Bits

Field
Value

Notes

sync_byte 8 0x47

transport_error_indicator 1 Set in the transmission system to indicate an error in
the current Transport Stream packet.

payload_unit_start_indicator
(PUSI)

1 Set to 1b
1
 in the first MPEG-2 Transport Stream packet

and 0b in all remaining MPEG-2 Transport Stream
packets that comprise the encapsulated section. In the
case of back-to-back sections, this bit will also be set
when the new section starts in the MPEG-2 payload.

transport_priority 1 0b

PID 13

transport_scrambling_control 2 00b = Not scrambled. See MPEG-2 Systems [2] for
additional choices.

adaptation_field_control 2 01 = No adaptation field, payload only. See MPEG-2
Systems [2] for additional choices.

continuity_counter 4 0x0 to 0xF Each successive packet on a given PID will have the
continuity counter incremented over the value carried
in the previous packet.

pointer_field 8 0 to 182 Indicates the location of the section start in bytes
following this field. This field is only included in the first
MPEG-2 Transport Stream packet of the section
encapsulation. This field is present when the
payload_unit_start_indicator bit is set and the value is
the number of bytes until the new section starts in the
MPEG payload. When the packet contains the start of
a synchronized DDB (Synchronized Download
protocol), the pointer field must be set to zero and the
payload must start immediately afterwards.

payload N * 8 The DSMCC_section will be contained here. The
length (N) can be up to 183 bytes in a packet when the
PUSI bit is set, and up to 184 bytes otherwise. If the
final bytes of section are less than the length of the
payload area of the MPEG-2 Transport Stream packet,
then either a new section may be started assuming the
correct pointer field, etc., or the TS packet may be
padded out with 0xFF. The Synchronized Download
protocol requires that all payloads start immediately
following the pointer_field in the MPEG-2 Transport
Stream packet. Thus, all payloads must be padded out
for this protocol.

6.1.8 DSMCC_section

Each download scenario message (either the DSI, the DII, the DC or the DDB) described below
is encapsulated in a DMSCC_section. The DSMCC_section syntax is modeled after the MPEG-2
Transport Stream private_section syntax. The DSMCC_section fields that are included in each
message are described below providing a linear look at the entire DSMCC_section that will be
constructed.

1 Constructs of the form NMb signify bit fields.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

28

6.1.9 DownloadServerInitiate (DSI)

The DownloadServerInitiate message is used for the two-layer download scenario and it
describes each of the Groups in the next layer.

Table 6.3 DSI Message

Field Name No of
Bits

Field
Value

Notes

DSMCC_section() {

 table_id 8 0x3B 0x3B = DSM-CC section with
DownloadServerInitiate messages.

 section_syntax_indicator 1 0b indicates that the
checksum/CRC32 field contains a
checksum. 1b indicates that the
checksum/CRC32 field contains a
CRC32.

 private_indicator 1 This field is set to the complement of
the section_syntax_indicator flag.

 reserved 2

11b

 dsmcc_section_length 12 The number of bytes from
table_id_extension through the last
byte of the CRC32/Checksum field.
The maximum value is 4093.

 table_id_extension 16 This field is set to the 2 least
significant bytes of the transactionId in
the dsmccMessageHeader.

 reserved 2 11b

 version_number 5 This field is set to 00000b.

 current_next_indicator 1 1b This field is set to 1b, indicating that
the information in the DSI is always
current.

 section_number 8 0x00 This field is set to 0x00.

 last_section_number 8 0x00 This field is set to 0x00.

 downloadServerInitiate() {

 dsmccMessageHeader() {

 protocolDiscriminator 8 0x11 DSMCC message.

 dsmccType 8 0x03 U-N Download message.

 messageId 16 0x1006 DownloadServerInitiate message.

 transactionId() { This 32-bit field is split into the sub-
fields as indicated below. (See
Section 6.1.2 for additional
information.)

 originator subfield 2 10b ‘10’ indicating that the server sets this
field.

 version subfield 14 The value in this field is
incremented/changed each time any
message in the download scenario is
updated.

 identification subfield 15 0x0000 ‘000000000000000’ (all zeros). The
DSI is a top-level control message.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

29

 updated subfield 1 This field is toggled each time the DSI
message is updated.

 } End of sub-fields in transactionId.

 reserved 8 0xFF

 adaptationLength 8 0x00 This field is set to 0x00, indicating that
no adaptation header is present.

 messageLength 16 The length of message following this
field (from serverID field up to, but not
including the checksum/CRC32 field).

 dsmccAdaptatinHeader() { Not used if the adaptation length field
is zero.

 }

 } End dsmccMessageHeader().

 serverId 20B This field is set to 20 bytes, each
containing the value 0xFF

 compatibility_descriptor() { The compatibilityDescriptorLength
field is set to 0x0000, indicating no
compatibility_descriptor.

 compatibilityDescriptorLength 16 0x0000 Specifies the total length of the
descriptors that follow, not including
the compatibilityDescriptorLength
itself.

 }

 privateDataLength 16 Length in bytes of the following
GroupInfoIndication structure

 groupInfoIndication(){

 numberOfGroups 16 Number of groups in the loop to
follow.

 for (i=0; i<numberOfGroups; i++) {

 groupId 32 This field is equal to the transactionID
of the DII message that describes the
group.

 groupSize 32 This field will indicate the cumulative
size in bytes of all the modules in the
group. The size is the sum of all of the
moduleSize values in the DII
describing this group. This field is set
to a value of 0x00000000 when
unbounded modules are present in
the group.

 groupCompatibility{} The groupCompatibility structure is
equal to the compatibility_descriptor
structure of DSM-CC [4].

 groupInfoLength 16 Length in bytes of descriptor loop that
follows.

 for (j=0; j<groupInfoLength; j++) {

 groupInfoByte 8 These fields will convey a list of
descriptors that each define one or
more attributes. The descriptors
included in the loop will describe the
characteristics of the Group.

 }

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

30

 }

 groupsInfoPrivateDataLength 16 Length in bytes of the following
groupsInfoPrivateData field.

 for (j=0; j<groupsInfoPrivateDataLength; j++) {

 groupsInfoPrivateDataByte 8 The contents of this field are user
defined.

 }

 } End groupInfoIndication

 } End downloadServerInitiate().

 checksum/CRC_32 32 See the CRC32 / Checksum
Calculation (6.1.16) below for further
information.

} End DSMCC_section.

6.1.10 DownloadInfoIndication (DII)

There will be at least one DownloadInfoIndication (DII) message. In the case of a two-layer
download scenario, the DII describes the modules that are part of the Group. For a one-layer
download scenario, the DII must describe all the modules in the download scenario. The full
DSMCC_section DII is constructed as follows:

Table 6.4 DII Message

Field Name No. of
Bits

Field
Value

Notes

DSMCC_section() {

 table_id 8 0x3B 0x3B = DSM-CC section with
DownloadInfoIndication messages.

 section_syntax_indicator 1 0b indicates that the checksum/CRC32
field contains a checksum. 1b indicates
that the checksum/CRC32 field contains
a CRC32.

 private_indicator 1 This field is set to the complement of the
section_syntax_indicator flag.

 reserved 2

11b

 dsmcc_section_length 12 The number of bytes from
table_id_extension through the last byte
of the checksum/CRC32 field. The
maximum value is 4093.

 table_id_extension 16 This field is set to the 2 least significant
bytes of the transactionId in the
dsmccMessageHeader.

 reserved 2 11b

 version_number 5 This field is set to 00000b.

 current_next_indicator 1 1b This field is set to 1b, indicating that the
information in the DII is always current.

 section_number 8 0x00 This field is set to 0x00.

 last_section_number 8 0x00 This field is set to 0x00.

 downloadInfoIndication() {

 dsmccMessageHeader() {

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

31

 protocolDiscrimiator 8 0x11 DSMCC message.

 dsmccType 8 0x03 U-N Download message.

 messageId 16 0x1002 DII.

 transactionId(){ This 32-bit field is split up into a number
of sub-fields as indicated below. (See
Section 6.1.2 for additional information.)

 originator subfield 2 10b ‘10’ indicating that the server sets this
field.

 version subfield 14 The value in this field is
incremented/changed each time the DII
message is updated

2
.

 identification subfield 15 For a one-layer download scenario,
‘000000000000000’ (all zeros). For a
two-layer download scenario, this sub-
field is used to identify the DII message
(binding to the groupId in the DSI).

 updated subfield 1 This field is toggled each time the DII
message is updated.

 } End of sub-fields in transactionId

 reserved 8 0xFF

 adaptationLength 8 0x00 This field is set to 0x00 to indicate that
no adaptation header is present.

 messageLength 16 Length of message immediately
following this field (including the
dsmccAdaptationHeader as specified by
the adaptationLength) up to, but not
including the checksum/CRC32 field.

 dsmccAdaptionHeader() { Not used if the adaptation length field is
zero.

 }

 }

 } End dsmccMessageHeader().

 downloadId 32 In the case of a data carousel of the
data download protocol, this field is set
to be equal to the value of carousel_id if
it is specified in the download_descriptor
in the associated Data Service Table
(DST). The downloadId field is used to
associate the download data messages
and the download control messages of a
single instance of a download scenario.

 blockSize 16 Length of data in every block of the DDB
except the last. This value is typically
4066 bytes for non-synchronized
downloads (stream type 0x0B). (Range
1-4066.). For synchronized downloads
(stream type 0x14), the typical value is
4058B.

 windowSize 8 0x00 Not used in broadcast.

2 Note: A change in a module in the download scenario will necessitate a change in the version sub-field, since the

moduleVersion field in the moduleInfoBytes loop must be updated.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

32

 ackPeriod 8 0x00 Not used in broadcast.

 tcDownloadWindow 32 0x000000
00

Not used in broadcast.

 tcDownloadScenario 32 Timeout period in microseconds for
entire download. (Optional, use 0x00 if
not used).

 compatibility_descriptor() { The descriptorLength field is set to
0x0000. Thus, the
compatibility_descriptor structure will
always be 2 bytes long.

 compatibilityDescriptorLength 16 0x0000 Specifies the total length of the
descriptors that follow including the
descriptorCount but not including the
compatibilityDescriptorLength itself.

 }

 numberOfModules 16 Number of modules in the loop to follow.

 for (i=0; i<numberOfModules; i++) {

 moduleId 16 0x00 to
0xFFEF

Unique identifier for the module. The
values 0xFFF0 to 0xFFFF are reserved
by DAVIC.

 moduleSize 32 Size of the module in bytes when
bounded. Set to 0 when the module size
is unspecified. The size is interpreted to
be the sum of the payload of each
DownloadDataBlock, not counting
header syntax or checksum/CRC32.

 moduleVersion 8 Version number of the module.

 moduleInfoLength 8 0 to 255 Length in Bytes of the loop to follow

 for (j=0; j<moduleInfoLength; j++) {

 descriptor() For moduleID values from 0x0000-
0xFFEF, MPEG descriptors such as
those listed in Section 6.1.10.1 may be
used to provide additional information
about a given module.

 }

 } End for of numberOfModules.

 privateDataLength 16 Length in Bytes of User Private Data

 for (i=0; i<privateDataLength; i++) {

 privateDataByte 8 User private data.

 }

 } End DownloadInfoIndication().

 checksum/CRC_32 32 See the CRC32 / Checksum Calculation
(6.1.16) below for further information.

} End DSMCC_section.

6.1.10.1 DII and DSI Descriptors

The following descriptors can be used within the DSI or DII messages (as indicated) to extend
the definition of the download scenario.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

33

Table 6.5 II and DSI Descriptors

Descriptor Tag
value

DII -
moduleInfo

DSI -
groupInfo

Short Description

Reserved 0x00

module_link_descriptor 0xB4 + Concatenated data module

CRC32_descriptor 0xB5 + Cyclic Redundancy Code

group_link_descriptor 0xB8 + Links DII messages describing a Group

6.1.10.1.1 Module Link Descriptor

The module_link_descriptor contains information regarding those modules that are to be linked
together to acquire a complete piece of data from the download scenario. The descriptor also
informs the data receiver of the order of the linked modules. The syntax of the
module_link_descriptor is shown in Table 6.6.

Table 6.6 Module Link Descriptor Syntax

Field Name No. of
Bits

Field
Value

Notes

module_link_descriptor () {

 descriptor_tag 8 0xB4

 descriptor_length 8 Number of bytes remaining in the
descriptor.

 position 8 The position of this module in the chain.
The value of 0x00 will indicate the first
module of the list. The value of 0x01
indicates an intermediate module in the
list and the value of 0x02 indicates the
last module of the list.

 module_id 16 This is a 16-bit field that identifies the
next module in the list. This field is
ignored for the last value in the list.

}

6.1.10.1.2 CRC32 Descriptor

The CRC32_descriptor indicates the calculation of a CRC32 over a complete module. The
descriptor can be used as an optimization for providing the CRC32 over the complete module
instead of /or in conjunction with the CRC32 associated with each DSMCC_section. Table 6.7
shows the syntax of the CRC32_descriptor.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

34

Table 6.7 CRC32 Descriptor Syntax

Field Name No. of
Bits

Field
Value

Notes

CRC32_descriptor () {

 descriptor_tag 8 0xB5

 descriptor_length 8 Number of bytes remaining in the
descriptor.

 CRC_32 32 This is a 32-bit field that contains the
CRC calculated over the entire module,
which is calculated according to Annex
B of the MPEG 2 systems specification
[2].

}

6.1.10.1.3 Group Link Descriptor

The group_link_descriptor contains information regarding which Group descriptions are to be linked
in order to describe a single larger Group. This is necessary when the description of modules in a
Group exceeds the maximum size of a single DownloadInfoIndication message and has to be
spread across a number of such messages. It also informs the decoder on the order of the linked
Group descriptions. This descriptor is not strictly necessary as the order of linking is not
important. It purely provides a means to identify all the Group descriptions that are linked. The
syntax of the group_link_descriptor is shown in Table 6.8.

Table 6.8 Group Link Descriptor Syntax

Field Name No. of
Bits

Field
Value

Notes

group_link_descriptor () {

 descriptor_tag 8 0xB8

 descriptor_length 8 Number of bytes remaining in the
descriptor.

 position 8 This 8-bit field identifies the position of
this Group description in the chain. The
value of 0x00 will indicate the first Group
description of the list. The value of 0x01
indicates an intermediate Group and the
value of 0x02 indicates the last Group
description.

 group_Id 32 This 32-bit field identifies the next Group
description in the list. This field is
ignored for the last value in the list.

}

6.1.11 DownloadDataBlock (DDB)

The DownloadDataBlock (DDB) is used to encapsulate the data contained in the modules. The
full DSMCC_section encapsulated DDB is constructed as follows:

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

35

Table 6.9 DDB Message

Field Name No. of
Bits

Field
Value

Notes

DSMCC_section() {

 table_id 8 0x3C 0x3C = DSM-CC section with Download
Data messages.

 section_syntax_indicator 1 0b indicates that the checksum/CRC32
field contains a checksum. 1b indicates
that the checksum/CRC32 field contains a
CRC32.

 private_indicator 1 This field is set to the complement of the
section_syntax_indicator flag.

 reserved 2

11b

 dsmcc_section_length 12 The number of bytes from the start of
table_id_extension through the last byte of
the CRC32/Checksum field. The
maximum value is 4093 indicating a
maximum payload value of 4066 bytes.
(Range 1-4066.)

 table_id_extension 16 This field will convey a copy of the
moduleId value found in the DDB.

 reserved 2 11b

 version_number 5 This field will convey a copy of the least
significant 5-bits of the moduleVersion
value found in the DDB.

 current_next_indicator 1 1b The data is always current.

 section_number 8 This field will convey a copy of the least
significant 8-bits of the blockNumber value
found in the DDB.

 last_section_number 8 This field is set to the maximum value that
is encoded in the section_number field for
the same table_id, table_id_extension and
version_number fields.

 downloadDataMessage() {

 dsmccDownloadDataHeader() {

 protocolDiscriminator 8 0x11 DSMCC message.

 dsmccType 8 0x03 U-N Download message.

 messageId 16 0x1003 DDB

 downloadId 32 Identifier of the download scenario in
progress. In the case of a data carousel
scenario of the data download protocol,
this field is set to the value of the
carousel_id if it is specified in the
download_descriptor in the associated
Data Service Table.

 reserved 8 0xFF

 adaptationLength 8 0x00 or
0x08

Set to 0x08 when a PTS field is present in
the adaptation header and set to 0x00
when no PTS field is present. The length
must be a multiple of four bytes.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

36

 messageLength 16 Length of the message immediately
following this field (including the
dsmccAdaptationHeader as specified by
the adaptationLength) up to, but not
including the checksum/CRC32 field.

 if (adaptionLength > 0) {

 dsmccAdaptionHeader() {

 adaptationType 8 0x00 or
0x04

If 0x04 then a PTS is present.

 if (adaptionType == 0x04) {

 reserved 16 ‘1…1’b

 '0010' 4 Same as in PES header so PTS
information is byte aligned.

 PTS[32…30] 3

 marker_bit 1 1b

 PTS[29…15] 15

 marker_bit 1 1b

 PTS[14…0] 15

 marker_bit 1 1b

 }

 } End dsmccAdaptionHeader().

 }

 } End dsmccDownloadDataHeader().

 moduleId 16 The moduleId field identifies to which
module this block belongs. The moduleId
is an identifier for the module that is
described by the moduleSize,
moduleVersion, and moduleInfoByte
fields. The values 0xFFF0 to 0xFFFF are
reserved by DAVIC.

 moduleVersion 8

 reserved 8 0xFF

 blockNumber 16 Position of block with the module. The
field’s numbering starts with zero, and
zero corresponds to the first block.

 for(i=0;i<N;i++) { N is the difference between the
messageLength minus the
adaptationLength minus the 6 bytes of
static field from the moduleId through the
blockNumber.

 blockDataByte 8 Actual data from file/module.

 }

 } End downloadDataMessage().

 checksum/CRC_32 32 See the CRC32 / Checksum Calculation
(6.1.16) below for further information.

} End DSMCC_section().

When the DSMCC_section of the DDB is carrying non-streaming, synchronized Download
protocol data (stream_type 0x14) it is recommended that the section_syntax_indicator bit is set to 0b

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

37

and the checksum field be set to 0x00000000. The purpose of this recommendation is to facilitate
the insertion of time-stamped DSM-CC sections into the ATSC multiplex by not requiring the
multiplexer to calculate either a checksum or CRC32 once the section has been time-stamped.

6.1.12 DownloadCancel (DC)

The DownloadCancel control message provides a means to signal the cancellation of a download
scenario that is already in progress. Table 6.10 illustrates the full semantics of the
DownloadCancel message.

Table 6.10 DC Message

Field Name No. of
Bits

Field
Value

Notes

DSMCC_section() {

 table_id 8 0x3B 0x3B = DSM-CC section with
DownloadCancel message.

 section_syntax_indicator 1 0b indicates that the checksum/CRC32
field contains a checksum. 1b indicates
that the checksum/CRC32 field contains
a CRC32.

 private_indicator 1 This is a complement of the
section_syntax_indicator flag.

 reserved 2

11b

 dsmcc_section_length 12 The number of bytes from the start of
table_id_extension through the last byte
of the CRC32/Checksum field. The
maximum value is 4093 indicating a
maximum payload value of 4066 bytes.
(Range 1-4066.)

 table_id_extension 16 This field is set to the 2 least significant
bytes of the transactionID in the
dsmccMessageHeader.

 reserved 2 11b

 version_number 5 This field is set to 00000b.

 current_next_indicator 1 1b Data is always current.

 section_number 8 0x00 This field is set to 0x00.

 last_section_number 8 0x00 This field is set to 0x00.

 downloadCancel() {

 dsmccDownloadDataHeader() {

 protocolDiscriminator 8 0x11 DSMCC message.

 dsmccType 8 0x03 U-N Download message.

 messageId 16 0x1005 DownloadCancel.

 transactionId { Sub-fields as defined for DII and DSI
messages, except that the
downloadCancel message is considered
a control message, so the identification
sub-field must contain all zero’s.

 originator subfield 2 10b ‘10’ indicating that the server sets this
field.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

38

 version subfield 14 The value in this field is
incremented/changed each time any
message in the download scenario is
updated.

 identification subfield 15 0x0000 ‘000000000000000’ (all zeros). The DC
is a top-level control message.

 updated subfield 1 This field is toggled each time the DC
message is updated.

 } End transactionId

 reserved 8 0xFF

 adaptationLength 8 0x00 Set to 0x00.

 messageLength 16 Length of message immediately
following this field (including the
dsmccAdaptationHeader as specified by
the adaptationLength) up to, but not
including the checksum/CRC32 field.

 } End dsmccDownloadDataHeader().

 downloadId 32 Identifier of the instance of the download
scenario in progress. Provides binding
to a particular scenario through the
transactionId sub-fields.

 moduleId 16 The last processed DownloadDataBlock
message at the time of the cancel. If no
data blocks have been processed, this
field is set to zero.

 blockNumber 16 The last processed DownloadDataBlock
message at the time of the cancel. If no
data blocks have been processed, this
field is set to zero.

 downloadCancelReason 8 This field contains a code that explains
the reason for the cancellation (as
specified in [4]).

 reserved 8 0xFF

 privateDataLength 16 The length in bytes of the following
privateDataByte fields.

 for(i=0;i<N;i++) { N is the difference between the
messageLength minus the
adaptationLength minus the 6 bytes of
static field from the moduleId through
the blockNumber.

 privateDataByte 8 User defined.

 }

 } End downloadCancelMessage().

 checksum/CRC_32 32 See the CRC32 / Checksum Calculation
(6.1.16) below for further information.

} End DSMCC_section().

6.1.13 PSIP Announcement of the Data Download Protocol

In PSIP, the Virtual Channel Table defines the list of Virtual Channels applicable for an ATSC
Transport multiplex. Each Virtual Channel carries a Service Location Descriptor (SLD) with
information connecting the PID and stream_type values. A data receiver may use this information

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

39

to quickly determine the Program elements. For announcements, every Virtual Channel uses the
source_id as a link to/from the program announcement information. For data broadcasting, the
program announcement information comes in either of two tables: the Event Information Table
(EIT) or the Data Event Table (DET). A Data Service containing a data download protocol
Program element may be announced in either an EIT or a DET. (For further information
regarding Data Service announcement specifics, see Section 7 of this document.)

6.1.13.1 Data Service Descriptor in PSIP

For any event containing a data download protocol Program element, there must be a
data_service_descriptor present in either the Event Information Table (EIT) or the Data Event Table
(DET). (Refer to Section 7.1 for further information on the data_service_descriptor.)

6.1.13.2 PID Count Descriptor

An optional PID_count_descriptor may be included in the DET or EIT of an announced Data
Service. (Refer to Section 7.2 in this document for additional information.)

6.1.14 Discovery of a Data Download Protocol Program Element

6.1.14.1 PSIP Service Location Descriptor (SLD) and the Program Map Table (PMT)

PSIP and the MPEG-2 PSI tables (PAT and PMT) are used in data broadcasting for service
announcement. The PSIP tables describe in advance the start times and the duration of events so
that a data receiver knows when to expect the Data Services to occur. The tables also describe
the parental ratings, the Data Service profiles, and similar event features. One particular PSIP
table, the Virtual Channel Table (VCT), describes the channel structure in a ATSC Transport
multiplex and therefore indicates those channels allocated for Data Services. Both, the VCT and
the MPEG-2 PMT indicate how to locate the tables comprising the Service Description
Framework (SDF).

The SDF identifies the presence of data being delivered and provides the mechanism for the
unambiguous discovery of download data within the current Transport Stream or another
Transport Stream using PSIP and the MPEG-2 PSI (PAT and PMT). (Refer to Section 11 of the
ATSC Data Broadcast Standard [1], and Section 7 of this document for additional information
regarding Data Service announcements. See Section 12 of [1], and Section 8 of this document for
additional information regarding the SDF.)

The Service Location Descriptor (SLD) of the VCT contains the stream_type and elementary_PID
information for each data download protocol Program element of the Data Service. Additionally,
the same information is carried in the PMT of the current Transport Stream. The possible data
download protocol stream_type field values associated with the elementary_PID field are listed
below:

• For the delivery of bounded asynchronous data modules, the stream_type field of the SLD
and the PMT is 0x0B.

• For the delivery of asynchronous data streaming data download protocol, the stream_type
field of the SLD and the PMT is 0x0B.

• For the delivery of synchronized, non-streaming non-flow controlled scenario of the data
download protocol (i.e., Synchronized Download protocol), the stream_type field of the
SLD and the PMT is 0x14.

The data delivery MPEG-2 Transport Packet Identifier (PID) for the data download protocol is
specified by the elementary_PID of the SLD and the PMT. The declared stream_type associated with

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

40

the elementary_PID must match the required stream_type value for the desired data download
protocol type.

6.1.15 Binding of a Data Download Protocol Program Element

The Service Description Framework (SDF) provides the binding mechanism for an ATSC Data
Broadcast system. The SDF’s Data Service Table (DST) must be sent at least once for any ATSC
Data Service. The following information must be included as part of the DST. (See Section 8 for
additional information regarding the DST.)

6.1.15.1 Protocol Encapsulation

The protocol_encapsulation field is located in the Data Service Table (DST) and identifies the
protocol encapsulation used by the Program element:

• The protocol_encapsulation field of the DST is set to 0x01 for the delivery of bounded
asynchronous data modules.

• The protocol_encapsulation field of the DST is set to 0x01 for the asynchronous data
streaming data download protocol.

• The protocol_encapsulation field of the DST is set to 0x02 for the synchronized, non-
streaming non-flow controlled scenario of the data download protocol (i.e., Synchronized
Download protocol).

• The protocol_encapsulation_field of the DST is set to 0x0D for the asynchronous carousel
scenario of the data download protocol.

6.1.15.2 Download Descriptor

The download_descriptor should be included as part of the SDF binding when the protocol
encapsuation field is 0x01, 0x02 or 0x0D. The download_descriptor is located in the descriptor loop
of the Tap structure in the Data Service Table (DST). The download_descriptor is cross-referenced
by the data download protocol’s DownloadInfoIndication message through the download id
field. The download_descriptor provides the identification value for the download scenario along
with the carousel period if a data carousel is being employed.

The DST must be delivered on a separate PID from the data being delivered by the data
download protocol. The DST delivery PID (i.e., the elementary_PID) is specified in the Service
Location Descriptor (SLD) of the Virtual Channel Table (VCT) and in the Program Map Table
(PMT) using the stream_type reference of 0x95.

Table 6.11 illustrates the syntax of the download_descriptor.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

41

Table 6.11 Download Descriptor Syntax

Field Name No. of
Bits

Field
Value

Notes

download_descriptor() {

 descriptor_tag 8 0xA6

 descriptor_length 8

 for(i=0;i<N;i++) { N is the value of descriptor_length.

 download_Id 32 Unique ID for the download scenario.

 carousel_period 32 0x00000000 indicates the carousel time
period is unspecified. 0x00000001 to
0xFFFFFFFE specify the time period in
milliseconds. 0xFFFFFFFF indicates
that the carousel period is not
applicable.
This field is set to 0 for the
asynchronous non-flow controlled and
synchronized download protocol.

 DIImsg_time_out_value 32 0x00000000 specifies that there is no
timeout period. Otherwise, the value is
in milliseconds.

 }

}

The download_descriptor’s carousel_period field is set to 0 to indicate the synchronized, non-
flow controlled scenario of the data download protocol (i.e., Synchronized Download protocol).

6.1.16 DSMCC_section CRC32 / Checksum Calculation

The checksum/CRC32 field in the DSMCC sections encapsulating the DSI, DII and DC
messages provide a means for error detection. This field may carry a CRC32, checksum or no
protection at all. The section_syntax_indicator field is used to differentiate between a CRC32 (field
value of 1b) or a checksum (field value of 0b). Furthermore, as mentioned below, if a checksum
is signalled, but the checksum field contains a value of 0, then this further signals that no error
detection has been provided. The private_indicator must carry the complement of the
section_syntax_indicator field (i.e., 0b for CRC32, 1b for checksum).

6.1.16.1 CRC32 Calculation

The CRC32 is calculated over the entire DSMCC_section (from the table_id field to the end of the
checksum/CRC32 field) according to Annex B of the MPEG 2 systems specification [2].

6.1.16.2 Checksum Encoding and Decoding

A 32-bit checksum is calculated over the entire DSMCC_section (from the table_id field to the end of
the checksum/CRC_32 field). The checksum is calculated by treating the DSMCC_section as a
sequence of 32-bit integers and performing one’s complement addition over all the integers, most
significant byte first, then taking the one’s complement of the result. For the purpose of
computing the checksum, the value of the checksum field is considered to be 0. If the message
length is not a multiple of four bytes, the message is considered padded with zeroed bytes
immediately before the first byte of the checksum to bring it up to a multiple of four bytes, for

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

42

the purpose of checksum calculation only (these padding bytes are removed after the
calculation). If the computed result is 0, then the result is set to 0xFFFFFFFF (the alternative
value for a one’s complement representation of 0). In cases where a checksum is not desired, the
value of the checksum field is set to 0 to indicate the checksum has not been calculated. This
feature is useful for networks where error detection is provided at a protocol layer lower than the
MPEG-2 Transport Stream. The checksum field is present when the section_syntax_indicator is set to
0b.

The checksum is checked on a received section by doing exactly the same calculation, but
using the actual transmitted value of the checksum field in the calculation, instead of using the
value 0 for that field. If the result comes out 0x00000000 or 0xFFFFFFFF (alternative
representations of 0 in one’s complement arithmetic), then no errors exist in the message.

The DSM-CC standard has a slight error in its description of this checksum calculation. It
indicates in a parenthetical note that one’s complement addition is equivalent to an “exclusive
or” or XOR operation. This is not in fact correct. True one’s complement addition must be used.
(One’s complement addition works just like ordinary two’s complement addition, except that if
an overflow occurs, the result is incremented by one. One can think of this as shifting the
overflow bit around and adding it in as a lowest order bit, instead of just throwing it away.)

Also, the description of the checksum calculation given here is slightly different from that in
the DSM-CC standard, with regard to the handling of the padding bytes. The description given
here is entirely equivalent to that in the DSM-CC standard in terms of the result obtained for the
checksum, and it has the advantage that the descriptions of encoding and decoding are entirely
symmetrical.

6.2 The ATSC DSM-CC Addressable Section

The ATSC DSM-CC addressable section encapsulation protocol is specified in Section 8 of the
ATSC Data Broadcast Standard [1].

6.2.1 Overview

The DSM-CC addressable section encapsulation provides a mechanism for transporting any
network protocol using one or more MPEG-2 Transport Stream packets in an ATSC network. A
DSM-CC addressable section can carry any network protocol by using the Logical Link Control
(LLC) protocol and additionally, if required by the LLC encapsulation, the Sub Network Access
Protocol (SNAP) to indicate the network protocol being transported. The ATSC DSM-CC
addressable section encapsulation allows for the use of an optional IP escape sequence, allowing
IP network traffic to dispense with the LLC encapsulation. The LLCSNAP_flag being set to zero in
the DSM-CC addressable section header signals the IP escape sequence. Use of the IP escape
sequence is the ATSC preferred method for transporting IP datagrams.

The DSM-CC addressable section encapsulation covers unicast (datagrams targeted to a
single receiver), multicast (datagrams targeted to a group of receivers) and broadcast (datagrams
targeted to all receivers) datagrams. The DSM-CC addressable section contains in its header a
48-bit device identification address, deviceId, (a.k.a., MAC address) which can be used for
addressing individual receivers or groups of receivers. The ATSC does not specify how the
device identification addresses are allocated to the receivers.

Due to the broadcast nature of ATSC networks, security of the data is important. The DSM-
CC addressable section encapsulation format allows for secure transmission of data by
supporting encryption of the datagrams and the dynamic changing of the device identification

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

43

address. However, datagram security and encryption are outside the scope of both [1] and this
document.

6.2.2 LLC Encapsulation

The ISO/ANSI/IEEE standard on Logical Link Control (LLC) in local and metropolitan area
networks [8] describes the LLC encapsulation including the LLC header along with a Sub
Network Access Protocol (SNAP) header as a method to identify and transport network protocol
data units (PDU). IETF RFC1042 [9] specifies how the header fields are applied to an IP
datagram.

In LLC Type 1 operation, unacknowledged connectionless mode, the LLC header is three
bytes long and consists of a one byte Destination Service Access Point (DSAP) field, a one byte
Source Service Access Point (SSAP) field, a one byte Control field followed by the datagram
(information bytes) as shown in Figure 6.4.

DSAP

1 byte

SSAP

1 byte

Control

1 byte

Information

n bytes

Datagram

n bytes

Figure 6.4 LLC encapsulation.

The values 0xAA in the LLC header's DSAP and SSAP fields indicate that an IEEE 802.2
SNAP header follows. The Control value of 0x03 specifies an Unnumbered Information
Command PDU. For IP datagrams, the LLC Header value is set to 0xAA-AA-03. Other values of
DSAP and SSAP fields indicate support for other network protocols.

The SNAP header is five bytes long and consists of a three byte Organizationally Unique
Identifier (OUI) field and a two byte Protocol Identifier (PID – not the MPEG-2 PID) as shown
in Figure 6.5.

Protocol

Identifier

2 bytes

OUI

3 bytes

Figure 6.5 SNAP header.

The SNAP OUI value 0x00-00-00 specifies the Protocol Identifier as an EtherType or routed
non-OSI protocol. The SNAP OUI of 0x00-80-C2 indicates a Bridged Protocol. When the OUI is
set to 0x00-00-00 then the SNAP Protocol Identifier for IP is 0x08-00

Together, the two headers form the LLC/SNAP encapsulation illustrated in Figure 6.6.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

44

Protocol

Identifier

2 bytes

OUI

3 bytes

DSAP

1 byte

SSAP

1 byte

Control

1 byte

Information

n bytes

Datagram

n bytes

Figure 6.6 LLC/SNAP encapsulation.

For IP datagrams, the complete LLC/SNAP header is 0xAA-AA-03-00-00-00-08-00.

6.2.3 Datagram Transport

Datagrams are transported in a DSMCC_addressable_sections that are compliant with the MPEG-2
private_section syntax format for private data. The section format provides an efficient format for
mapping the datagrams to the MPEG-2 Transport Stream packets. The section format supports
filtering of datagrams based on the device identification address, deviceId, using existing
hardware or software demultiplexers.

Each datagram must fit into a single section
3
. Taking into account the maximum length of a

section, this means that the maximum size for an IP datagram is 4072 bytes if LLC encapsulated,
and 4080 bytes if the 8-byte LLCSNAP header (part of the LLC encapsulation) is not present
(and the recommended method by the ATSC). The maximum size for a datagram of any other
protocol is always 4077 bytes or less, since the LLC encapsulation is always required for other
network protocols. In other words, the maximum transmission unit (MTU) is 4080 for IP when
no LLC encapsulation is used and 4072 when the optional LLCSNAP header (LLC
encapsulation) is included for IP, and the MTU is always 4077 bytes or less for any other
protocols (which all require the LLC encapsulation). Any protocol datagram larger than the
MTU must be fragmented for transmission via DSM-CC addressable sections, using whatever
fragmentation mechanisms are available in the network protocol itself. Note: A DSM-CC
addressable section may contain only one datagram.

The device identification address has been divided into 6 bytes that are located in two groups.
The reason for this is that the bytes 5 and 6 are in place of the table_id_extension field of the
MPEG-2 private_section while bytes 1, 2, 3 and 4 are in the payload area of the private_section.

3 Some of the language in the ATSC Data Broadcast Standard could be interpreted as implying that datagrams may

extend across multiple sections, but Section 8.1 of the standard states flatly that datagrams shall never be split
across sections.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

45

1 2 3 4 5 6 48-bit device identification

address byte:

table

id
.... section

length
deviceId

[7..0]

byte 6

reserved

last

section

number

deviceId

[15..8]

byte 5

deviceId

[23..16]

byte 4

deviceId

[31..24]

byte 3

deviceId

[39..32]

byte 2

deviceId

[47..40]

byte 1

....

section :

MSB LSB

Figure 6.7 Device ID mapping.

Some demultiplexers are able to filter bytes 5 and 6 with hardware. The filtering of bytes
1,2,3 and 4 may be accomplished in either hardware or software. It is recommended that the two
bytes of the device identification address that most probably will differentiate the receivers
should be placed into deviceId bytes 5 and 6 as shown in Figure 6.7. (This mechanism is normally
the case with IEEE MAC addresses, and it is recommended that all MAC addresses be
constructed in this way.)

Section scrambling is controlled by the 2-bit field payload_scrambling_control. If the value of
these bits is 00b, the payload is not scrambled. If the payload is scrambled, the scrambling
algorithm is private to the Data Service. The mechanism describing how the scrambling method
is signaled to the receiver is not defined by the ATSC, the ATSC Data Broadcast Standard [1] or
this document.

Device identification address scrambling provides further security by dynamically changing
the deviceId addresses. By periodically changing the control word that is used for scrambling the
deviceId addresses, the monitoring of the stream can be prevented, as the destination of a
particular datagram cannot be determined by observing the device identification addresses. It
also strengthens the security, as collecting datagrams destined to a single receiver is difficult.
The delivery mechanism of control words used for scrambling the deviceId addresses is not
defined by the ATSC, the ATSC Data Broadcast Standard [1], or this document.

Address scrambling is controlled in the section header by a 2-bit field, the
address_scrambling_control. If the value of these bits is 00b, the MAC address is not scrambled. (It
should be noted that using device identification address scrambling without payload scrambling
is of no use, since the protocol address that is part of the datagram is visible in the clear.)

The DSM-CC addressable section may contain stuffing after the datagram. The stuffing bytes
may be used, for example, for making the payload of the section to be multiple of a block size
when a block encryption code is used. The value of these bytes is not specified and in case of
payload encryption they should not be assigned a fixed value, as it would help break the
encryption.

The DSMCC_addressable_section has either a valid CRC_32 or a 32-bit checksum at the end of
the section. The checksum field may be set to zero to indicate that no checksum was calculated.

6.2.4 DSM-CC Addressable Section Stream Syntax

Figure 6.8 illustrates the DSMCC_addressable_section encapsulation.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

46

IP

header

20

UDP

header

8

UDP Payload

1<=n<=x

datagram_data_bytes

1<=n<=4080

stuffing

bytes

(?)

checksum/

CRC_32

(32)

table

id

(8)

section

syntax
indicator

(1)

error

detection
type

(1)

res

(2)

private

section
length

(12)

deviceId

[7..0]

(8)

deviceId

[15..8]

(8)

res

(2)

payload

scrambling
control

(2)

address

scrambling
control

(2)

LLC

SNAP
flag

(1)

current

next
indicator

(1)

section

number

(8)

deviceId

[23..16]

(8)

deviceId

[31..24]

(8)

deviceId

[39..32]

(8)

deviceId

[47..40]

(8)

last

section
number

(8)

padding

0<=n<=183

Key

(n) = bits

n = bytes

LLCSNAP

Headers

0

Figure 6.8 DSM-CC addressable section syntax.

6.2.5 Data Transport Specification Usage

The following data structure describes the DSMCC_addressable_section of the ATSC DSM-CC
addressable section encapsulation specification used to carry a network datagram. Included in
Table 6.12 are the field names, the number of bits the field will consume, the value that is placed
in the field if static, and any notes regarding the usage of the individual field.

Table 6.12 DSMCC_addressable_section Syntax

Field Name No. of
Bits

Field
Value

Notes

DSMCC_addressable_section() {

 table_id 8 0x3F

 ’0’ 1 0b In the ATSC Data Broadcast Standard
[1], this field is statically set to 0b to
comply with the MPEG-2 System [2]
Private Section syntax specification.
(Note: In DVB, this field functioned as
the section protection control field.)

 error_detection_type 1 1b indicates that the checksum/CRC32
field contains a checksum. 0b indicates
that the checksum/CRC32 field contains
a CRC32. (Note: In DVB, this field was
the compliment of the
section_syntax_indicator.)

 reserved 2

11b

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

47

 addressable_section_length 12 The number of bytes from deviceId[7..0]
to end of the
DSMCC_addressable_section.

 deviceId[7..0] 8 Least significant byte of the deviceId
(i.e., byte 6). See discussion in Section
6.2.3

 deviceId[15..8] 8 Byte 5 of the deviceId.

 reserved 2 11b

 payload_scrambling_control 2 00b = Unscrambled. (See the ATSC
Data Broadcast Standard [1] for
additional values.)

 address_scrambling_control 2 00b = Unscrambled. (See the ATSC
Data Broadcast Standard [1] for
additional values.)

 LLCSNAP_flag 1 1b indicates that the datagram is LLC
encapsulated. 0b indicates that the
datagram is IP and not LLC
encapsulated. 0b is used only for IP
datagrams, and this value is the ATSC
recommended method for carrying IP
datagrams. The protocol_encapsulation
field of the Data Services Table should
be consistent with the setting of this
field. The value 0x03 is for LLCSNAP
encapsulation and the value 0x04 is for
IP without the LLCSNAP encapsulation.

 ’1’ 1 1b Must be set to 1b.

 section_number 8 0x00 Only 1 section allowed for this
encapsulation.

 last_section_number
8

0x00 Only 1 section allowed for this
encapsulation.

 deviceId[23..16] 8 Byte 4 of the deviceId.

 deviceId[31..24] 8 Byte 3 of the deviceId.

 deviceId[39..32] 8 Byte 2 of the deviceId.

 deviceId[47..40] 8 Most significant byte of the device Id
(i.e., byte 1).

 if (LLCSNAP_flag == ‘1’) {

 LLCSNAP() 8 * N Included if the LLCSNAP_flag is set to
1b. The LLCSNAP() structure contains
the LLC header, the optional SNAP
header, and the end network portocol
datagram.

 }

 else {

 for (i=0; i< N1; i++) {

 datagram_data_byte 8 Only an IP datagram data is carried in
this space as this field’s inclusion is
signaled by the IP escape sequence
(LLCSNAP_flag == ‘0’)

 }

 }

 if(section_number == last_section_number) {

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

48

 for (j=0;j<N2;j++) {

 stuffing_bytes 8 Optional field with the value not
specified.

 }

 }

 checksum/CRC_32 32 See the checksum calculation, Section
6.1.16, in the data download protocol for
additional information.

}

6.2.6 DSM-CC Addressable Section Mapping into MPEG-2 Transport Stream Packets

DSM-CC addressable sections use the MPEG-2 private_section mapping into an MPEG-2
Transport Stream packets. Figure 6.9 shows how a DSM-CC addressable section is encapsulated
and mapped into one or more MPEG-2 Transport Stream packets.

sync

byte

(8)

transport

error
indicator

(1)

payload

unit start
indicator

(1)

transport

priority

(1)

transport

scrambling
control

(2)

pid

(13)

adaptation

field
control

(2)

continuity

count

(4)

Header

4

Payload

184

Header

4

Payload

184

Header

4

Payload

184

pointer

field

(8)

DSMCC_addressable_section

16<=n<=4096

Figure 6.9 A DSMCC_addressable_section encapsulated and mapped into one or
more MPEG-2 Transport Stream packets.

A UDP datagram with a payload size of 139 bytes or less that is not LLC encapsulated can be
mapped into a single MPEG-2 Transport Stream packet assuming an IP header of 20 bytes and a
UDP header of 8 bytes. Any UDP datagram with a payload larger than 139 bytes will require at
least two MPEG-2 Transport Stream packets. With LLC encapsulation and with the other
previously mentioned assumptions, the maximum payload size of the first MPEG-2 Transport
Stream packet is 131 bytes for an IP datagram.

Assuming that a DSM-CC addressable section always begins as the start of an MPEG-2
Transport Stream packet (i.e., not back-to-back sections) and given a 1 byte UDP payload and no
LLC encapsulation then the following is the breakdown of the MPEG-2 Transport Stream
packet’s 184 byte payload: pointer_field (1), DSMCC_addressable_section header (12), UDP/IP header
(28), UDP payload (1), checksum/CRC32 (4), and padding bytes (138).

Table 6.13 identifies the fields that comprise an MPEG-2 Transport Stream packet header
and MPEG-2 Transport Stream packet payload for a DSM-CC addressable section.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

49

Table 6.13 MPEG-2 Transport Packet Header for DSM-CC addressable section

Field Name No. of
Bits

Field
Value

Notes

sync_byte 8 0x47

transport_error_indicator 1

payload_unit_start_indicator (PUSI) 1 Set to 1b in the first MPEG-2 Transport
Stream packet and 0b in all remaining
MPEG-2 Transport Stream packets that
comprise the encapsulated datagram. In
the case of back-to-back sections, this
bit will also be set when a new section
starts in the MPEG-2 payload.

transport_priority 1

PID 13

transport_scrambling_control 2 00b = Not scrambled. (See MPEG-2
Systems [2] for additional values.)

adaptation_field_control 2 01b = No adaptation field, payload only.
(See MPEG-2 Systems [2] for additional
values.)

continuity_counter 4 0x0 to
0xF

0x0 through 0xF (incremented for each
consecutive packet on a given PID).

optional adaptation_field() Inclusion signaled by the
adaptation_field_control.

pointer_field 8 This field is present when the PUSI bit is
set and the value is the number of bytes
until the new section starts in the MPEG
payload. The value 0x00 indicates the
section starts immediately following this
byte.

6.2.7 PSIP Announcement of the DSM-CC Addressable Section

In PSIP, the Virtual Channel Table defines the list of Virtual Channels applicable for an ATSC
Transport multiplex. Each Virtual Channel carries a Service Location Descriptor (SLD) with
information connecting the PID and stream_type values. A data receiver may use this information
to quickly determine the Program elements. For announcements, every Virtual Channel uses the
source_id as a link to the program guide information. For data broadcasting, the program
announcement information comes in either of two tables: the Event Information Table (EIT) or
the Data Event Table (DET). A Data Service containing a DSM-CC addressable section Program
element may be announced in either an EIT or a DET. (For further information regarding Data
Service announcement specifics, see Section 7 of this document.)

6.2.7.1 Data Service Descriptor in PSIP

If the ATSC addressable section protocol is an announced event, as per Section 7, then there
must be a data_service_descriptor present in either the Event Information Table (EIT) or the Data
Event Table (DET). (Refer to Section 7.1 in this document for additional information.)

6.2.7.2 PID Count Descriptor

An optional PID_count_descriptor may be included in the DET or EIT of an announced Data
Service. (See Section 7.2 for additional information.)

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

50

6.2.8 Discovery of a DSM-CC Addressable Section Program Element

6.2.8.1 PSIP Service Location Descriptor (SLD) and the Program Map Table (PMT)

PSIP and the MPEG-2 PSI tables (PAT and PMT) are used in data broadcasting for service
announcement. The PSIP tables describe in advance the start times and the duration of events so
that a data receiver knows when to expect the Data Services to occur. The tables also describe
the parental ratings, the Data Service profiles, and similar event features. One particular PSIP
table, the Virtual Channel Table (VCT), describes the channel structure in a ATSC Transport
multiplex and therefore indicates those channels allocated for Data Services. Both, the VCT and
the MPEG-2 PMT indicate how to locate the tables comprising the Service Description
Framework (SDF).

The SDF identifies the presence of data being delivered and provides the mechanism for the
unambiguous discovery of download data within the current Transport Stream or another
Transport Stream using the PSIP and the MPEG-2 PSI (PAT and PMT). (Refer to Section 11 of
the ATSC Data Broadcast Standard [1], and Section 7 of this document for additional
information regarding Data Service announcements. See Section 12 of the ATSC Data Broadcast
Standard [1], and Section 8 of this document for additional information regarding the SDF.)

The Service Location Descriptor (SLD) of the VCT contains the stream_type and elementary_PID
information for each DSM-CC addressable section Program element of the Data Service.
Additionally, the same information is carried in the PMT of the current Transport Stream. The
DSM-CC addressable section stream_type field values associated with the elementary_PID field are
defined as follows:

For the delivery of DSM-CC addressable sections, the stream_type
field of the SLD and the PMT is 0x0D.

The data delivery MPEG-2 Transport Packet Identifier (PID) for the DSM-CC addressable
section protocol is specified by the elementary_PID of the SLD and the PMT. The declared
stream_type associated with the elementrary_PID must match the required stream_type value.

6.2.9 Binding of a DSM-CC Addressable Section Program Element

The Service Description Framework (SDF) provides the binding mechanism for an ATSC Data
Broadcast system. The SDF’s Data Service Table (DST) must be sent at least once for any ATSC
Data Service. The following information must be included as part of the DST. (See Section 8 for
additional information regarding the DST.)

6.2.9.1 Protocol Encapsulation

The protocol_encapsulation field is located in the Data Service Table (DST) and identifies the
protocol encapsulation used by the Program element. The protocol_encapuslation value must match
the setting of the LLC_SNAP_flag encapsulation signaling bit located in the DSM-CC addressable
section.

• The protocol_encapsulation field of the DST is set to 0x03 for all LLC encapsulated network
protocols (i.e. when the LLCSNAP_flag is set to ‘1’).

• The protocol_encapsulation field is set to 0x04 for the non-LLC encapsulated IP protocol
(i.e., DSM-CC addressable sections using the IP escape sequence signaled by the
LLCSNAP_flag being set to ‘0’).

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

51

6.2.9.2 Multiprotocol Encapsulation Descriptor

The multiprotocol_encapsulation_descriptor may optionally be included as part of the SDF’s binding
information. The multiprotocol_encapsulation_descriptor is located in the descriptor loop of the Tap
structure in the DST.

The DST must be delivered on a separate PID from the data being delivered by the DSM-CC
addressable section Program element. The DST delivery PID (i.e., the elementary_PID) is specified
in the Service Location Descriptor (SLD) of the Virtual Channel Table (VCT) and in the PMT
using the stream_type reference of 0x95.

Table 6.14 defines the structure of the multiprotocol_encapuslation_descriptor.

Table 6.14 Multiprotocol Encapsulation Descriptor Syntax

Field Name No. of
Bits

Field
Value

Notes

multiprotocol_encapuslation_descriptor() {

 descriptor_tag 8 0xA7

 descriptor_length 8 0x02 Description length is 0x02.

 deviceId_address_range 3 0x00 to
0x07

0x06 indicates all six bytes are valid.
(See the ATSC Data Broadcast
Standard [1] for additional values.)

 deviceId_IP_mapping_flag 1 1b signals an IP to deviceId (MAC
address) mapping per RFC 1112 [7]. 0b
signals any device mapping.

 alignment_indicator 1 0b

 reserved 3 111b

 max_sections_per_datagram 8 0x01 All datagrams will only use the value
0x01.

}

The deviceId_address_range field is used for signaling to the data receiver the bytes of the
deviceId that are significant for filtering. The significant bytes of the deviceId address begin at
the least significant end of the deviceId address.

The deviceId_IP_mapping_flag signals if mapping the multicast IP addresses to deviceId
addresses is done according to the RFC 1112 [7]. It should be noted that the ATSC Data
Broadcast Standard [1] and this document do not define the deviceId addresses.

The max_sections_per_datagram field defines the maximum number of section that are used for
carrying a single datagram (for multiprotocol encapsulation, this is restricted to be 1). This
defines the maximum length of the datagram. Typically a receiver has to combine the fragments
of the datagram before passing it on, so this field defines the size of the buffer that the receiver
has to have for combining a datagram of the maximum length.

6.3 Synchronous and Synchronized Data Streaming

The synchronous and synchronized data streaming encapsulation protocols are specified in
Section 9 of the ATSC Data Broadcast Standard [1].

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

52

6.3.1 Definitions

A data stream is considered synchronous when a portion of the data packets carries time
information that enables the display or the presentation as a strict time-controlled sequence of
actions. In addition, a synchronous data stream is composed of 16 bit synchronous data access
units (SDAUs) that are leaked to the application in a piecewise continuous rate. In this case, it is
said that the clock, carried jointly with the data units, can be generated at the receiver.
Synchronous data streams have no timing association with other streams. Furthermore, the data
packets of synchronous streams arrive at almost periodic intervals. The word almost is used
because in practice there is a bound for the minimum and the maximum value that the period
may have. An example of a synchronous stream may be a banner that displays the weekend
sports results. The banner data will arrive at periodic intervals and it will be displayed also at
periodic rate.

A data stream is called synchronized when it has a timing association with a separate
component stream (Program element) and consists of Data Access Units that are meant to be
“presented” at specific times. An example of a synchronized stream may be an animated GIF
image for an electronic coupon. The image may be placed in a corner of the screen at the same
time as some specific action happens during a commercial. In this case, the image data is
synchronized with the video stream.

Synchronous and synchronized data streams are carried in Packetized Elementary Stream
(PES) packets similar to the PES packets that serve to deliver audio and video data for
conventional television services.

6.3.2 Encapsulation of PES Packets in Transport Stream Packets

A PES packet is divided into a header and a payload section. The PES-packet header starts with a
bit sequence that is normally easy to detect. The PES header sequence is 23 zeros followed by a
single one. The next field is the stream_id that is set to 0xBD (private stream 1) for both
synchronous and synchronized data streams. The third field in a PES packet header is the packet
length. For video streams, the packet length is set to zero to indicate unspecified lengths,
however this value (zero) is not allowed for data streams. Consequently, all carried data units
(datagrams) have a finite size.

The maximum size of a PES packet is 64 Kbytes (64 Kbytes plus 4 bytes to be more precise)
and therefore, it is normally much larger than a Transport Stream packet. The payload of a
Transport Stream packet is normally 184 bytes (unless an adaptation field exists), and therefore
the PES packet is usually segmented into as many 184-byte units as necessary. A very important
requirement of PES encapsulation is that the beginning of a PES packet needs to be always
aligned with the beginning of a Transport Stream packet.

In order to align PES packets with Transport Stream packets, it is usually necessary to add
enough stuffing bytes to one or more MPEG-2 Transport Stream packets that result from slicing
the large PES packet into smaller units. One common stuffing method is to create a dummy
adaptation field in the Transport Stream packet header that contains only stuffing bytes. Figure
6.10 illustrates the encapsulation of PES packets in Transport Stream packets.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

53

PES

Header
PES payload

MPEG-2 Transport Stream packets

payload

header

stuffing

Figure 6.10 Encapsulation of synchronous PES packets in MPEG-2 Transport
Stream packets.

6.3.3 Synchronous Data Streaming

A major feature of a synchronous data stream is the timing information carried within the stream
itself. A receiver decodes this information and uses it to adjust a local clock that is synchronized
to the stream. The PES packet stream_id, set to “private_stream_1” (0xBD), allows for the usage of
the PES header fields, especially the Presentation Time Stamp (PTS) fields. For data
broadcasting, the accuracy of the PTS needs to be extended beyond the MPEG-2 limits and
therefore, an extension to the PTS information, called pts_ext8, is defined and carried in the PES
payload. This field extends the resolution of the PTS from 11.1 microseconds to 74 nanoseconds.

The PES packet payload for synchronous data streaming is composed of 16 bit synchronous
data access units that are leaked to the application at a piecewise continuous rate.

For a synchronous data stream, the PES payload carries the synchronous_data_header() structure
followed by the synchronous_data_sequence(). The first structure carries two important pieces of
information, the PTS extension and possibly a new measure of the stream data rate (using the bit-
field called increment). Notice that the stream data rate can be defined in the PES packet header,
however the increment field in the synchronous_data_header() structure may override this value.

The synchronous_data_sequence() structure is the collection of bytes that compose a data unit.
For synchronous multiprotocol encapsulation, the first 8 bytes of this structure provide the
LLC/SNAP field. The method to know if a synchronous data stream carries a LLC/SNAP field is
by examining the associated Data Service Table (DST). Entries in the DST indicate the
applicable protocol encapsulation via the protocol_encapsulation field. Applicable values for
synchronous data streams are listed in Table 6.15.

The following table illustrates synchronous data encapsulated using PES packets.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

54

Table 6.15 Synchronous Data in PES

Field Name No. of
Bits

Field Value Notes

 PES_packet() {

 PES_packet_header() { Start of PES_packet_header

 packet_start_code_prefix 24 0x000001 23 zero bits followed by a one bit. This
sequence of zeroes followed by a one was
designed to allow a receiver to easily
identify the beginning of a PES packet in
the bitstream. This assumes of course that
this sequence cannot occur at other
locations in the bitstream (i.e., start code
emulation).

 stream_id 8 0xBD This value indicates: private_stream_1.
The PES header bytes of a
private_stream_1 stream may include
many optional fields including Decoding
and Presentation Time Stamps; this is not
the case for a private_stream_2-type of
stream.

 PES_packet_length 16 Length in bytes of remaining PES_packet
(from the end of this field to the end of the
packet_payload). This value must be non-
zero. (The convention for video PES
packets of using the value zero to signal
an unspecified length is not allowed for
synchronous streaming data).

 marker_bits 2 10b Set by MPEG-2 Systems to avoid the
possibility of inadvertent start_code
emulation.

 PES_scrambling_control 2 Indicates the scrambling mode of the
PES_packet payload. 00b indicates no
scrambling. 01b, 10b and 11b indicate
user defined scrambling methods. The
PES_packet_header may never be
scrambled.

 PES_priority 1 Relative priority of PES_packet payload. A
‘1b’ indicates a higher priority for the
payload than a 0b. This field is typically set
by the multiplexor and should not be
changed by the transport mechanism.

 data_alignment_indicator 1 0b 0b indicates that the alignment of the Data
Access Unit within the PES packet
payload is not specified. For ATSC A/90
Data Broadcast Services, this value is
typically set to ‘0b’ as alignment rules in
MPEG-2 Systems are only defined for
video and audio elementary streams.

 copyright 1 0b indicates that the content is not
protected by copyright. If set to 1b, the
copyright method is defined by a copyright
descriptor in the PMT of the MPEG-2
Program to which this MPEG-2 PES
packet belongs.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

55

 original_or_copy 1 1b indicates the content of the PES packet
payload is an original. 0b indicates that the
content of the PES packet payload is a
copy. The purpose of this flag is to enable
content rights management and copy
protection in the receiver (assuming that
these systems have been properly defined
and specified).

 PTS_DTS_flag 2 10b 10b indicates that the packet header
carries a PTS. As discussed below, the
DTS does not have any normative
meaning for synchronized data and is not
commonly used. For synchronous,
streaming data, each PES_packet must
contain a PTS, so this field will normally
carry the value 10b.

 ESCR_flag 1 0b indicates that an elementary stream
clock reference (ESCR) is not included in
the packet header. Elementary Stream
clock reference fields are typically used to
help re-multiplexing an elementary stream
into various MPEG-2 Transport Streams

 ES_rate_flag 1 This field indicates the presence of a 22-bit
ES_rate field in the PES header. The
value of ES_rate specifies the leak rate for
the PES packet bytes. The field ES_rate is
most commonly used for synchronous
data elementary streams. If the data rate is
above 9.0 Mbps, then the ES_rate field
must be used to indicate the leak rate,
thus above 9.0 Mbps, this field must carry
the value 1b. If the data rate is below 9.0
Mbps, then the increment field in the
synchronous_data_header must be used
to indicate the leak rate and any value in
the ES_rate field will be ignored.

 DSM_trick_mode_flag 1 0b This field is used to indicate the presence
of trick mode control commands in the
PES header. This bit is always set to 0b as
this functionality is now superseded by the
DSM-CC specification.

 additional_copy_info_flag 1 This field indicates the presence of
additional information regarding copyright
of the data in the PES packet (0b indicates
that no extra copy information exists in the
header). The additional information is
represented by the 7-bit
additional_copy_info field in the PES
packet header.

 PES_CRC_flag 1 This field indicates the presence of a
CRC16 error detection code applicable to
the payload of the previous MPEG-2 PES
packet in the same data elementary
stream. If set to 1b, the CRC error
detection code is carried by the
previous_PES_packet_CRC field in the
PES packet header applicable to the
previous MPEG-2 PES packet.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

56

 PES_extension_flag 1 0b This field indicates whether the PES
extension fields are present in the PES
packet header or not. The fields in the
PES extension are typically relevant to
MPEG-2 Program Stream and therefore
are not used for ATSC Data Broadcast.

 PES_header_data_length 8 This field indicates the length in bytes of
the optional fields and stuffing bytes in the
PES packet header (all of the fields
beginning immediately after this field to the
start of the PES_packet_payload). The
value of this field is necessary to
determine the number of stuffing bytes at
the tail of the PES packet header.

 If (PTS_DTS_flags == 10b) { Start of the PTS fields only. The PTS field
is a 33-bit field representing a sample of
the 90 KHz clock derived from the 27 MHz
System Time Clock reconstructed from the
PCR fields transmitted in the MPEG-2
Transport Stream packets. The value of
the PTS field represents the presentation
time of the first data access unit in the
PES packet.

 ‘0010’ 4 0010b Required bits when the
PES_packet_header carries a PTS, but
not a DTS.

 PTS [32..30] 3 The 3 most significant bits of the 33-bit
Presentation Time Stamp (PTS).

 marker_bit 1 1b Marker bits are always set to 1b.

 PTS [29..15] 15 The middle 15-bits of the 33-bit
presentation time stamp.

 marker_bit 1 1b Marker bits are always set to 1b.

 PTS [14..0] 15 The 15 least significant bits of the 33-bit
presentation time stamp.

 marker_bit 1 1b Marker bits are always set to 1b.

 } End of PTS fields only.

 if (ES_rate_flag == 1b) { ES_rate field.

 marker_bit 1 1b Avoids emulation of start bits.

 ES_rate 22 Multiplying this 22-bit value by 400 bps,
gives the elementary stream rate. Zero is
not an allowed value for this field. The
ES_rate is used to indicate the leak rate
for the synchronous_data_access_units
when the data rate is above 9.0 Mbps,
otherwise the increment field in the
synchronous_data_header is used.

 marker_bit 1 1b Avoids emulation of start bits.

 } End of ES_rate field.

 if (PES_CRC_flag == 1b) { PES_CRC field

 previous_PES_packet_CRC 16 CRC16 value of previous PES packet.

 } End of PES_CRC field

 for (i=0; i<N2; i++){ stuffing_bytes loop.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

57

 stuffing_byte N2*8 0xFF The encoder may insert stuffing bytes,
which are typically discarded by the
receiver. The value of N2 is determined as
the difference between the value carried in
the PES_header_data_length field and the
length of the optional fields up to this point.
N2 can’t be larger than 32 bytes.

 } End stuffing byte loop.

 } End of PES_packet_header

 PES_data_payload() { Start of PES_data_payload.

 synchronous_data_header() { Start of synchronous_data_header.

 pts_ext_8 8 This field contains the 8 most significant
bits of the 9 bit Program Clock Reference
extension that extends the time resolution
of synchronous data PTS from the MPEG-
2 standard resolution of 11.1
microseconds (90 kHz) to 74 nanoseconds
(13.5 MHz).

 data_rate_flag 1 This 1-bit flag indicates the use of the
increment field defined below. This field is
set to 1b to indicate that an increment field
is present in the synchronous data header.
This flag must be set to 1b for
synchronous data rates between 1.0058
bit/second and 9.0 Mbps. In this case, the
ES_rate field, if present in the PES
header, will be ignored by the data
receiver. This flag must be set to 0b for
synchronous data rates greater than 9.0
Mbps. In this case, the data rate shall be
specified by the ES_rate field of the PES
packet header.

 reserved 3 111b Reserved fields are always filled with 1bs
to avoid start_code emulation.

 synchronous_data_header_length 4 This 4-bit field indicates the length of the
remainder of the
synchronous_data_header (from
immediately after this field to the start of
the synchronous_data_sequence) in units
of 16 bit words. The value of this field is
“H” in the reserved fields below.

 if (data_rate_flag) {

 reserved 4 0xF Reserved fields are always filled with 1bs
to avoid start_code emulation.

 increment 28 This field represents the leak rate for the
16 bit synchronous_data_access_units
and must be provided if the synchronous
data rate is between 1.0058 bits/second
and 9.0 Mbps (above 9.0 Mbps, the leak
rate is given by the ES rate field in the
PES_packet_header. The increment field
contains an integer value specifying the
ratio of the synchronous data rate to a 27
MHz reference and must be in the range
0x14-0xAAAA6E0.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

58

 reserved 16*(H-2) 1…1b This reserved field is filled in with 1bs to
avoid start_code emulation.

 else {

 reserved 16*H 1…1b This reserved field is filled in with 1bs to
avoid start_code emulation.

 }

 } End synchronous_data_header.

 synchronous_data_sequence() { Start of synchronous_data_sequence

 for (i=0; i<N; i++) {

 synchronous_data_access_unit 16 Synchronous_data_access_units
represent the payload of the synchronous,
streaming encapsulation and are 16 bit
data words that are leaked from the buffer
at a piecewise continuous rate specified by
either the increment or ES_rate fields.

 }

 } End of synchronous_data_sequence.

 } End of PES_packet_payload.

} End of PES_packet.

Note: In the formula specified in the ATSC Data Broadcast Standard [1], the constant 27MHz
should equal 27,000,000 for calculations.

6.3.4 Synchronous Data Streaming of Network Datagrams

The frame structure defined for synchronous data streams may carry many different data types.
One possible use for this structure is the carriage of network datagrams, and more specifically IP
datagrams. There are four important facts to remember when encapsulating IP datagrams:

• The use of a LLC/SNAP encapsulation is optional for IP datagrams. However, the ATSC
recommends that IP datagrams be carried without using the LLC/SNAP encapsulation.
All other network datagrams are required to use the LLC/SNAP encapsulation.

• The Maximum Transfer Unit (MTU) for IP is 4072 bytes when LLC/SNAP is used and
4080 bytes when it is not for all IP datagrams.

• The protocol_encapsulation field attached to the associated tap in the DST should be
either 0x08 (LLC/SNAP included) or 0x0A (no LLC/SNAP).

• Only one datagram per PES packet.

Figure 6.11 illustrates the encapsulation of IP datagrams using PES framing for synchronous data
streaming.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

59

PES

Header

PES payload

Synchronous Data

Header

Synchronous Data

Sequence

IP Data Area

IP

Header

IP

Header

IP Data Area

Without LLC/SNAP field

(Recommended method)

With an LLC/SNAP field

8-byte LLC/SNAP field

Figure 6.11 Encapsulation of IP packets for synchronous data streaming using
PES frames.

6.3.5 Synchronized Data Streaming

Synchronized data streaming is used when a data stream needs time synchronization with one or
more separate MPEG-2 PES streams. An example of when this might be applicable is the timed
delivery of an IP datagram containing a trigger notification for a separate, pre-delivered graphic
to be displayed with associated video and audio PES streams.

The PES packet stream_id field will be set to 0xBD to indicate a type of private_stream_1
allowing for the usage of the PES header fields, especially the Presentation Time Stamp (PTS)
fields. The PES_packet_length field must be set to a non-zero value. Usage of the time stamps, i.e.
PCR via the adaptation field in an MPEG-2 Transport Stream header, requires the definition of
Access Units. In the ATSC Data Broadcast Standard [1], and for PES packetization layer, a Data
Access Unit (DAU) is defined as the in-order collection of one or more PES packets starting with
the one bearing the PTS and up to (but not including) the next PES packet with a PTS. A PTS
value must be present in the first PES packet of every Data Access Unit. The DAU is meant to
represent a basic unit of data that is “presented” at the specified PTS.

For a synchronized data stream, the PES payload carries the synchronized_data_packet()
structure. This structure starts with a variable-length header followed by the payload bytes. In
most cases, the length of this header will be either 3 or 5 bytes. The header bytes may include a
9-bit PTS extension and a privately defined sub-stream identifier. Following the header bytes is
the collection of data payload bytes.

Table 6.17 shows PES encapsulation for synchronized data streaming. Notice that the header
is similar to the synchronous case and that only the PES payload differs slightly.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

60

Table 6.17 Synchronized Streaming Data in PES

Field Name No. of
Bits

Field Value Notes

PES_packet() {

 PES_packet_header() { Start of PES_packet_header

 packet_start_code_prefix 24 0x00001 23 zero bits followed by a one bit. This
sequence of zeroes followed by a one
was designed to allow a receiver to easily
identify the beginning of a PES packet in
the bitstream. This assumes of course
that this sequence cannot occur at other
locations in the bitstream (start code
emulation).

 stream_id 8 0xBD This value indicates: private_stream_1.
The PES header bytes of a
private_stream_1 stream may include
many optional fields including Decoding
and Presentation Time Stamps; this is not
the case for a private_stream_2-type of
stream.

 PES_packet_length 16 Length in bytes of remaining PES_packet
(from the end of this field to the end of the
packet_payload). This value must be
non-zero (the convention for video PES
packets of using the value zero to signal
an unspecified length is not allowed for
synchronized streaming data).

 marker_bits 2 10b Set by 13818-1 to avoid the possibility of
inadvertent start_code emulation.

 PES_scrambling_control 2 Indicates the scrambling mode of the
PES_packet payload. 00b indicates no
scrambling. 01b, 10b and 11b indicate
user defined scrambling methods.
If the payload is scrambled, the
PES_packet_header cannot be
scrambled.

 PES_priority 1 Relative priority of PES_packet payload.
A ‘1’ indicates a higher priority for the
payload than a 0b. This field is typically
set by the multiplexor and should not be
changed by the transport mechanism.

 data_alignment_indicator 1 0b 0b indicates that the alignment of the
Data Access Unit within the PES packet
payload is not specified. For ATSC Data
Broadcast Services, this value is typically
set to ‘0’ as alignment rules in MPEG-2
Systems are only defined for video and
audio elementary streams.

 copyright 1 0b indicates that the content is not
protected by copyright. If set to 1b, the
copyright method is defined by a
copyright descriptor in the PMT of the
MPEG-2 Program to which this PES
packet belongs.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

61

 original_or_copy 1 1b indicates the content of the PES
packet payload is an original. 0b indicates
that the content of the PES packet
payload is a copy. The purpose of this
flag is to enable content rights
management and copy protection in the
receiver (assuming that these systems
have been properly defined and
specified).

 PTS_DTS_flag 2 10b 10b indicates that the packet header
carries a PTS. As discussed below, the
DTS does not have any normative
meaning for synchronized data and is not
commonly used.

 ESCR_flag 1 0b indicates that an elementary stream
clock reference (ESCR) is not included in
the packet header. Elementary Stream
clock reference fields are typically used to
help re-multiplexing an elementary
stream into various Transport Streams

 ES_rate_flag 1 0b This field indicates the presence of a 22-
bit ES_rate field in the PES header. The
value of ES_rate specifies the leak rate
for the PES packet bytes. The field
ES_rate is most commonly used for
synchronous data elementary streams.

 DSM_trick_mode_flag 1 0b This field is used to indicate the presence
of trick mode control commands in the
PES header. This bit is always set to 0b
as this functionality is now superseded by
the DSM-CC Specification.

 additional_copy_info_flag 1 This field indicates the presence of
additional information regarding copyright
of the data in the PES packet (0b
indicates that no extra copy information
exists in the header). The additional
information is represented by the 7-bit
field additional_copy_info field in the PES
packet header.

 PES_CRC_flag 1 This field indicates the presence of a
CRC16 error detection code applicable to
the payload of the previous PES packet
in the same data elementary stream. If
set to 1b, the CRC error detection code is
carried by the
previous_PES_packet_CRC field in the
PES packet header.

 PES_extension_flag 1 0b This field indicates whether the PES
extension fields are present in the PES
packet header or not. The fields in the
PES extension are typically relevant to
MPEG-2 Program Stream and therefore
are not used for ATSC Data Broadcast.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

62

 PES_header_data_length 8 This field indicates the length in bytes of
the optional fields and stuffing bytes in
the PES packet header (all of the fields
beginning immediately after this field to
the start of the PES_packet_payload).
The value of this field is necessary to
determine the number of stuffing bytes at
the tail of the PES packet header.

 if (PTS_DTS_flags == 10b) { Start of the PTS fields only. The PTS field
is a 33-bit field representing a sample of
the 90 KHz clock derived from the 27
MHz System Time Clock reconstructed
from the PCR fields transmitted in the
MPEG-2 Transport Stream packets. The
value of the PTS field represents the
presentation time of the first data access
unit in the PES packet.

 ‘0010’ 4 0010b Required bits when the
PES_packet_header carries a PTS, but
not a DTS.

 PTS [32..30] 3 The 3 most significant bits of the 33-bit
Presentation Time Stamp (PTS).

 marker_bit 1 1b Marker bits are always set to 1b.

 PTS [29..15] 15 The middle 15-bits of the 33-bit
presentation time stamp.

 marker_bit 1 1b Marker bits are always set to 1b.

 PTS [14..0] 15 The 15 least significant bits of the 33-bit
presentation time stamp.

 marker_bit 1 1b Marker bits are always set to 1b.

 } End of PTS fields only.

 if (ESCR_flag == 1b) { ES_rate field.

 marker_bit 1 1b Avoids emulation of start bits.

 ES_rate 22 Multiplying this 22-bit value by 400 bps,
gives the elementary stream rate. Zero is
not an allowed value for this field.

 marker_bit 1 1b Avoids emulation of start bits.

 } End of ES_rate field.

 if (PES_CRC_flag == 1b) { PES_CRC field.

 previous_PES_packet_CRC 16 CRC16 value of previous PES packet.

 } End of PES_CRC field.

 for (i=0; i<N2; i++){ stuffing_bytes loop.

 stuffing_byte N2*8 0xFF The encoder may insert stuffing bytes,
which are typically discarded by the
receiver. The value of N2 is determined
as the difference between the value
carried in the PES_header_data_length
field and the length of the optional fields
up to this point. N2 can’t be larger than
32 Bytes.

 } End stuffing byte loop.

 } End of PES_packet_header

 PES_data_payload() { Start of PES_data_payload.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

63

 synchronized_data_packet() { Start of synchronized_data_packet

 data_identifier 8 0x22 Indicates ATSC synchronized data
stream.

 sub_stream_id 8 This field is privately defined.

 PTS_extension_flag 1 1b indicates the presence of a 9-bit PTS
extension. 0b indicates that the 9-bit PTS
extension is not used.

 output_data_rate_flag 1 0b Always set to 0b.

 reserved 2 11b Reserved fields are always filled with 1b’s
to avoid start_code emulation.

 synchronized_data_packet_
 header_length

4 Indicates the number of extra bytes
inserted after this field and before the first
data payload byte. This 4-bit field shall
specify the length of the optional fields in
the packet header. This includes the
fields that are included when
PTS_extension_flag is equal to 1b and it
also includes the
synchronized_data_private_data_bytes.

 if (PTS_extension_flag) {

 reserved 7 1111111b Reserved fields always contain 1b’s to
avoid start_code emulation

 PTS_extension 9 This field extends the PTS conveyed in
the header of this PES packet to allow an
extension of the time resolution of
synchronized data PTSs from the MPEG-
2 standard resolution of 11.1
microseconds (90 kHz) to 37
nanoseconds (27 MHz).

 } End of PTS_extension

 for (i=0;i<N1;i++) { synchronized_data_private_data_bytes

 synchronized_data_private_
 data_byte

N1* 8

 } End of
synchronized_data_private_data_bytes

 remaining data bytes N * 8 synchronized, streaming payload.

 } End of syncrhonized_data_packet.

 } End of PES_packet_payload.

} End of PES_packet.

6.3.6 Synchronized Data Streaming of Network Datagrams

The frame structure defined for synchronized data streams is capable of carrying many different
data types. One use for this structure is the carriage of datagrams, and more specifically IP
datagrams. There are four important facts to remember when encapsulating IP datagrams:

• The use of a LLC/SNAP encapsulation is optional for IP datagrams. However, the ATSC
recommends that IP datagrams be carried without using the LLC/SNAP encapsulation.
All other network datagrams are required to use the LLC/SNAP encapsulation.

• The Maximum Transfer Unit (MTU) is 4072 bytes when LLC/SNAP is used and 4080
bytes when it is not for all IP datagrams.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

64

• The protocol_encapsulation field attached to the associated tap in the DST should be
either 0x07 (LLC/SNAP included) or 0x09 (no LLC/SNAP).

• Only one datagram per PES packet.

If the payload is carrying a datagram, then the first 8 data bytes may contain the LLC/SNAP
field. The method to discover if a synchronized data stream carries a LLC/SNAP field is by
examining the associated Data Service Table (DST). Entries in the DST indicate the applicable
protocol encapsulation via the protocol_encapsulation field. Applicable values for synchronized data
streams are listed in Section 6.3.9.

Figure 6.12 illustrates the carriage of an IP datagram in the synchronous data streaming
encapsulation.

PES

Header

PES payload

Synchronized Data

Packet Structure

IP Data Area

IP

Header

IP

Header

IP Data Area

Without LLC/SNAP field

(Recommended method)

With LLC/SNAP field

8-byte LLC/SNAP field

data_identifier
sub_stream_id
PTS_extension

Figure 6.12 Encapsulation of IP packets for synchronized data streaming using
PES frames.

6.3.7 PSIP Announcement of Synchronized and Synchronous Data Streams

In PSIP, the Virtual Channel Table defines the list of Virtual Channels applicable for an ATSC
Transport multiplex. Each Virtual Channel carries a Service Location Descriptor (SLD) with
information connecting the PID and stream_type values. A data receiver may use this information
to quickly determine the Program elements. For announcements, every Virtual Channel uses the
source_id as a link to program guide information. For data broadcasting, the program
announcement information comes in either of two tables: the Event Information Table (EIT) or
the Data Event Table (DET).

Synchronous and synchronized data streams may be one of several components of an entire
Data Service. If the standalone Data Service requires program guide announcement, it will
appear in the Data Event Table (DET). In this case, the Data Service will have a valid data_id
value that uniquely identifies its schedule in the program guide. The DET will include a Data
Service Descriptor to indicate buffer size and rate constraints required for the service. The DET
may also optionally include a PID Count Descriptor that lists the minimum number of

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

65

simultaneous PID values that require monitoring. The PID Count Descriptor also optionally
provides the total number of PIDs used by the Data Service.

If the Data Service is linked to an audiovisual event (TV program) and does not require a
separate announcement, then the Program elements (stream PIDs) for data are treated like the
video or audio PIDs of a single event. This event will have an event_id to define its schedule in the
Event Information Table (EIT). However, the data_service_descriptor is located in the EIT and
indicates the buffer size and the rate constraints required by the Data Service. Likewise, the PID
Count Descriptor may optionally appear in the EIT.

6.3.7.1 Data Service Descriptor in PSIP

For any event containing a synchronous or synchronized encapsulation protocol, there must be a
data_service_descriptor present in either the Event Information Table (EIT) or the Data Event Table
(DET). (Refer to Section 7.1, in this document for additional information on the
data_service_descriptor.)

6.3.7.2 PID Count Descriptor

An optional PID_count_descriptor may be included in the DET or EIT of an announced Data
Service. (Refer to Section 7.2 in this document for additional information.)

6.3.8 Discovery of Synchronous and Synchronized Data Streaming Program Elements

6.3.8.1 PSIP Service Location Descriptor (SLD) and the Program Map Table (PMT)

PSIP and the MPEG-2 PSI tables (PAT and PMT) are used in data broadcasting for service
announcement. The PSIP tables describe in advance the start times and the duration of events so
that a data receiver knows when to expect the Data Services to occur. The tables also describe
the parental ratings, the Data Service profiles, and similar event features. One particular PSIP
table, the Virtual Channel Table (VCT), describes the channel structure in a ATSC Transport
multiplex and therefore indicates those channels allocated for Data Services. Both, the VCT and
the MPEG-2 PMT indicate how to locate the tables comprising the Service Description
Framework (SDF).

The SDF identifies the presence of data being delivered and provides the mechanism for the
unambiguous discovery of the data within the current Transport Stream or another Transport
Stream using the PSIP and the MPEG-2 PSI (PAT and PMT). (Refer to Section 11 of the ATSC
Data Broadcast Standard [1], and Section 7 of this document for additional information regarding
Data Service announcements. See Section 12 of the ATSC Data Broadcast Standard [1], and
Section 8 of this document for additional information regarding the SDF.)

The Service Location Descriptor (SLD) of the VCT contains the stream_type and elementary_PID
information for each synchronous and synchronized protocol Program element of the Data
Service. Additionally, the same information is carried in the PMT of the current Transport
Stream. The data download protocol stream_type field values associated with the elementary_PID
field are defined as follows.

• For the delivery of synchronous streams, the stream_type field of the SLD and the PMT is
0xC2.

• For the delivery of synchronized streams, the stream_type field of the SLD and the PMT is
0x06.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

66

6.3.9 Binding of the Synchronized and Synchronous Data Streaming Program Elements

The Service Description Framework (SDF) provides the binding mechanism for an ATSC Data
Broadcast system. The SDF’s Data Service Table (DST) must be sent at least once for any ATSC
service. The following information must be included as part of the DST. (See Section 8 for
additional information regarding the DST.)

Synchronous and synchronized data streams may be one of several Program elements that
compose a Data Service. All parameters and configuration of a Data Service are defined in the
Data Service Table (DST). The Data Service may be subdivided in one or more applications.
Each application may be subsequently subdivided into one or more taps. Linkage from a tap to a
particular Program element occurs through the protocol_encapsulation field and the association_tag.
The protocol_encapsulation field identifies the encapsulation protocol used by the associated
Program element. Table 6.18 lists the possible values for synchronous and synchronized Program
elements.

Table 6.18 Synchronous and Synchronized Protocol_Encapsulation Field Values

Encapsulation Protocol Value of the protocol_encapsulation
Field

Synchronized data streams encapsulated in PES 0x05

Synchronous data streams encapsulated in PES 0x06

Synchronized data streams using LLC/SNAP for multiprotocol support 0x07

Synchronous data streams using LLC/SNAP for multiprotocol support. 0x08

Synchronized IP data streams using PES 0x09

Synchronous IP data streams using PES 0x0A

Once the DST is located, a data receiver retrieves the tap information including the
protocol_encapsulation field. A final binding is necessary between a tap in the DST and an
elementary stream in the PMT. This final binding is accomplished by using the association_tag.
There is an association_tag for each of the taps that appear in a DST and there is an
association_tag_descriptor linked to the corresponding elementary stream in a PMT.

6.4 Data Piping

The Data Piping encapsulation protocol is specified in Section 10 of the ATSC Data Broadcast
Standard [1].

Data Piping is an asynchronous transportation mechanism for data. Data is inserted directly
in the payload of MPEG-2 Transport Stream packets.

There is no defined mechanism for splitting and reassembly of the datagrams. This, if
required, is part of the application definition. For instance, the payload_unit_start_indicator could be
used to signal the start of a datagram in a packet.

The continuity_counter will be used as defined by MPEG-2 ([2], Section 2.4.3).

6.4.1 PSIP Announcement of the Data Piping Protocol

In PSIP, the Virtual Channel Table defines the list of Virtual Channels applicable for an ATSC
Transport multiplex. Every Virtual Channel carries a Service Location Descriptor (SLD) with
information connecting the PID and stream_type values. A data receiver may use this information
to quickly determine the Program elements. For announcements, every Virtual Channel uses the
source_id as a link to program guide information. For data broadcasting, the program

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

67

announcement information comes in either of two tables: the Event Information Table (EIT) or
the Data Event Table (DET). A Data Service containing a Data Piping encapsulation protocol
Program element may be announced in either an EIT or a DET. (For further information
regarding Data Service announcement specifics, see Section 7 of this document.)

6.4.1.1 Data Service Descriptor in PSIP

If the Data Piping encapsulation protocol is an announced event then there must be a
data_service_descriptor present in either the Event Information Table (EIT) or the Data Event Table
(DET). (Refer to Section 7.1, in this document for further information on the
data_service_descriptor.)

6.4.1.2 PID Count Descriptor

An optional PID_count_descriptor may be included in the DET or EIT of an announced Data
Service. (Refer to Section 7.2 in this document for additional information.)

6.4.2 Discovery of a Data Piping Protocol Program Element

6.4.2.1 PSIP Service Location Descriptor (SLD) and Program Map Table (PMT)

PSIP and the MPEG-2 PSI tables (PAT and PMT) are used in data broadcasting for service
announcement. The PSIP tables describe in advance the start times and the duration of events so
that a data receiver knows when to expect the Data Services to occur. The tables also describe
the parental ratings, the Data Service profiles, and similar event features. One particular PSIP
table, the Virtual Channel Table (VCT), describes the channel structure in a ATSC Transport
multiplex and therefore indicates those channels allocated for Data Services. Both, the VCT and
the MPEG-2 PMT indicate how to locate the tables comprising the Service Description
Framework (SDF).

The SDF identifies the presence of data being delivered and provides the mechanism for the
unambiguous discovery of Data Piping data within the current Transport Stream or another
Transport Stream using PSIP and the MPEG-2 PSI (PAT and PMT). (Refer to Section 11 of the
ATSC Data Broadcast Standard [1], and Section 7 of this document for additional information
regarding Data Service announcements. See Section 12 of the ATSC Data Broadcast Standard
[1], and Section 8 of this document for additional information regarding the SDF.)

The Service Location Descriptor (SLD) of the VCT contains the stream_type and elementary_PID
information for each Data Piping encapsulation protocol Program element of the Data Service.
Additionally, the same information is carried in the PMT of the current Transport Stream.
stream_type field values associated with the elementary_PID field are defined as follows:

The stream_type field of the SLD and the PMT may carry any value.
(Note that A/90 specifies that data piping shall not be used for the
carriage of video elementary streams (stream type 0x02) or audio
elementary streams (stream type 0x81). Other ATSC standards
define transmission of these two stream types.

The data delivery PID for the Data Piping encapsulation protocol will be specified by the
elementary_PID of the SLD and the PMT. The declared stream_type associated with the
elementrary_PID must match the required stream_type value.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

68

6.4.3 Binding of a Data Piping Protocol Program Element

The Service Description Framework (SDF) provides for the binding mechanism for an ATSC
data broadcast system. The Data Service Table (DST) must be sent at least once for any ATSC
service. The following information must be included as part of the DST. (See Section 8 for
additional information regarding the DST.)

6.4.3.1 Protocol Encapsulation

The protocol_encapsulation value is located in the Data Service Table (DST). The
protocol_encapsulation field is set to 0x0B for the delivery of Data Piping encapsulation protocol.

7. PSIP DATA SERVICE EVENT ANNOUNCEMENT

A Data Service is announced by an event in either the PSIP Event Information Tables (EIT)
(defined in [6]) or the newly defined Data Event Tables (DET) (defined in [1]).

Like an EIT-k table, a DET-k table consists of multiple table instances where each instance is
identified by the value of the source_id field in the table section header. An instance of a DET-k is
therefore associated with a given ATSC Virtual Channel. The similarity between DET-k’s and
EIT-k’s does not stop here. Like any EIT-k, a DET-k is associated with a given 3-hour time
window. The syntax of a DET-k instance is similar to the syntax of an EIT-k instance except for
the fact that there is a data_id field and not an event_id field is used to identify each event. The
data_id field serves the same purpose as the event_id field which is to facilitate the association of
Extended Text data with an event. The value space for the data_id fields is independent of the
value space for the event_id fields, meaning that a data_id and event_id can have the same value for
two distinct events. The DET-k’s have their own table_type value in the PSIP Master Guide Table.
The range of values is 0x1100-0x117F. Likewise, the ETT’s associated with the DET Tables are
in the range 0x1200-0x127F.

The choice of EIT-k’s or DET-k’s to announce the schedule of a data service is driven by the
consideration of the following scenarios:

• First Scenario: The data service belongs to a data-only ATSC Virtual Channel. The
minor_channel_number associated with such channel must be equal or greater than 100 and
the service_type of the channel is equal to 0x04. In this case, the title_text structure of the
DET-k instances announcing the schedule of the data services specifies the title of the
data service. The data service has its own schedule and its own rating.

• Second Scenario: The data service is an enhancement to an ATSC audio (service_type
0x03) or audiovisual (service_type 0x02) Virtual Channel. The data service portion of the
event and the audiovisual portion of the event share the same schedule, meaning that the
data service is reproduced and available to the viewer during the time scheduled for the
audiovisual event. Note that this does not mean that data service data is continuously
transmitted during the integral scheduled period of the audiovisual event. For example, a
data service may only appear during a commercial break. The data service also shares the
same name as the audiovisual portion of the event. The PSIP title_text structure may
capture or may not capture language or character codes revealing the presence of a data
service. In this case, the data service schedule is announced by means of EIT-k instances.
Consequently, these instances announce the schedule of an audio-visual-data event in an
ATSC Virtual Channel.

• Third Scenario: The data service is a data event associated with an audio or audiovisual
channel. In this case, the schedule of the data event may not coincide with the schedule of
the audiovisual events in the virtual channel. For example, the schedule of the data event

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

69

may be such that it overlaps with the second half of an audiovisual event. Likewise, the
schedule of the data event may be covering only the first quarter of an audiovisual event.
Furthermore, in this case, the name of the data service may be different from the name of
the audiovisual event with which it is running concurrently in the same ATSC Virtual
Channel. In this case, DET-k instances are used to convey the schedule and the title of the
data service portion of the event. The DET-k instances and the associated EIT-k instances
convey the same source_id value in their header bytes as they refer to the same ATSC
Virtual Channel. The service_type of the ATSC Virtual Channel is 0x02 or 0x03.

A third table (the Long Term Service Table (LTST)) is defined in A/90 to pre-announce data
events that will occur on a timescale longer than is available through the EIT/DET mechanism.
Discussion of the LTST is omitted in this document for simplicity.

Virtual channels that carry data services may be hidden from navigation and/or program
guides. This function is supported in the VCT using two bits called hidden and hide_guide
respectively. When these two bits are each set to ‘1’ then the channel is hidden from navigation
and the EPG. When the hidden bit is ‘1’ and the hide_guide bit is ‘0’, the channel is hidden from
navigation but may appear in an EPG. All other combinations are ignored.

The DET is constructed and identified in the same manner as the EIT except for a different
table_id. The DET table_id is 0xCE. Refer to section 6.5 of PSIP [6], and Annex D of [6] for further
information regarding the construction of the DET/EIT. The event_id and data_id fields do not
share the same value space.

The recommended cycle time for DET-0 is 500 milliseconds. The recommended cycle time
for DET-1 is 2 seconds. In all cases, it is recommended that the maximum cycle time for a DET-
k be such that it is always smaller or equal to the DET of the next time window, DET-(K+1), if it
exists.

Figure 7.1 illustrates the DETs relation to the EIT.

source _id

source _id

RRT

STT

MGT

VCT

B-PID

EIT-0 EIT-1
source _id

for channel w:

for channel x:

source _id

source _id

source _id

PID-M PID-N PID-K PID-L

 source_id

 source_id

 source_id

 source_id

DET-0 DET-1

for channel y:

source _id

for channel z:

source _id

Figure 7.1 Event Table hierarchy.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

70

7.1 Data Service Descriptor

Every event in the DET must have a data_service_descriptor. If the Data Service is announced in an
EIT, then each event with an associated Data Service will also carry a data_service_descriptor. The
purpose of the data_service_descriptor is to publish the Data Service profile and level.

The data_service_profile specifies the maximum data bit-rate that will be transmitted with this
Data Service. The maximum data rate is inclusive of the Transport Stream header fields as well
as the Data Service discovery information such as that carried in the Data Service Table and
Network Resource Table. The maximum data rate is applied to all the data elementary streams
comprising the Data Service. (Additionally, see Section 11.5 of the ATSC Data Broadcast
Standard [1].) The data_service_profile values 0x01, 0x02 and 0x03 signal data services to which is
guaranteed a certain and fixed bandwidth. The data_service_profile value 0x01 means that the
guaranteed bandwidth assigned to the data service is 383896 bits/sec. This means that insertion
of data into the ATSC multiplex can be sustained at that maximum rate at any moment during
the data service transmission. The value 0x02 indicates that the guaranteed rate is 3838960
bits/sec and the value 0x03 indicates that the guaranteed rate is 19.2 Mbits/sec. The
data_service_profile value 0x4 indicates that the data service is opportunistic in nature meaning that
the instantaneous rate available for insertion of the data into the ATSC multiplex varies in time.
Reasons for such variations of bandwidth in time may come for large swing in the number of bits
taken at any instant by the transmission of the video and/or audio elementary streams. The
instantaneous bandwidth of an opportunistic data service may vary from 0 bits/sec to 19.2
Mbits/sec. However, a data service for which the instantaneous bandwidth varies for example,
between 2 Mbits/sec and 19.2 Mbits/sec should also be classified as an opportunistic data
service. In this case, although the service may be considered as the superposition of a guaranteed
data service of 2 Mbits/sec and an opportunistic data service, it must be observed that the overall
data service is indeed opportunistic since it is very clear that the instantaneous bandwidth
available at the head-end to transmit the data is variable in time. In general, any data service for
which the instantaneous bandwidth varies between some fixed floor value all the way to 19.2
Mbps per second should be signaled as opportunistic (value 0x04).

The data_service_level is tied to the specification of a Data Elementary Stream buffer size.
Upon parsing the data_service_descriptor, a data receiver can determine whether the buffer
requirements for acquiring the Data Service match its buffer and throughput capability.

The data_service_profile along with the data_service_level can be used to determine the maximum
latency, sb_leak, and sb_size parameters associated with all the data elementary streams
comprising the Data Service. (For further discussion regarding buffering requirements, see
Section 9 of this document.)

Table 7.1 describes the data_service_descriptor.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

71

Table 7.1 Data Service Descriptor Syntax

Field Name No. of
Bits

Field
Value

Notes

data_service_descriptor() {

 descriptor_tag 8 0xA4

 descriptor_length 8 0x03 or
greater

0x03 if only the data_service_profile and
data_service_level are specified. 0x04
or greater if there is
private_data_byte(s) in the descriptor.

 data_service_profile 8

 data_service_level 8

 private_data_length 8 0x00 if the descriptor_length is 0x03.

 for (i=0; i<private_data_length; i++) {

 private_data_byte 8

 }

}

7.2 PID Count Descriptor

The descriptor loop of either the DET or the EIT may optionally include a PID_count_descriptor
providing the total number of PIDs used by the Data Service as well as the minimum number of
PIDs used in the Data Service, which will provide a reasonable rendering of a subset of the
service. A data receiver may use the number of PIDs to determine whether it has the PID
filtering capabilities available to successfully receive the Data Service.

Table 7.2 describes the PID_count_descriptor.

Table 7.2 PID Count Descriptor Syntax

Field Name No. of
Bits

Field
Value

Notes

PID_count_descriptor() {

 descriptor_tag 8 0xA5

 descriptor_length 8 0x02 or
0x04

0x02 if only total_number_of_PID is
specified. 0x04 if both
total_number_of_PID and
min_number_of_PID are specified.

 reserved 3 111b

 total_number_of_PIDs 13

 reserved 3 111b

 min_number_of_PIDs 13

}

8. DATA SERVICE PROGRAM ELEMENT DISCOVERY AND BINDING

The ATSC Service Description Framework (SDF) enables a data receiver to discover the data
services carried in an ATSC transport multiplex and bind to the data in the data services. It
enables the receiver to find out what data are in each data service, where the data are located,

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

72

what encapsulation protocol or protocols are used to transmit them, and certain other related
information.

A data service in an ATSC transport multiplex must be contained in a virtual channel, and
each virtual channel may have at most one data service. A virtual channel containing a data
service may be a video channel (service_type 0x02 in the Virtual Channel Table), an audio channel
(service_type 0x03) or a data-only channel (service_type 0x04). A single data service may consist of
multiple applications, and each application may contain multiple data elements.

Each data element for a data service is listed in the MPEG-2 Program Map Table (PMT) for
the MPEG-2 program corresponding to the virtual channel, and in the Service Location
Descriptor (SLD) for the virtual channel in the Virtual Channel Table (VCT). In the descriptor
loop for each data element in the PMT there must be an association tag descriptor, which
provides a 16-bit identifier (association tag) for the data element. These association tags must be
unique within the scope of the virtual channel (MPEG-2 program). The association tag for a data
element remains invariant under demultiplexing and remultiplexing of the virtual channels in a
transport stream (unlike the packet identifier (PID) associated with a program element, which
may change during such demultiplexing/remultiplexing operations). The detailed syntax of the
association tag descriptor is described in Section 8.1 of this document.

Note that there should be a one-to-one correspondence between the data elements listed in
the SLD for the virtual channel and the data elements listed in the PMT for the MPEG-2 program
corresponding to the virtual channel.

Two tables are used to convey the discovery and binding information for a data service, the
Data Service Table (DST) and the Network Resources Table (NRT). Both of these tables are
carried in a single MPEG-2 program element in the virtual channel containing the data service.
This program element is identified by having stream_type 0x95 in the virtual channel’s PMT and
VCT SLD. The DST is required for all virtual channels containing a data service, but the NRT is
only required when the data service requires data that is not contained in the virtual channel itself
(such as data on a remote server accessed over an external network connection, or data in some
other virtual channel in the broadcast stream).

Since there may be at most one data service in a single virtual channel, there may be at most
one program element in a virtual channel with stream_type 0x95. Moreover, different virtual
channels must use different program elements for their DSTs and NRTs. It is not allowed to have
DSTs or NRTs for different data services in the same program element.

Thus, when a data receiver is tuned to a virtual channel containing a data service, it first
acquires the virtual channel’s PMT and/or VCT SLD and finds in it the program element with
stream_type 0x95. It then looks in that program element and acquires the DST and, if present, the
NRT.

The DST contains the following information:

• Protocol version for the SDF itself (0x01 for the current version of A/90).

• List of the applications in the data service.

• For each application:

1) Compatibility descriptor (describing capabilities needed to render the application).

2) An application identifier structure (app_id_byte_length and app_id_byte fields).

3) List of the resources which make up the application.

4) For each resource:

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

73

a) protocol_encapsulation field giving encapsulation protocol used for the
resource.

b) action_type flag indicating how the resource is to be used.

c) resource_location flag indicating whether the resource is local or remote.

d) Unique tap_id identifier for the resource (scoped by the application).

e) association_tag and an optional selector used to locate the resource.

f) List of descriptors for the resource.

5) List of descriptors for the application.

6) Private data area for the application (containing initialization data, or whatever).

• List of descriptors for the data service.

• Private data area for the data service (containing initialization data, or whatever).

The protocol_encapsulation field tells which of the ATSC Data Broadcast encapsulation
protocols is used to carry the resource.

The action_type flag indicates whether or not the resource should be auto-launched in order to
start the application.

The tap_id is used within the application to reference the resource.

If the resource_location flag indicates the resource is local, then the receiver matches the
association tag for the resource in the DST with an association tag in the PMT to identify the
data element containing the resource. If the resource_location flag indicates the resource is remote,
then the receiver matches the association tag for the resource in the DST with an association tag
in the NRT to identify where to find the resource.

The selector field is used to reference a subset of the resource identified by the association
tag. For example, the association tag may identify an entire data carousel, and the selector field
may be used to specify a single module of the carousel, or the association tag may identify a data
element containing IP packets, and the selector field may be used to specify that the resource of
interest consists of only those packets with a particular IP destination address.

A detailed description of the DST can be found in Section 8.4 of this document.

The NRT contains the following information:

• List of the remote resources used in the data service.

• For each remote resource:

1) Compatibility descriptor (describing capabilities needed to access the resource).

2) DSM-CC resource descriptor, containing the following information:

a) Resource descriptor type (identifying the type of resource).

b) Resource num identifier for the resource (unique within the NRT).

c) Association tag (unique within NRT, used by the DST to reference the
resource).

d) Resource data fields used to completely describe the resource, with format
dependent on resource descriptor type.

e) A few other fields that are unused (applicable only in other DSM-CC
contexts) private data for the resource (containing initialization data, or
whatever)

The DSM-CC resource descriptors specifically listed in the ATSC Data Broadcast Standard
are:

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

74

• Deferred MPEG Program Element descriptor, used to identify an MPEG-2 resource in
another virtual channel (in the same or a different transport stream).

• IP Resource descriptor, used to identify a resource by IP address and port.

• IPv6 Resource descriptor, used to identify a resource by IPv6 address and port.

• URL Resource descriptor, used to identify a resource by its URL.

A detailed description of the NRT can be found in Section 8.5 of this document.

Note that if multiple applications are merged to form a data service, their local data elements
are merged into a single MPEG-2 program, and their remote resources are merged into a single
NRT. In this situation care must be taken to avoid collisions of association tags in the PMT and
in the NRT.

The DST must be transmitted at least once during the scheduled delivery of the data service
(i.e., between the start time and end time of the EIT or DET event containing the data service).
Since a receiver typically cannot begin rendering the data service until it has seen the DST, it is a
good idea to transmit it shortly before transmitting any data and periodically after that. The
shorter the interval between transmissions of the DST, the faster the receiver will be able to start
rendering the data service when a viewer tunes to the virtual channel in mid-event. The
frequency of transmission of the DST represents a compromise between the bandwidth required
for it and the latency experienced by a viewer tuning to the channel in mid-event. Similar
considerations apply to the NRT, when remote data is part of the data service.

Figure 8.1 illustrates the relationships among the MPEG-2 PMT, the ATSC PSIP VCT, and
the ATSC Data Broadcast DST and NRT.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

75

PMT
{

program {

for () {

/* Item 1 */
stream_type == 0x95

elementary_PID = PIDx

/* Item 2 */

stream_type

elementary_PID == PIDy
association_tag_descriptor() {

association_tag

}
}

}

}

DST
{

for (j=0; j<applicationCount; j++) {

for (i=0; i<tapCount; i++) {

protocol_encapsulation
resourceLocation

Tap() {

tapId
use

associationTag

}
}

}

}

if (resourceLocation == 0)

then PMT

if (resourceLocation == 1)

then NRT

NRT
{

dsmccResourceDescriptor() {

commonDescriptorHeader() {

associationTag
}

}

}

VCT
{

virtual channel {

service_location_descriptor () {

for (i=0; i<num_elements; i++) {
/* Item 1 */

stream_type == 0x95

elementary_PID = PIDx

/* Item 2 */

stream_type
elementary_PID = PIDy

}

}
}

}

Figure 8.1 The Relationship of the VCT, PMT, DST, and NRT in the SDF

In Figure 8.1 the MPEG-2 Transport Stream packets conveying the DST and the NRT have
the same elementary_PID value, denoted by PIDx. That elementary_PID value is referenced by both
the PMT and the SLD in the VCT, using stream_type 0x95 to identify it. The DST and the NRT
are conveyed in distinct tables within that program element to provide a de-coupling, allowing
each table to be transmitted independently and at a different frequency. The receiver can easily
tell the tables apart, because they have different table_id values, 0xCF for the DST and 0xD1 for
the NRT. Each association tag value in the DST references either an association_tag descriptor in
the PMT (for a local resource) or an association tag in one of the DSM-CC resource descriptors
in the NRT (for a remote resource).

Note that there are no association tag descriptors in the SLD, since there is no descriptor loop
for the program elements in the SLD where they could appear. Thus, the binding to the local data
elements must always go through the PMT, not the VCT. This means that when a viewer tunes to
a virtual channel containing a data service, the receiver must acquire the VCT so it can determine
what MPEG-2 program corresponds to the virtual channel number requested by the viewer, and
it must then acquire the PMT for that program in order to bind to the data elements.

Any association tag that appears in the DST must have a corresponding association tag in the
PMT or in the NRT, depending on whether the resource for the association tag is identified by

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

76

the resource_location flag as local or remote. However, there may be association tags in the PMT
or the NRT for which there is no corresponding association tag in the DST (i.e., there may be
local or remote resources that are identified but not used by the data service).

The delivery of the SDF information (DST and NRT) follows the buffer model for
asynchronous data services. (See Section 9 for additional information on buffer models.)

8.1 Association Tag Descriptor

Table 8.1 describes the Association Tag Descriptor that is used to bind resources in the DST to
program elements in the PMT. One of these descriptors goes in the ES_info descriptor loop of the
PMT, for each data element in the virtual channel.

Table 8.1 Association Tag Descriptor

Field Name No. of
Bits

Field Value Notes

association_tag_descriptor() {

 descriptor_tag 8 0x14 denotes association tag descriptor

 descriptor_length 8 0x05 length in bytes of this descriptor, after
this field

 association_tag 16 arbitrary association tag value; must be unique
within the PMT containing this
descriptor

 use 16 0x1000 denotes “not applicable”

 selector_length 8 0x00 no selector field allowed here

}

The generic syntax of this descriptor, as defined by the DSM-CC standard, allows for private
data bytes right after the selector field, but this is prohibited by the ATSC Data Broadcast
Standard.

The reason that no selector field is allowed in the association tag descriptor is that it is not
needed, since a selector field may be present in any DST entry that references the association tag.

8.2 Data Service Discovery–The Basic Algorithm

Data Service discovery relies on the usage of the structures identified in the following sections.
The acquisition from the ATSC Transport multiplex may or may not be concurrent.

8.2.1 PSIP Structures

The schedule of the Data Service is discovered though the PSIP EIT-k’s or DET-k’s. The PSIP
MGT is acquired to identify the elementary_PID value of the Program elements conveying the EIT-
k’s and DET-k’s. The existence of a Data Service in a PSIP Virtual Channel can be detected by
the presence of a data_service_descriptor in the descriptor loop associated with the event(s) in which
the Data Service appears. This fact is true for standalone Data Services and Data Services related
to an audio-visual event (service_type 0x04 and 0x02/0x03, respectively). It is also true whether
the schedule of the Data Service events appear in EIT-k’s or DET-k’s.

The PSIP VCT is acquired and reconstructed in the data receiver. In the VCT, the Service
Location Descriptor (SLD) of the Virtual Channel containing the Data Service is used to identify
the elementary_PID value of the MPEG-2 Transport Stream packets conveying the A/90 Service

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

77

Description Framework information (DST and NRT). The SLD is parsed to identify the Program
elements of the MPEG Program that are used in the Data Service. The associationTag values
associated with these Program elements are validated as references to data elementary streams in
the Data Service. There may be other associationTag values within the same MPEG-2 program
that do not refer to Program elements belonging to the PSIP Virtual Channel containing the Data
Service of interest and therefore can be disregarded.

8.2.2 MPEG-2 Structures

The Program Association Table (PAT) bytes are acquired from Transport Stream packets with
the PID value equal to 0 and the table is reconstructed in the data receiver. The PAT identifies
the program_map_PID value of the Transport Stream packets conveying the Program Map Table
(PMT) bytes for a particular MPEG-2 Program (identified by the program_number). The
elementary_PID and stream_type values of the Program elements belonging to the MPEG-2 program
associated with the PSIP Virtual Channel are discovered. During this discovery process, the
correspondences between an elementary_PID value and an associationTag value in an
association_tag_descriptor structure are recorded.

8.2.3 A/90 Service Description Framework Information

The Data Service Table (DST) bytes are acquired following identification of the Program
element of stream_type 0x95. A list of valid associationTag is used to resolve the location of
Program elements abstracted by the Tap to the MPEG-2 Program elements in the ATSC
Transport multiplex. The Network Resources Table is acquired, if needed, to discover the other
communication channels that are also needed by the Data Service. Communication channel
setup, management and termination is handled in the data receiver depending on the type of
resource descriptor used to announce the communication channel. (The communication channel
is outside of the scope of the ATSC Data Broadcast Standard [1] and this document.)

8.3 Data Service Table (DST)

The Data Service Table (DST) provides for the discovery of a Data Service and the binding of an
application to it’s applications resources. Application discovery and binding is achieved using
the following five sets of data structures:

• A DSM-CC compatibility descriptor (compatibility_descriptor structure) to signal
compatibility and requirements of an application. The compatibility requirement can be
software and/or hardware requirements.

• An application identifier structure (app_id_byte_length and app_id_byte fields) to convey the
name of the application.

• A list of DSM-CC Tap structures and companion fields.

• An application data structure (app_data_length and app_data_byte fields) to convey
application input parameters.

• A list of application specific descriptors for conveying information about the application
(app_info_length and descriptors).

A Data Service declaration also includes a service information structure to convey service
specific descriptors (serviceInfoLength field and descriptor() fields). In addition, private service
information can be appended to the end of the Data Service Table structure
(servicePrivateDataLength field and servicePrivateDataByte fields).

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

78

The DST may span more than one data_service_table_section. DST transmission is accomplished
by partitioning the table into a series of sections. The last_section_number field in the MPEG-2
Private Section header specifies the number of sections used. It is recommended that the splitting
of a DST into multiple sections be such that information associated with each application of the
Data Service is confined to a single section.

At least one instance of the DST must be transmitted during the PSIP schedule of a Data
Service. While it is possible to construct a null DST by setting both the application_count_in_section
and service_info_length fields to zero, this contravenes the intended purpose of the DST

4
. As

described previously, the DST is used to bind an application to its resources, meaning that the
DST carries the information needed to find the data used by an application. Without the
capability for dynamic binding, data services can only be consumed by proprietary receiver
implementations, losing the possibility of interoperability between generic data services and
receivers.

The data_services_table_sections will be carried in MPEG-2 Transport Stream packets similar to
Section 6.1.8 except the DSMCC_section will be replaced by data_services_table_sections. Refer to
Section 6.1.8 for associated information.

The following data structure describes the DST encapsulated in a data_services_table_section
(see Table 8.2).

Table 8.2 Data Services Table

Field Name No. of
Bits

Field
Value

Notes

data_services_table_section() {

 table_id 8 0xCF

 section_syntax_indicator 1 1b

 private_indicator 1 1b

 reserved 2 11b

 private_section_length 12 The length in bytes starting from
table_id_extension field to the end of
the data_services_table_section.

 table_id_extension 16 0xFFF
F

ATSC reserved.

 reserved 2 11b

 version_number 5

 current_next_indicator 1 1b

 section_number 8

 last_section_number 8

 data_service_table_bytes() { Data Service Table

 sdf_protocol_version 8 This value is initially set to 0x01. The
other values are ATSC reserved so in
the future, additional SDF protocols can
be signaled.

4 This topic was the subject of significant debate during the drafting process. Many participants felt that a null DST

should have been disallowed by the standard. In practice, filling out the fields in the DST with meaningful
values will enhance a receiver’s capability to deal with data services and is strongly encouraged.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

79

 application_count_in_section 8 Number of applications described by
this DST section.

 if(application_count_in_section > 0){

 for (j=0; j<application_count_in_section; ++) { Beginning of the data for each
application.

 compatibility_descriptor() { Signal application requirements.

 compatibilityDescriptorLength 16 Length in Bytes is from descriptorCount
to the end of the
compatibility_descriptor.

 descriptorCount 16

 for (i=0; i<descriptorCount; i++){

 descriptorType 8

 descriptorLength 8

 specifierType 8

 specifierData 24

 model 16

 version 16

 subDescriptorCount 8

 for(m=0; m<subDescriptorCount; m++) {

 subDescriptor() {

 subDescriptorType 8

 subDescriptorLength 8

 for(k=0; k<subDescriptorLength; k++){

 additionalInfo 8 User private data.

 }

 }

 }

 }

 } End compatibility_descriptor.

 app_id_byte_length 16 Length of application identifier.

 if(app_id_byte_length > 1){

 app_id_description 16 Specifies the format and the semantics
of the following application identifier
bytes.

 for (i=0; i<app_id_byte_length-2; i++) {

 app_id_byte 8 Application Identifier.

 }

 }

 tap_count 8 Number of Tap structures plus other
information for each Tap.

 for (i=0; i<tap_count; i++) {

 protocol_encapsulation 8 Specifies the encapsulation mechanism
used to convey the data element
referred to by the Tap.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

80

 action_type 7 Nature of the data referenced by the
Tap. 0x00 = Run-time data. 0x01 =
bootstrap data. Values 0x02 to 0x3F are
ATSC reserved.

 resource_location 1 Location of the resource description. 0b
= PMT, 1b = DSM-CC Resource
Descriptor in the NRT. The value of this
field shall not be equal to ‘0’ when the
value of the protocol_encapsulation field
is equal to 0x00, since a value of 0x00
signals that the data will be coming from
something other than an MPEG-2
Transport Stream.

 Tap() { See Section 7.5.1 below for additional
information.

 tap_id 16 Unique identifier of the Tap within the
application.

 use 16 0x000
0

Not used. The value 0x0000 indicates
that existence and format of such
additional protocols is unknown. This is
the only recognized value at this point.

 association_tag 16 The value corresponds to the value of
the association_tag field in either the
Association Tag Descriptor located in a
PMT or in the
commonDescriptorHeader structure of a
dsmccResourceDescriptors residing in
the NRT. The association_tag’s location
is specified by the resource_location
field.

 selector() { Further specifies the data element
relative to the “base” defined by the
associationTag.

 selector_length 8 Length of the selector structure.
Permitted values depend on the value
of the protocol encapsulation value
associated with this selector.

 if (selector_length>0) {

 selector_type 16 This field specifies the format of the
selector bytes. Defined values are in the
range 0x0101-0x0108. Not all values
are permitted given a protocol
encapsulation value. See the ATSC
Data Broadcast Standard [1] Table 12.9
for extensive information about the
meaning of each value.

 for (m=2; m<selector_length; m++) {

 selector_byte 8

 }

 }

 }

 } End of the Tap structure.

 tap_info_length 16

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

81

 for (k=0; k<N; k++) {

 descriptor() Tap level descriptors.

 }

 } End Tap loop.

 app_info_length 16

 for (i=0; i<M; i++) {

 descriptor() Application level descriptors.

 }

 app_data_length 16

 for (i=0; i<app_data_length; i++) {

 app_data_byte 8 Application input parameters.

 }

 }

 service_info_length 16

 for (j=0; j<K; j++) {

 descriptor() Service level descriptors.

 }

 service_private_data_length 16

 for(j=0; j<service_private_data_length; j++){ Service level private data.

 service_private_data_byte 8

 }

 } End of if statement on
application_count_in_section > 0

 } end of application loop in section

 CRC_32 32

}

The protocol_encapsulation field indicates the MPEG-2 packetization, synchronization, error
detection and the encapsulation protocol used to convey a data element pointed to by the Tap. A
value of 0x00 for the protocol_encapsulation field indicates that the data element will be obtained
from another source than an MPEG-2 Transport Stream (for example, an IP resource). For this
reason, the resource_location field indicates that the location of the resource description is in the
DSM-CC Resource Descriptor in the NRT, rather than in the PMT

5
.

8.3.1 Tap Structures

A Tap is a fundamental structure, defined in [4], that allows binding of data components
consumed by an application with their location in a logical communication channel. A Tap
structure is used for referencing the location of a particular application-level data component
(like a file, IP datagram stream, or a DSM-CC data module) in a specific logical connection (like
an IP virtual channel or an MPEG-2 Program element).

A Tap includes the following fields:

5 Note: Aside from the compatibilityDescriptor, all the descriptors mentioned elsewhere in this document are of the

form of MPEG-2 Systems descriptor (meaning a structure starting with a descriptor_tag and descriptor_length
8-bit fields). The DSM-CC Resource Descriptors described here and in Section 12.3.2 of [1] are not MPEG-2
Systems descriptors and can only go in an NRT.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

82

• A tap_id field that can be used by content developers as a handle to a data component
consumed by the application. The content provider chooses the tap_id values. The content
provider must ensure at authoring time that tap_id values related to an application are
unique. Note that the tap_id values are scoped by the application and therefore, there is no
need to manage them at the service level.

• The association_tag field abstracts the logical communication field. It is used at binding
time to refer to either an association_tag field in an association_tag_descriptor in the MPEG-2
Program Map Table of the Data Service or to an associationTag field in the
commonDescriptorHeader of a DSM-CC resource descriptor in the Network Resources
Table of the Data Service. The same association_tag value may be used in more than one
Tap.

• The selector byte fields specify the data component conveyed in the logical
communication channel. The first byte in the selector is always a selector_type field
specifying the format and semantics of the selector bytes to follow.

There are multiple supported selectorType formats. The following is an overview of several of
the selectors.

• The selector_type value 0x0101 signals that the selector_byte fields indicate a moduleId value
of a data module. This selector_type value may only be used under protocol_encapsulation
values 0x01, 0x02 and 0x0D. In this case, the value of selector_length is equal to 4.

• The selector_type value 0x0102 signals that the selector_byte fields indicate a valid deviceId
address. This selector_type value may only be used under protocol_encapsulation values 0x03
and 0x04. The value of the selector_length field must be in agreement with the number of
active devideId bytes specified by the multiprotocol_encapsulation_descriptor structure. In the
devideId field, from 1 to 6 bytes can be active.

• The selector_type value 0x0103 signals that the selector_byte fields indicate a PES sub-
stream identifier. This selector_type value may only be used under protocol_encapsulation
value 0x05. In this case, the value of selector_length is equal to 0x03.

• The selector_type value 0x0104 signals that the selector_byte fields indicate a destination
Network Address. The destination addresses are conveyed in the SNAP header of the
datagrams. This value of selector_type may only be used under the protocol_encapsulation
values 0x03, 0x07 and 0x08. In this case the value of selector_length is variable. .

• The selector_type value 0x0105 signals that the selector_byte fields indicate a destination
IPv4 (Internet Protocol Version 4) address. This value of selector_type may only be used
under the protocol_encapsulation values 0x04, 0x09 and 0x0A. In this case, the value of
selector_length is equal to 6.

• The selector_type value 0x0106 signals that the selector_byte fields indicate a destination
IPv6 (Internet Protocol Version 6) address. This value of selector_type may only be used
under the protocol_encapsulation value 0x04, 0x09 and 0x0A. In this case, the value of
selector_length is equal to 18.

• The selector_type value 0x0107 signals that the selector_byte fields indicate a groupId field of
a two-layer control data carousel. This value of selector_type may only be used under the
protocol_encapsulation value 0x01, 0x02 and 0x0D. In this case, the value of selector_length is
equal to 6.

• The selector_type value 0x0108 signals that the selector_byte fields indicate a groupId and a
moduleId field of a two-layer control data carousel. This value of selector_type may only

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

83

be used under the protocol_encapsulation value 0x01, 0x02 and 0x0D. In this case, the value
of selector_length is equal to 6.

The resource_location field that precedes the Tap in the Data Service Table is used to facilitate the
binding of a Tap to a particular logical connection. Figure 8.1 illustrates the use of a Tap by an
application. The Tap provides a mapping between data consumed by an application and location
of this data on a particular logical connection.

8.4 Network Resource Table (NRT)

The Network Resources Table (NRT) provides a list of all interactive and external broadcast
logical connections used by the Data Service. The NRT provides the location of those resources
not found in the current MPEG-2 program or MPEG-2 Transport Stream. (The current Transport
Stream resources are described in the PSIP Service Location Descriptor and the MPEG-2
Program Map Table.) Each of these connections is described by a Resource Descriptor structure
as defined in DSM-CC [4]. While DSM-CC [4] has described a number of Resource Descriptors,
only the following have been defined in the ATSC Data Broadcast Standard [1] and can be
expected to be transmitted:

• deferredMpegProgramElement Resource Descriptor (resourceDescriptorType = 0x0014)

• Internet Protocol Version 4 Resource Descriptor (resourceDescriptorType = 0x0009)

• Internet Protocol Version 6 Resource Descriptor (resourceDescriptorType = 0x0015)

• URL Resource Descriptor (resourceDescriptorType = 0x0016)

In particular, each Resource Descriptor features an associationTag value in its
commonDescriptorHeader providing a unique identification of the logical connection. This
associationTag matches one or several association_tag values found in the various Taps of a Data
Service Table.

The association_tag values are scoped by an MPEG-2 program number. This means that the
deferredMPEGResourceDescriptor is needed to reference any Program Element that does not
belong to the current MPEG-2 program (or equivalently, to the same virtual channel).

The NRT information may span multiple network_resources_table_sections. Transmission of the
NRT is accomplished by partitioning the table into a series of sections. The last_section_number
field in the MPEG-2 Private Section header specifies the number of sections used.

As an example, the Resource Descriptor could be used to provide the internet address of a
server an interactive service, or a remote Program element in another MPEG-2 Transport Stream.

Note: In the formula specified in the ATSC Data Broadcast Standard [1], the constant
27MHz should equal 27,000,000 for calculations.

The following data structure describes the NRT encapsulated in a networkResourcesTable_section
(Table 8.3).

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

84

Table 8.3 Network Resources Table

Field Name No. of
Bits

Field
Value

Notes

networkResourceTable_section() {

 table_id 8 0xD1

 section_syntax_indicator 1 1b

 private_indicator 1 1b

 reserved 2 11b

 private_section_length 12 The length in bytes starting from
table_id_extension field to the end of the
networkResourceTable_section.

 table_id_extension 16 0xFFFF ATSC reserved

 reserved 2 11b

 version_number 5

 current_next_indicator 1 1b

 section_number 8

 last_section_number 8

 network_resource_table_bytes() { Network Resource Table.

 resource_descriptor_count_in_section 8 Number of resource descriptors listed in
this NRT section.

 if(resource_descriptor_count_in_section > 0){

 for (j=0; j<resource_descriptor_count_in_section; j++){

 compatibility_descriptor() {

 compatibilityDescriptorLength 16 Length is from descriptorCount to the
end of the compatibility_descriptor.

 descriptorCount 16

 for (i=0; i<descriptorCount; i++){

 descriptorType 8

 descriptorLength 8

 specifierType 8

 specifierData 24

 model 16

 version 16

 subDescriptorCount 8

 for(j=0; j<subDescriptorCount;j++) {

 subDescriptor() {

 subDescriptorType 8

 subDescriptorLength 8

 for(k=0; k<subDescriptorLength; k++){

 additionalInfo 8 User private data.

 }

 }

 }

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

85

 }

 }

 dsmccResourceDescriptor() {

 commonDescriptorHeader() {

 resourceRequestId 16 The only value supported is 0xFFFF.
This value indicates that this field is not
applicable. The original purpose of this
field is to link the assignment of a
resource to an initial request.

 resourceDescriptorType 16 This field identifies the resource
descriptor.

 resourceNum[15,14] 2 11b Network assigned resource number.

 resourceNum[13…0] 14

 associationTag 16 Matches the association_tag value in
one or more Tap structures of the DST.

 resourceFlags 8 0x03

 resourceStatus 8 0x04

 resourceLength 16

 resourceDataFieldCount 16

 if (resourceDescriptorType == 0xFFFF) {

 typeOwnerId 24

 typeOwnerValue 24

 }

 }

 resourceDescriptorDataFields() {

 descriptors go here. See [4] for
 the format of this structure.

 The descriptor may be a
deferredMPEGProgramElement, an
IPResourceDescriptor, an
IPV6ResourceDescriptor or a
URLResourceDescriptor.

 }

 }

 } End of resource descriptor loop

 } end of if
resource_descriptor_count_in_section >
0

 privateDataLength 16

 for (i=0; i<privateDataLength; i++) {

 privateDataByte 8

 }

 }

 CRC_32 32

}

8.5 Service Discovery and Binding—Putting It All Together

Figure 8.2 illustrates the use of the Service Description Framework. Two applications are
discovering and acquiring the resources each application requires for proper operation. The PSIP

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

86

Data Service announcement is assumed to have occurred and is outside of the scope of the
diagram.

Tap 1

(AT1)

Tap 2

(AT4)

Tap 3

(AT1)

Data Services Table

Network Resources Table Program Map Table

A
P

P
L

IC
A

T
IO

N

L
A

Y
E

R
C

O
M

M
U

N
IC

A
T

IO
N

L

A
Y

E
R

T
R

A
N

S
P

O
R

T

L
A

Y
E

R

Application 1

PID 4

(AT4)

Connection 1

(AT1)

Connection 2

(AT2)

Connection 3

(AT3)

Application 2

WEB

SERVER

ATSC TRANSPORT STREAM

B
R

O
A

D
C

A
S

T

D
A

T
A

INTERACTIVE

DATA

PIDxPIDx PIDx PIDx PIDy PIDy PIDz PIDz

Matching AT

Matching AT Logical connection

L
o

g
ic

al
 c

o
n

n
ec

ti
o
n

Tap2

Tap3

Tap1

DST

NRT PMT

tapId

tapId

tapId

Figure 8.2 Service description block diagram..

In Figure 8.2, two applications, Application 1 and Application 2, are both simultaneously
active in the data receiver. Each application is responsible for acquiring its required resources.
Application 1 requires two resources and Application 2 requires a single resource. The resources
for each application are described in the Data Services Table (DST) carried on PIDx. The
resources are identified by the Tap structures contained in the DST where each Tap structure has
a unique tapId. The PID on which the DST is carried, in this case PIDx, is identified in the
Program Map Table (PMT) where the elementary_PID is set to PIDx and the stream_type 0x95.
Additionally, the DST PID is also located in the PSIP Service Location Descriptor.

For Application 1, an external device supplies the first resource, identified by Tap 1. The
second resource used by Application 1, identified by Tap 2, is contained within the current
MPEG-2 Transport Stream. For Application 2, its only resource is identified by Tap 3. The
resource is the same external logical connection as used by Tap 1; however, it is a different
resource. By using distinct Taps, references to different data components transmitted on the same
logical connection can be accomplished. This concept is further illustrated as follows.

In Figure 8.2, Tap 1 and Tap 3 identify different data resources located on the same logical
connection. For example, Tap 1 specifies the id of a data resource, say id1 and Tap 3 specifies
the id of another data resource, say id2. Both data resources reside on the same external logical

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

87

connection identified by the URL “http://www.domainName.com”. Data from id1 is
subsequently passed to Application1 and data from id2 is passed to Application 2.

The DST also indicates that Tap 1 and Tap 3 reside on an external logical connection via the
resourceLocation field, and thus, their resource location must be discovered via the Network
Resource Table (NRT). The NRT is carried in the same PID, PIDx, as the DST and is uniquely
identified by a separate table_id. The same logical connection is located in the NRT by using the
associationTag found in the Tap structure. In Figure 8.2, Tap 1 and Tap 3 share the same
associationTag value AT1 and thus, the same logical connection, Connection 1. Taps using the
same associationTag field can either be associated with the same application or with different
applications. In Figure 8.2, Connection 1 provides the information necessary to determine that
the logical connection is to the Web Server and thus interactive data is available via this
mechanism.

Application 1’s second resource is located in the current MPEG-2 Transport Stream. The
second resource used by Application 1 is identified by Tap 2 and the resource’s binding
association tag is AT4. Tap 2 indicates that the resource can be found in the Program Map Table.
By locating AT4 in the PMT, the logical connection, in this case PIDz, is identified and PIDz’s
information is subsequently passed to Application 1. Note that the use of the association_tag
provides the additional benefit of preserving the stream/application association when re-
multiplexing (change in the elementary PID) occurs.

9. BUFFER MODEL

Buffer models are used for the delivery of asynchronous, synchronous and synchronized Data
Services. A buffer model provides a framework for controlled and timely delivery of data from
an emission station to receivers. Hence, both emission and reception sides of an ATSC
communication channel must take the buffer model into account either to insert data into the
ATSC Transport multiplex or to extract data from the multiplex.

The purpose of a buffer model at the emission side is to provide multiplexers with the tools
for scheduling insertion of data bytes into an ATSC Transport multiplex in accordance with the
Data Service requirements (allocated bandwidth). On one hand, the data server in the emission
station must take into account the fact that receivers have finite amount of memory. On the other
hand, the buffer model represents the minimum amount of memory that must be dedicated to the
acquisition of data bytes in a data receiver. Therefore, for a given transmission rate, buffers
represent a window of opportunity in time for inserting data into the ATSC Transport multiplex.

The reception end buffer model helps data receivers extract and reconstruct data from the
ATSC Transport multiplex before being forwarded to higher application levels. The buffer
model also specifies the minimum requirements of data throughput in data receivers.

There are three buffer models, one for asynchronous, one for synchronous and one for
synchronized Program elements of a Data Service. The buffer models for asynchronous,
synchronous and synchronized data elementary streams include a Transport Buffer and a
Smoothing Buffer as defined in Section 2.4.2.3 of ISO/IEC 13818-1 [2] with the additional
feature that a leak rate is specified at the output of the Smoothing Buffer. The buffer model for
synchronized data elementary streams features an additional buffer called the Data Elementary
Buffer. The presence of this buffer allows reconstruction of “Data Access Units”, that is data
aggregated from multiple PES packets or sections and making up an individual unit to be
presented at a given instant of the System Time Clock. The concept of Data Access Unit is not
present in the buffer models for asynchronous elementary streams as these buffer models do not
include a Data Elementary Buffer. Synchronous elementary streams have the concept of 16 bit

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

88

synchronous data access units that are leaked from the smoothing buffer at a piecewise
continuous rate signaled by either the increment field or the ES_rate field (as appropriate).

The buffer model associated with a Program element conveying the Service Description
Framework data will be the same as the one used for asynchronous data elementary streams
(Program elements).

9.1 Buffer Model for Asynchronous Data Elementary Streams

The buffer model described in this section is the Transport System Target Data Decoder buffer
model for asynchronous Program elements.

Transport

Buffer

TBn
Smoothing

Buffer

SBn

Data transfer

rate specified

by RXn

Leak

rate

specified

by

sb_leak_rate

512 Bytes

Size determined

by sb_size

Figure 9.1 Transport system target data decoder model for asynchronous data
elementary streams.

This buffer model is applicable to data elementary streams (Program elements) of stream_type
value 0x0B, 0x0D, and 0x95 (SDF protocol encapsulation values 0x01, 0x03, 0x04, 0x0C and
0x0D). The buffer model comprises a Transport Buffer of 512 bytes followed by a Smoothing
buffer of 4500 or 10000 bytes, depending on the Data Service profile. (The Data Service profile
is specified in the data_service_descriptor.) On the data receiver side, both buffers are not allowed to
overflow. The purpose of the Transport Buffer is to prevent bursty transmission of Transport
Stream packets belonging to the same data elementary streams, thereby providing a more
uniform chance for Transport Stream packets of other Program elements to be transmitted as
well. The purpose of the Smoothing Buffer is to compensate for variations of time elapsed
between transmission of consecutive Transport Stream packets belonging to the same Program
element. These time variations are due to the fact that other Program elements have been
multiplexed into the same Transport Stream. The output data rate defined by the Data Service
profile is re-constructed at the output of the Smoothing Buffer.

Complete Transport Stream packets containing data from data elementary stream n, as
indicated by its PID, are passed to the Transport Buffer for stream n, TBn. This includes
duplicate Transport Stream packets and packets with no payloads. Transfer of any byte from the
System Target Data Decoder input to TBn is considered instantaneous.

The data transfer rate from the Transport Buffer to the Smoothing Buffer is equal to 1.2 times
the rate specified by the Data Service profile. Therefore, the instantaneous rate at which the

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

89

Smoothing Buffer fills is larger than the output leakage rate. All bytes that enter the Transport
Buffer also exit it.

Only the Transport Stream packet payload bytes belonging to an MPEG-2 Private Section, a
DSM-CC section, or a DSM-CC addressable section are transferred into the Smoothing Buffer.
Other bytes are not and may be used to control the system. Duplicate Transport Stream packets
are not delivered to the Smoothing Buffer. Any data transfer from the Transport Buffer to the
Smoothing Buffer is considered instantaneous.

When there is data present in the Smoothing Buffer, bytes are removed from this buffer at the
specified leak rate. All bytes that enter the Smoothing Buffer also exit it.

9.2 Smoothing Buffer Descriptor

The size of the Smoothing Buffer, SBSn, and the output bitrate of the Smoothing Buffer may be
specified by means of the smoothing_buffer_descriptor. The location of this descriptor depends on the
value of the PSIP service_type field associated with the data service, as described below:

• In the Program element (Elementary Stream or inner) information descriptor loop of the
PMT for Data Services of type 0x02, 0x03 and 0x04. In this case, the value of the
sb_leak_rate and sb_size apply to the data elementary stream (Program element) referenced
by the Transport Stream PID value elementary_PID. Only Transport Stream packets of this
Program element enter the Smoothing Buffer.

• In the extended program information descriptor loop (First or outer loop) of the PMT for
Data Services of type 0x04. In this case, the smoothing_buffer_descriptor value sb_leak_rate and
sb_size apply to all Program elements of the program referenced in the PMT by the same
program_number value. All Transport Stream packets of the program enter the Smoothing
Buffer.

• In an EIT-k table and in association with a particular event for Data Services of type 0x02
or 0x03. In this case, the smoothing_buffer_descriptor value of sb_leak_rate and sb_size apply to
all Program elements of the Data Service. All Transport Stream packets of the Data
Service enter the Smoothing Buffer.

• In the DET-k table and in association with a particular event for Data Services of type
0x02, 0x03 or 0x04. In this case, the value of sb_leak_rate and sb_size apply to all Program
elements of the Data Service. All Transport Stream packets of the Data Service enter the
Smoothing Buffer.

In the default case when no Smoothing Buffer Descriptor is present, the leak rate and size of the
Smoothing Buffers are specified by the profiles contained in the data_service_descriptor, namely:

• 384 kbps and 4500 bytes for profile G1

• 3.84 Mbps and 4500 bytes for profile G2

• 19.2 Mbps and 10000 bytes for profiles G3 and A1

These values apply to all data elementary streams (Program elements) belonging to the Data
Service. All Transport Stream packets belonging to the Data Service enter the Smoothing Buffer.

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

90

Table 9.1 Smoothing Buffer Descriptor Location Matrix

service_type PMT Program Element Level PMT Program Level EIT DET

0x02 * * *

0x03 * * *

0x04 * * *

9.3 Maximum Bitrate Descriptor

The maximum bit rate may be specified by means of the maximum_bitrate_descriptor. The value of
the bit rate in this descriptor indicates an upper bound of the bit rate, including Transport
overhead that will be encountered in a data elementary stream, a program or a Data Service. This
descriptor may be located in the following structures:

• In the ES information descriptor loop of the PMT for Data Services of type 0x02, 0x03
and 0x04. In this case, the value of maximum_bitrate applies to the data elementary stream
(Program element) referenced by the Transport PID value elementary_PID.

• In the extended program information descriptor loop of the PMT for Data Services of
type 0x04. In this case, the value maximum_bitrate applies to all Program elements of the
program referenced in the PMT by the same program_number value.

• In an EIT-k table and in association with a particular event for Data Services of type 0x02
or 0x03. In this case, the value of maximum_bitrate applies to all Program elements of the
Data Service.

• In the DET-k table and in association with a particular event for Data Services of type
0x02, 0x03 or 0x04. In this case, the value of maximum_bitrate applies to all Program
elements of the Data Service.

Table 9.2 Maximum Bitrate Descriptor Location Matrix

service_type PMT Program Element Level PMT Program Level EIT DET

0x02 * * *

0x03 * * *

0x04 * * *

In the default case where the maximum bit rate descriptor is not used, the maximum bit rate
is the maximum Data Service bit rate of 19.392656 Mbits/sec.

9.4 Buffer Model for Synchronous Data Elementary Streams

The Transport System Target Data Decoder model for synchronous data elementary streams
(Program elements) is similar to the T-STD described in the previous section for asynchronous
data elementary streams. Both the Transport Buffer TBn and the Smoothing Buffer SBn are not
allowed to overflow.

This buffer model is applicable to data elementary streams (Program elements) of stream_type
value 0xC2 (SDF protocol encapsulation values 0x06, 0x08 and 0x0A).

As opposed to the asynchronous case, the MPEG-2 Transport packets convey only PES
packets. Therefore, only Transport Stream packet payload bytes belonging to a PES packet are
transferred into the Smoothing Buffer. Other bytes are not and may be used to control the

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

91

system. Duplicate Transport Stream packets are not delivered to the Smoothing Buffer. Any data
transfer from the Transport Buffer to the Smoothing Buffer is considered instantaneous.

If the PES packet that has been in buffer SBn the longest includes a PTS field in its header
bytes, the first 16-bit data access unit in this PES packet is removed from buffer SBn at the
instant specified by the value of the PTS field. Subsequent 16-bit access data units are removed
at the rate specified either by the increment field in the synchronous_data_header structure or the
ES_rate field in the PES packet header. The increment field is used for leak rates below 9.0 Mbps
and the ES_rate field is used for leak rates above 9.0 Mbps. Bytes that are not part of a 16-bit
data_access_unit are removed instantaneously, discarded and may be used to control the system.
Data Access Units in any subsequent PES packets that do not have any PTS fields are delivered
according to the leak rate specified by the increment field or the ES_rate field of their respective
PES packet. The leak rate specified by the increment field or the ES_rate field shall never exceed
the leak rate specified by the data service profile or by the sb_leak field in a smoothing descriptor,
if present for this data service or synchronous data elementary stream.

For any ATSC virtual channel featuring a synchronous data elementary stream, there must be
a Program Element that includes Program Clock References (PCR) time stamps. This is such that
PTS in the PES packet header can be referenced to instants of the timeline at which the 16-bit
data access units must be delivered.

9.5 Buffer Model For Synchronized Data Services

9.5.1 T-STD for Synchronized Program Elements

The Transport System Target Data Decoder model for synchronized data elementary streams
(Program elements) includes the components of the T-STD described in the previous section for
synchronous data elementary streams.

This buffer model is applicable to data elementary streams (Program elements) of stream_type
value 0x06 and 0x14 (SDF protocol_encapsulation values 0x02, 0x05, 0x07 and 0x09). Streaming
synchronized data elementary streams are conveyed in PES packets. Non-streaming
synchronized data elementary streams are conveyed in the synchronized Download protocol
fragmented in DSM-CC sections. The latter case corresponds to the isolated transmission of data
to be synchronized with a video or audio elementary streams.

The MPEG-2 Transport Stream packets convey either PES packets or DSM-CC sections
conveying the synchronized Download protocol. Only Transport Stream packet payload bytes
belonging to a PES packet or to the DSM-CC section of a synchronized download are transferred
into the Smoothing Buffer. Other bytes are not and may be used to control the system. Duplicate
Transport Stream packets are not delivered to the Smoothing Buffer. Any data transfer from the
Transport Buffer to the Smoothing Buffer is considered instantaneous.

In a synchronized Data Service, the reference timing is provided in another elementary
stream (a video, audio or another data elementary stream) belonging to the same program. The
field PCR_PID in the PSIP Service Location Descriptor (SLD) and the PMT identifies the
Transport PID of the Program element conveying this time reference. Any synchronized data
elementary stream includes Presentation Time Stamps (PTS). As opposed to the T-STD for
synchronous data elementary streams, the buffer model includes a Data Elementary Stream
buffer DEBn which allows reconstruction and synchronization of data access units with the
reference video/audio/data Program element. (See Figure 9.2.)

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

92

Transport

Buffer

TBn
Smoothing

Buffer

SBn

Data

Elementary

Buffer

DEBn

Data transfer

rate specified

by RXn

Leak

rate

specified

by

sb_leak_rate

512 Bytes

Size determined

by sb_size

Size determined

by DEBSn

Data Access Unit

(DAU) taken out at

presentation time

tpn

Figure 9.2 System target data decoder buffer model for synchronized data
services.

Input data to the Data Elementary Stream buffer are the bytes originating from the
Smoothing Buffer SBn. Any synchronized data elementary stream conveys Data Access Units. A
Data Access Unit (DAU) will be equal to the in order concatenation of

• One or more PES packets starting with the first PES packet bearing a PTS field up to and
not including the next PES packet bearing a PTS field

• One or more DSMCC_section sections of the same version, starting with the section with
section_number value 0 bearing a PTS field, conveying a single DSM-CC data module
(same table_id_extension value)

A DAU includes the PES header bytes or the DSMCC_section header bytes, respectively. Each
DAU includes a distinct Presentation Time Stamp. The purpose of the Presentation Time Stamp
is to associate the complete DAU with a particular instant of the concurrent audio-visual event.
How the DAU is taken out of the DEBn buffer depends on whether the data elementary stream is
either a streaming synchronized or a non-streaming synchronized data elementary stream.

The Transport System Target Decoder model defined in the ATSC Data Broadcast Standard
[1] is a hypothetical buffer model assuming instantaneous decoding of the Data Access Units.

All bytes at the output of the Smoothing Buffer SBn, associated with a synchronized data
elementary stream denoted by index n, are passed to the Data Elementary Buffer, referred to as
DEBn. For synchronized protocol encapsulations based on PES packetization, bytes from the
PES packet header and bytes from the synchronized_data_packet structure are removed
instantaneously and discarded and may be used to control the system. For synchronized protocol
encapsulations based on DSM-CC section packetization, only data bytes of the payload of
DSMCC_section structures with table_id value 0x3C enter buffer DEBn. The header bytes from such
DSM-CC section are removed instantaneously and discarded and may be used to control the
system. Bytes from the DSM-CC section CRC_32 field or checksum field are also removed

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

93

instantaneously and discarded and may be used to verify the integrity of the data. Furthermore,
bytes from the dsmccDownloadDataHeader message header and the first 6 bytes of the
DownloadDataBlock message (representing a moduleId, a moduleVersion, a reserved and a blockNumber
field, respectively) are discarded and may be used to control the system. If there is PES packet or
DSM-CC section data in SBn and buffer DEBn is not full, the data is transferred from SBn to
DEBn at a rate defined by sb_leak. If the buffer DEBn is full, no data is removed from the
Smoothing Buffer SBn. When there is no PES packet or DSM-CC section bits in SBn, no data is
removed from SBn. The buffer DEBn will not be allowed to overflow.

For the Data Elementary Buffer DEBn, all data for the Data Access Unit that has been in the
buffer longest are removed instantaneously at time tpn assuming instantaneous decoding. The
Presentation Time tpn is specified by the PTS field of the DAU. The Transport System Target
Decoder model defined in this specification is a hypothetical buffer model assuming
instantaneous decoding of the Data Access Units.

Data Access Units of a streaming synchronized data elementary stream may be taken as early
as the Presentation Time Stamp of the previous transmitted Data Access Unit. This use of the
Presentation Time Stamps is consistent with usage of time stamps for I and P frames in video.

Data Access Units of a non-streaming synchronized data elementary stream may be taken out
of the DEBn buffer once it has been received in full in the Data Elementary Stream buffer.
However, additional auxiliary information may be conveyed to delay the time at which the Data
Access Unit is to be taken out of the buffer. Such auxiliary information may be a common delay
value for all Data Access Units in the non-streaming data elementary stream. In this case, the
delay value indicates how much time before its associated PTS a DAU must be taken out of the
buffer. Consequently, the delay value also represents the largest time required to decode a Data
Access Unit of the data elementary stream.

The buffer DEBn must not be allowed to overflow. Overflow is characterized by a loss of
information due to a shortage of unoccupied space in the elementary buffer.

In the case of a streaming synchronized data elementary stream or in the case of a non-
streaming synchronized data elementary stream, the buffer DEBn must not underflow when a
Data Access Unit is removed from the buffer at its associated decoding time. Underflow is
characterized by a data access unit not having been fully received in the elementary buffer by the
time it must be taken out of the buffer model. Satisfying a non-underflow condition translates to
quality of service since such condition requires that the data must be transmitted and received in
a timely fashion.

Note that in the case of a streaming synchronized data elementary stream consisting of Data
Access Units conveyed each across multiple PES packets, the underflow condition requires a
constraint on how the data elementary stream must be constructed. In this scenario, the difficulty
comes from the fact that the size of the last Data Access Unit of the data elementary stream
cannot be determined as there is no other DAU following (no other PES packet with a PTS in its
header). Therefore, it is necessary to signal the end of the last DAU in one way or another. The
simplest method is to require that the last PES packet of the streaming synchronized data
elementary stream be an empty PES packet (no payload) with a PTS in its header.

The minimal value for DEBSn must be equal to 120120 bytes. This buffer size corresponds
to three times the maximum amount of data that can be transmitted in 16.683333 milliseconds
(1/60

th
 of a second) at a 19.2 Mbits/sec data transfer rate (highest possible data rate). The

assumption is made that a nominal DAU size corresponds to the maximum number of bytes that
can be transmitted in 1/60

th
 of a second. The size of a nominal DAU is therefore equal to 19.2

Mbits/sec × 1001 / (8 × 60 × 1000) = 40040 bytes and the nominal Data Access Units frequency

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

94

is 59.94 Hz. The data conveyed in a nominal DAU can therefore be viewed as being in
association with a particular DTV video field. The purpose of defining a nominal Data Access
Unit is to provide a reference point to the specification of Data Elementary Stream Buffer size.
The size of the Data Elementary Stream Buffer is such that it can hold up to three nominal Data
Access Units. Such a choice for DEBSn allows for one nominal DAU to be flushed out of the
buffer while a second re-assembled nominal DAU is held ready and a third nominal DAU is
being acquired.

Data Access Units must be separated in time by no less than 5.561111 millisecond
(corresponding to a Data Access Unit frequency of 3 times the nominal Data Access Unit
frequency of 59.94 Hz used above). Hence, the minimum leak rate required at the output of the
Data Elementary Stream buffer is equal to 172.8 Mbits/sec for a level 1 Data Service (see next
section for definition of levels). The value 172.8 Mbits/sec is obtained by dividing the full

capacity of the data elementary stream buffer (120120 × 8 bits) by 5.561111 milliseconds. This

case corresponds to the extreme case where the size of a DAU is the size of the DEBn buffer and
the previous and next DAU are 5.561111 milliseconds later.

Figure 9.2 illustrates the buffer arrangement for synchronized Data Services. As mentioned
earlier, the size of the Transport Buffer TBn is equal to 512 bytes and the size and leak rate of
the Smoothing Buffer SBn is specified by the Data Service profile or the sb_size and sb_leak_rate
field values, respectively. The Data Access Units are input to the Data Elementary Buffer DEBn.
In accordance with the T-STD model, the Data Access Units are taken out of the Data
Elementary Buffer instantaneously and at presentation time tpn specified in the PTS field of the
DAU.

9.5.2 Data Service Levels

A Data Service level is specific to a particular value of DEBSn, the size of the data elementary
stream buffer. The level also determines the throughput required for transferring synchronized
data in the receiver. A level 1 Data Service must correspond to a DEBSn size equal to 120120
bytes as described in the previous section. The Level 4 , Level 16 and Level 64 Data Services are
defined in term of the level 1 DEBSn value as follows:

• Level 1 (multiplicative factor is equal to 1) will signal a DEBSn value equal to120120
bytes

• Level 4 (multiplicative factor is equal to 4) will signal a DEBSn value equal to 480480
bytes.

• Level 16 (multiplicative factor is equal to 16) will signal a DEBSn value equal to
1921920 bytes.

• Level 64 (multiplicative factor is equal to 64) will signal a DEBSn value equal to
7687680 bytes.

The nominal Data Access Unit size for level 1, level 4, level 16 and level 64 will be 40040 bytes,
160160 bytes, 640640 bytes and 2562560 bytes, respectively.

Data service profiles and levels are directly related to the acquisition and throughput
capability of a data receiver. The value of the Data Service level is signaled along with the Data
Service profile in the data_service_descriptor.

When there are more than one synchronized data elementary stream in a Data Service, the
size DEBSn of the DEBn buffer is split uniformly among all the synchronized data elementary
streams, regardless whether there may be non-streaming or streaming synchronized Program
elements. In cases when such uniform splitting results in fractional byte allocation, the buffer

ATSC Implementation Guidelines for the ATSC Data Broadcast Standard 10 June 01

95

size assigned to each synchronized data elementary stream will be rounded down to the nearest
integer byte size. The purpose of this splitting is to allow multiple applications of the same Data
Service to be run concurrently in the receiver. Without such splitting process, the amount of
DEBn memory that is required in a data receiver would be unbounded. Hence, prior to acquiring
synchronized data, the receiver must evaluate the number of synchronized streams published in
the Data Service so the Data Elementary Stream can be split accordingly. The following pseudo-
C code is an example of how the number L of synchronized streams in a Data Service can be
calculated. The program calculates L by keeping a record of all distinct association tag values for
synchronized stream. Note that the synchronized stream are not necessarily in the current
MPEG-2 program as the association tag may be pointing to an external Virtual Channel in the
same ATSC Transport Stream through the Network Resource Table (NRT). This situation can
occur only if both the Virtual Channel of the data service and the external service reference the
same PCR_PID in their program definition.

9.5.2.1 Synchronized Stream Calculation Pseudo Code

int int sync'ed_AT_list[65536];
srv.sync'edPrgmElement_DEBsize = 0;
L = 0;
for(m = 0; m < applicationCount; m++)
{
 for(n = 0; n < tapsCount; n++)
 {
 if((srv.app[m].tap[n].protocol_encapsulation != 02)
 && (srv.app[m].tap[n].prococol_encapsulation != 05)
 && (srv.app[m].tap[n].protocol_encapsulation != 07)
 && (srv.app[m].tap[n].protocol_encapsulation != 09))
 {
 // skip non-synchronized Program elements
 continue;
 }
 foundAT = FALSE;
 currentAT = srv.app[m].tap[n].AT;
 currentAT |= (srv.app[m].tap[n].resource_location << 16) | srv.app[m].tap[n].AT;
 for(j = 0; j < L; j++)
 {
 if(currentAT == sync'ed_AT_list[j])
 {
 foundAT = TRUE;
 break;
 }
 }
 if(foundAT == FALSE)
 {
 sync'ed_AT_list[L++] = currentAT;
 }
 }
}
if(L > 0)
{
 srv.sync'edPrgmElement_DEBsize = floor(DEBSn[srv.level] / L);
}

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex A 10 June 01

96

Annex A:
Descriptor Location Matrix

1. SERVICE DESCRIPTION FRAMEWORK (SDF) DESCRIPTOR LOCATIONS

Table A1 identifies the possible locations for each descriptor defined or used by the ATSC Data
Broadcast Standard [1] Service Description Framework (SDF).

Table A1 SDF Descriptor Location Matrix

Descriptor PMT SLD EIT DET LTST DST NRT

association_tag_descriptor *(1)

data_service_descriptor * * *

pid_count_descriptor * * *

download_descriptor *

multiprotocol_encapsulation_descriptor *

compatibility_descriptor *(2) *(2)

dsmccResourceDescriptor *

deferredMPEGProgramElement *(3)

IPResourceDescriptor *(3)

IPV6ResourceDescriptor *(3)

URLResourceDescriptor *(3)

smoothing_buffer_descriptor *(4) * * *

maximum_bitrate_descriptor *(4) * * *

Notes:

1) The assoctiation_tag_descriptor can only appear in the Program element (elementary stream)
descriptor loop of the Program Map Table (PMT).

2) The compatibility_descriptor is not constrained.

3) These descriptors are all components and located within the dsmccResourceDescriptor.

4) This descriptor can appear in either descriptor loop of the PMT.

1.1 Data Download Protocol Descriptor Location Matrix

Table A2 identifies the possible locations for the descriptors used by the data download protocol
defined in ATSC Data Broadcast Standard [1].

Table A2 Data Download Protocol Descriptor Location Matrix

Descriptor DII DSI DC DDB

module_link_descriptor *

CRC32_descriptor *

group_link_descriptor *

compatibility_descriptor *(1) *(1)

Notes:

1) The compatibility_descriptor has been constrained to a size of 0x0000 bytes.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex B 10 June 01

97

Annex B:
ATSC Data Broadcast Encapsulation Protocols

1. SCOPE

This annex describes the messages that are used for the data broadcast encapsulation protocols
defined in the ATSC Data Broadcast Standard. The syntax used to describe the messages follows
a “pseudo-code” approach, with the intent of making it easy to understand what fields the
messages contain and what they mean. Subfields of a field are indicated by indentation level,
rather than relying on curly brackets to delimit them. In many places a table in the standard
indicates a field with a variable number of bytes by giving a “count” subfield, followed by a “for
loop” subfield for the individual bytes of the field. The pseudo-code descriptions in this annex
typically describe such fields by just naming them and indicating that they have a variable
number of bytes. To see the details of how such a field should be coded, see the standard itself or
the more detailed syntax descriptions that appear in the main body of these Implementation
Guidelines.

1.1 Data Download Protocol Messages

1.1.1 DSM-CC Section

The messages of the data download protocol are all encapsulated in DSM-CC Sections (defined
in Section 9.2.2 of the DSM-CC standard [4]), which are a special case of MPEG-2 private
sections (defined in Section 2.4.4.10 of the MPEG-2 Systems standard [2]). Table B1 describes
the format of the DSM-CC section, as used in the data download protocol.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex B 10 June 01

98

Table B1 DSM-CC Section Format

Field No. of
Bits

Value

DSMCC_section(){

 DSMCC_section_header(){

 table_id 8 0x3B for DII, DSI, or DC message; 0x3C for DDB message

 section_syntax_indicator 1 ‘0’ if checksum used for error checking;
‘1’ if CRC_32 used for error checking

 complement_indicator 1 ‘1’ if section_syntax_indicator is ‘0’;
‘0’ if section_syntax_indicator is ‘1’

 reserved 2

‘11’

 dsmcc_section_length 12 number of bytes in section after this field; must not exceed 4093

 table_id_extension 16 bits 15-0 of transaction_id (identification and updated_flag) for DSI,
DII, or DC messages; moduleId for DDB messages

 reserved 2 ‘11’

 version_number 5 ‘00000’ for DSI, DII, or DC message; least significant 5 bits of
moduleVersion for DDB messages

 current_next_indicator 1 ‘1’ (always current)

 section_number 8 0x00 for DSI, DII, or DC message; least significant 8 bits of
blockNumber for DDB messages

 last_section_number 8 0x00 for DSI, DII, or DC message. Maximum of section numbers
that appear in DDB messages for same version of same module.
(Note that this may not be the section number of the last block of
the module, since section numbers wrap around after they reach
255.)

 }

 <body of section> variable DSM-CC message

 checksum or CRC_32 32 checksum or CRC_32, as indicated by section_syntax_indicator

}

1.1.1.1 DSM-CC Message Header and DSM-CC Download Data Header

The download control messages of the data download protocol (DSI, DII, or DC) all consist of
the DSM-CC Message Header (defined in Section 2 of the DSM-CC standard [4]), followed by
the message body. Table B2 describes the format of the DSM-CC Message Header, as used in
the data download protocol.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex B 10 June 01

99

Table B2 DSM-CC Message Header

Field No. of
Bits

Value

dsmccMessageHeader(){

 protocolDiscriminator 8 0x11

 dsmccType 8 0x03

 messageId 16 0x1006 for DSI message; 0x1002 for DII message;
0x1005 for DC message

 transactionId 32 transaction_id (See Section 6.1.2.)

 reserved 8 0xFF

 adaptationLength 8 length of adaptationHeader, in bytes

 messageLength 16 total length of the message after this field, including
dsmccAdaptationHeader if any

 if (adaptationLength > 0)

 dsmccAdaptationHeader() variable

 }

}

The ATSC Data Broadcast Standard does not specify any use for the Adaptation Header in
the control messages, so the adaptationLength will typically be 0.

The DDB messages of the data download protocol consist of the DSM-CC Download Data
Header (defined in Section 7.2.2.1 of the DSM-CC standard [4]), followed by the message body.
Table B3 describes the format of the DSM-CC Download Data Header, as used in the data
download protocol.

Table B3 DSM-CC Download Data Header

Field No. of
Bits

Value

dsmccDownloadDataHeader()

 protocolDiscriminator 8 0x11

 dsmccType 8 0x03

 messageId 16 0x1003 for DDB message

 downloadId 32 download_id (See Section 6.1.2.)

 reserved 8 0xFF

 adaptationLength 8 length of adaptationHeader, in bytes

 messageLength 16 total length of the message after this field, including
dsmccAdaptationHeader if any

 if (adaptationLength > 0)

 dsmccAdaptationHeader() variable

 }

}

The primary difference between the DSM-CC Download Data Header and the DSM-CC
Message Header is that the Download Data Header has the downloadId in the position where the

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex B 10 June 01

100

DSM-CC Message Header has the transactionId. (See Section 6.1.2 for descriptions of these two
fields.)

For the asynchronous download scenarios the adaptationLength will typically be 0. However,
for the synchronized download scenario the dsmccAdaptationHeader contains the presentation
time stamp (PTS) values that are used for synchronization. In that case the
dsmccAdaptationHeader has the format described in Table B4, and has length 8 bytes (64 bits).

Table B4 DSM-CC Adaptation Header

Field No. of
Bits

Value

dsmccAdaptationHeader()

 adaptationType 8 0x04 for adaptation header with PTS value

 if (adaptationType = 0x04){

 reserved 16 0xFFFF

 ‘0010’ 4 ‘0010’

 PTS[32 … 30] 3 leftmost 3 bits of 33-bit PTS value

 marker_bit 1 ‘1’

 PTS[29 ... 15] 15 next 15 bits of 33-bit PTS value

 marker_bit 1 ‘1’

 PTS[14 … 0] 15 rightmost 15 bits of 33-bit PTS value

 marker_bit 1 ‘1’

 }

 else{

 adaptationDataBytes variable

 }

}

1.1.1.2 Download Server Initiate Message

Table B5 describes the Download Server Initiate (DSI) message format.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex B 10 June 01

101

Table B5 Download Server Initiate Message

Field No. of
Bits

Value

DownloadServerInitiate(){

 dsmcc_section_header() 64

 dsmccMessageHeader() 96 + A

 serverId 160 0x FFFF FFFF FFFF FFFF FFFF
 FFFF FFFF FFFF FFFF FFFF

 compatibility_descriptor 16 0x0000

 privateDataLength 16 length in bytes of the rest of the message
after this field (but not including the
CRC/checksum)

 GroupInfoIndication()

 numberOfGroups 16 number of groups in the supergroup

 for (i=0; i<numberOfGroups; i++)

 groupId 32 transactionId of DII message for group

 groupSize 32 cumulative size in bytes of all modules in
the group

 groupCompatibility() variable compatibility descriptor

 groupInfoLength 16 total length in bytes of groupInfoBytes

 groupInfoBytes variable list of descriptors

 }

 }

 CRC_32 or checksum 32 CRC_32 or checksum, as indicated by
section_syntax_indicator in
dsmcc_section_header()

}

The “A” term in the size of the dsmccMessageHeader() field is the size of the adaptation
header in the dsmccMessageHeader(). As noted earlier, it will typically be 0.

The compatibility descriptor structure in the groupCompatibility field can be used to specify
features that the receiver must possess in order to utilize the data in the group. It is described in
detail in Section 6.1 of the ATSC Data Broadcast Standard. Often the groupCompatibility field
will simply have the value 0x0000, indicating that no compatibility conditions are specified.

The only descriptor defined in the ATSC Data Broadcast Standard for the groupInfo
descriptor list is the group_link_descriptor, which allows multiple groups to be linked together into a
linked list. It is described in Table B6.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex B 10 June 01

102

Table B6 Group Link Descriptor

Field No. of Bits Value

group_link_descriptor(){

 descriptor_tag 8 0xB8

 descriptor_length 8 5

 position 8 0x00 indicates group is first group in list
0x01 indicates group is intermediate group in list
0x02 indicates group is last group in list

 group_id 32 transactionId of DII message for next group in list
(ignored when position = 0x02)

}

1.1.1.3 Download Info Indication Message

Table B7 below describes the Download Info Indication (DII) message format.

Table B7 Download Info Indication Message

Field No. of Bits Value

DownloadInfoIndication(){

 dsmcc_section_header() 64

 dsmccMessageHeader() 96 + A

 downloadId 32 downloadId for download scenario

 blockSize 16 length in bytes of blocks in DDB messages

 windowSize 8 0x00 (not used)

 ackPeriod 8 0x00 (not used)

 tCDownloadWindow 32 0x00000000 (not used)

 tCDownloadScenario 32 timeout period in microseconds for entire download
scenario

 compatibilityDescriptor() 2 0x0000 (not used)

 numberOfModules 2 total number of modules in the group

 for (i=0; i<numberOfModules; i++){

 moduleId 16 ModuleId

 moduleSize 32 total size of module in bytes; set to 0 for unbounded
module

 moduleVersion 8 module version number

 moduleInfoLength 8 length in bytes of moduleInfoBytes

 moduleInfoBytes variable list of descriptors

 }

 privateDataLength 16 length in bytes of privateDataBytes

 privateDataBytes variable private data

 CRC_32 or checksum 32 CRC_32 or checksum, as indicated by
section_syntax_indicator in dsmcc_section_header()

}

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex B 10 June 01

103

The “A” term in the size of the dsmccMessageHeader() field is the size of the adaptation
header in the dsmccMessageHeader(). As noted earlier, it will typically be 0.

Note that since the block size is specified outside the module loop in the DII message, the
block size must be the same for all modules in a group, except that the last block of each module
may be smaller.

Typically the privateDataLength will be 0x0000, and there will be no privateDataBytes.

The ATSC Data Broadcast Standard specifies just two descriptors for the moduleInfo
descriptor list in the DII messages, the module_link_descriptor and the CRC32_descriptor, described in
Tables B8 and B9.

The module_link_descriptor allows multiple modules to be linked together in a linked list. This
can be used to define a logical module which is much larger than the module size limit.

Table B8 Module Link Descriptor

Field No. of Bits Value

module_link_descriptor(){

 descriptor_tag 8 0xB4

 descriptor_length 8 3

 position 8 0x00 indicates module is first module in list
0x01 indicates module is intermediate module in list
0x02 indicates module is last module in list

 module_id 16 moduleId of next module in list (ignored when position = 0x02)

}

The CRC32 descriptor can be used to provide the calculation of a CRC over a complete data
module, instead of just over individual blocks.

Table B9 CRC32 Descriptor

Field No. of Bits Value

CRC32_descriptor(){

 descriptor_tag 8 0xB5

 descriptor_length 8 4

 CRC_32 32 32-bit CRC calculated over entire module

}

1.1.1.4 Download Cancel Message

Table B10 below describes the Download Control (DC) message format.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex B 10 June 01

104

Table B10 Download Cancel Message

Field No. of Bits Value

downloadCancel(){

 dsmcc_section_header() 64

 dsmccMessageHeader() 96 + A

 downloadId 32 downloadId for download scenario

 moduleId 16 moduleId of last processed DDB message at time of
cancellation

 blockNumber 16 blockNumber of last processed DDB message at time
of cancellation

 downloadCancelReason 8 reason code for cancelling

 reserved 8 0xFF

 privateDataLength 16 length in bytes of privateDataBytes

 privateDataBytes variable private data

 CRC_32 or checksum 32 CRC_32 or checksum, as indicated by
section_syntax_indicator in dsmcc_section_header()

}

The “A” term in the size of the dsmccMessageHeader() field is the size of the adaptation
header in the dsmccMessageHeader(). As noted earlier, it will typically be 0.

The DSM-CC standard defines about 20 reason codes, but about the only one that really
makes sense in a broadcast environment is 0x04 (rsnFatal), announcing that a fatal error of some
sort has occurred on the server side.

1.1.1.5 Download Data Block Message

Table B11 describes the Download Data Block (DDB) message format.

Table B11 Download Data Block Message

Field No. of Bits Value

DownloadDataBlock(){

 dsmcc_section_header() 64

 dsmccDownloadDataHeader() 96 + A

 moduleId 16 identifier of module to which this block belongs

 moduleVersion 8 current version of module to which this block belongs

 reserved 8 0xFF

 blockNumber 16 position of this block within module; block 0 is first block
of module

 blockDataBytes variable data in block

}

The “A” term in the size of the dsmccDownloadDataHeader() field is the size of the
adaptation header in the dsmccMessageHeader(). As noted earlier, it will typically be 0 for the
asynchronous download scenarios and 8 for a synchronized download scenario.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex B 10 June 01

105

1.1.1.6 Encapsulating Download Messages into MPEG-2 Transport Stream Packets

All of the messages used in the data download protocol are encapsulated in DSM-CC sections.
Thus, to describe how these messages get into an MPEG-2 transport stream, all that is needed is
to describe how DSM-CC sections are packed into MPEG-2 Transport Stream packets. The
method for doing this is the same as the method for packing MPEG-2 PSI sections or MPEG-2
private sections into Transport Stream packets, as specified in the MPEG-2 Systems standard.

Table B12 describes the structure of an MPEG-2 Transport Stream packet, in the context of
the encapsulation of DSM-CC sections.

Table B12 MPEG-2 Transport Stream Packet Header

Field Name No. of Bits Field Value

sync_byte 8 0x47

transport_error_indicator 1 ‘1’ indicates packet error detected during transmission
‘0’ indicates no known error

payload_unit_start_indicator
(PUSI)

1 ‘1’ indicates packet contains start of section
‘0’ indicates that it does not

transport_priority 1 ‘1’ means packet has higher priority
‘0’ means packet has lower priority

PID 13 identifies data elementary stream to which packet belongs

transport_scrambling_control 2 ‘00’ means not scrambled; other values are user defined

adaptation_field_control 2 ‘00’ is reserved
‘01’ means no adaptation field, payload only
‘10’ means only adaptation field, no payload
‘11’ means adaptation field and payload

continuity_counter 4 0x0 to 0xF, incremented for each successive packet with a
given PID, with wrap-around from 0xF to 0

adaptation_field (if adaptation field
control is ‘00’ or ‘10’)

variable may contain PCR values and other useful stuff

pointer_field (if payload unit start
indicator is ‘1’)

8 0 to 182, indicating byte position in packet containing first byte
of first section that starts in packet, starting with 0 for the first
byte after the pointer_field.

payload N * 8

Assume we have a sequence of DSM-CC sections that are part of the same download
scenario, and they are to be put into a sequence of Transport Stream packets having the PID
designated for that download scenario. The first section can start anywhere within the payload of
the first Transport Stream packet. It then proceeds to fill up the rest of the payload of that
Transport Stream packet and as many additional successive Transport Stream packets as are
needed to hold it all. If it does not end exactly on a Transport Stream packet boundary, then the
next section can start immediately after it the point where it ended, or the rest of that Transport
Stream packet can be stuffed with 0xFF bytes, and the next section can start in the next Transport
Stream packet in the sequence.

Each Transport Stream packet containing the start of a section will have the
payload_unit_start_indicator set, and the first byte of what would otherwise be the payload becomes a
pointer_field, telling where in the Transport Stream packet to find the start of the first section that
starts in the packet. (If sections are very short, a Transport Stream packet may contain the start of
two or more sections.) See Figure B1.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex B 10 June 01

106

PUSI=0

TP6 TP5 TP2 TP1TP4 TP3

section3 section1section2

PUSI=1PUSI=0PUSI=1PUSI=0PUSI=0

0xFF fill

Figure B1 Packing DSM-CC Sections into MPEG-2 Transport Stream Packets

All messages of a single download scenario must go in a single data elementary stream, and
nothing else may go in that data elementary stream; i.e., all the MPEG-2 Transport Stream
packets carrying the messages must have the same value for the PID (packet id) in the packet
header. Moreover, no other Transport Stream packets in the transport stream may have that PID
value.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

107

Annex C:
Sample Encapsulations

1. DATA DOWNLOAD PROTOCOL EXAMPLE

The example given in this annex shows the encoding of a simple two-layer asynchronous, non-
streaming Data Service via the non-flow controlled download scenario. For this example, a Data
Service Program element is envisioned that carries textual information in two different
languages. Two groups are used, one carrying a text payload in English, the other carrying the
equivalent text payload in French to illustrate grouping. The data payload is a simple text
message: “The quick brown fox jumped over the lazy dog.” (or “The rapide renard brun saute au
dessus du chien qui se repose.”

6
) and in each case, the text is carried via a single

DownloadDataBlock message (that fits within a single MPEG2 Transport Stream packet). Each
DII only carries information about the one module within the group. Data constructs are
represented first by tables similar to those above (with the appropriate values filled in), followed
by the hex representation of the MPEG-2 Transport Stream packet.

In this example, the transmission order will be: DSI, DII (English), DDB (English), DII
(French), DDB (French). All the MPEG-2 Transport Stream packet will be located on PID
0x00FF.

1.1 Sample Tables

1.1.1 Sample DSI

See Table C1 for the sample DSI.

Table C1 Sample DSI

Field Name No, of
Bits

Field Value Notes

sync_byte 8 0x47 Sync byte.

transport_error_indicator 1 0b Indicates no error.

payload_unit_start_indicator 1 1b Section starts in this packet.

transport_priority 1 0b No special priority.

PID 13 0x00FF Arbitrarily chosen for use in this
example.

transport_scrambling_control 2 00b 00b = Not scrambled.

adaptation_field_control 2 01b 01 = No adaptation field,
payload only.

continuity_counter 4 0x0 1
st
 packet

pointer_field 8 0x00 Section starts immediately after
this field.

table_id 8 0x3B 0x3B = DSM-CC section with
DownloadServerInitiate
messages.

6 The authors of this Implementation Guide acknowledge our imperfect translation to the French language.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

108

section_syntax_indicator 1 0b 0b indicates that the
checksum/CRC32 field contains
a checksum.

private_indicator 1 1b This field is set to the
complement of the
section_syntax_indicator flag.

reserved 2

11b Reserved fields are always filled
in with ‘1’s.

dsmcc_section_length 12 0x049 The number of bytes from
table_id_extension through the
last byte of the
CRC32/Checksum field. The
maximum value is 4093.

table_id_extension 16 0x0000 This field is set to the 2 least
significant bytes of the
transactionId.

reserved 2 11b

version_number 5 00000b This field is set to 00000b.

current_next_indicator 1 1b This field is set to 1b, indicating
that the information in the DSI is
always current.

section_number 8 0x00 This field is set to 0x00

last_section_number 8 0x00 This field is set to 0x00

protocolDiscriminator 8 0x11 DSMCC message.

dsmccType 8 0x03 U-N Download message.

messageId 16 0x1006 DownloadServerInitiate
message.

transactionId(){ Resulting value = 0x40000000.

 originator subfield 2 10 The server sets this field.

 version subfield 14 00000000000000
b

Initial value.

 identification subfield 15 00000000000000
0b

All zeros

 updated subfield 1 0b Initial value.

} End of sub-fields in transactionId

reserved 8 0xFF

adaptationLength 8 0x00 No adaptation header present.

messageLength 16 0x0034 Length of message immediately
following this field up to, but not
including the checksum/CRC32
field.

serverId 20Bytes 0xFFFFFFFFFFF
FFFFFFFFFFFFF
FFFFFFFFFFFFF
FFF

This field is set to 20 bytes, each
containing the value 0xFF.

compatibilityDescriptorLength 16 0x0000 Always 0x0000.

privateDataLength 16 0x001C Length in bytes of the following
GroupInfoIndication structure.

numberOfGroups 16 0x0002 2 Groups.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

109

groupId 32 0x80000002 This field is equal to the
transactionId of the DII message
that describes the group
(English text in this case).

groupSize 32 0x0000002D This field indicates the
cumulative size in bytes of all
the modules in the group. (Sum
of all the moduleSize’s in the DII
describing this group.)

groupCompatibilityDescriptorLength 16 0x0000 No groupCompatibilityDescriptor

groupInfoLength 16 0x0000 No descriptors in loop

groupId 32 0x80000004 This field is equal to the
transactionId of the DII message
that describes the group (French
text in this case).

groupSize 32 0x0000003D This field indicates the
cumulative size in bytes of all
the modules in the group. (Sum
of all the moduleSize’s in the DII
describing this group.)

groupCompatibilityDescriptorLength 16 0x0000 No groupCompatibilityDescriptor

groupInfoLength 16 0x0000 No descriptors in the loop.

privateDataLength 16 0x0000 No private data.

checksum/CRC32 32 0x00000000 Checksum set to zero signals
that no checksum was
calculated.

The following is the hex representation of the Table C1 DSI message in an MPEG-2
Transport Stream packet:

4740 FF10 003B 7049 0000 C100 0011 0310

0680 0000 00FF 0000 34FF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FF00 0000

1C00 0280 0000 0200 0000 2D00 0000 0080

0000 0400 0000 3D00 0000 0000 0000 0000

00FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF

1.1.2 Sample DII for Group 1 (English)

Table C2 lists the sample DII for Group 1 (English).

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

110

Table C2 Sample DII for Group 1 (English)

Field Name No. of Bits Field Value Notes

sync_byte 8 0x47 Sync byte.

transport_error_indicator 1 0b Indicates no error.

payload_unit_start_indicator 1 1b Section starts in this packet.

transport_priority 1 0b No special priority.

PID 13 0x00FF Arbitrarily chosen for use in this
example.

transport_scrambling_control 2 00b 00b = Not scrambled.

adaptation_field_control 2 01b 01 = No adaptation field, payload only.

continuity_counter 4 0x1 2
nd
 packet

pointer_field 8 0x00 Section starts immediately after this
field.

table_id 8 0x3B 0x3B = DII.

section_syntax_indicator 1 0b Checksum used.

private_indicator 1 1b Complement of the
section_syntax_indicator flag.

reserved 2

11b Reserved fields are always filled in with
‘1’s.

dsmcc_section_length 12 0x033 The number of bytes from
table_id_extension through the last byte
of the CRC32/Checksum field.

table_id_extension 16 0x0002 The 2 least significant bytes of the
transactionId.

reserved 2 11b

version_number 5 00000b This field is set to 00000b.

current_next_indicator 1 1b DII current.

section_number 8 0x00 Always 0x00.

last_section_number 8 0x00 Always 0x00.

protocolDiscrimiator 8 0x11 DSM-CC message.

dsmccType 8 0x03 U-N Download message.

messageId 16 0x1002 DII.

transactionId 32 0x80000002 Originator subfield = 10b
Version subfield = 0x0000
Identifier subfield = 000000000000001b
Updated subfield = ‘0’

reserved 8 0xFF

adaptationLength 8 0x00 Set to 0x00.

messageLength 16 0x001E Length of message immediately
following this field up to, but not
including the checksum/CRC32 field.

downloadId 32 0x00000000 carousel_id.

blockSize 16 0x0FE2 4066 bytes (non-synchronized case)

windowSize 8 0x00 Not used in broadcast.

ackPeriod 8 0x00 Not used in broadcast.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

111

tCDownloadWindow 32 0x00000000 Not used in broadcast.

tCDownloadScenario 32 0x00000000 Timeout period in microseconds for
entire download.

compatibilityDescriptorLength 16 0x0000 Always 0x0000

numberOfModules 16 0x0001 Number of modules in the loop to follow.

moduleId 16 0x0002 Unique identifier for the module.

moduleSize 32 0x0000002D Size of the module payload (don’t count
DDB syntax or checksum) in bytes when
bounded.

moduleVersion 8 0x00 Version number of the module.

moduleInfoLength 8 0x00 Length of the moduleInfo loop to follow.

privateDataLength 16 0x0000 User private.

checksum 32 0x00000000 Checksum set to zero signals that no
checksum was calculated.

The following is the hex representation of the Table C2 DII message in an MPEG2 Transport
Stream packet:

4740 FF11 003B 7039 0002 C100 0011 0310

0280 0000 02FF 0000 1E00 0000 000F E200

0000 0000 0000 0000 0000 0000 0100 0200

0000 2D00 0000 0000 0000 00FF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF

1.1.3 Sample DDB (for English module)

Table C3 lists the sample DDB (for English module).

Table C3 Sample DDB (for English module)

Field Name No. of Bits Field Value Notes

sync_byte 8 0x47 Sync byte.

transport_error_indicator 1 0b No error.

payload_unit_start_indicator 1 1b Section starts in this packet.

transport_priority 1 0b No special priority.

PID 13 0x00FF Arbitrarily chosen for use in this
example.

transport_scrambling_control 2 00b 00b = Not scrambled.

adaptation_field_control 2 01b 01 = No adaptation field, payload only.

continuity_counter 4 0x2 3
rd
 packet.

pointer_field 8 0x00 Section starts immediately after this
field.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

112

table_id 8 0x3C 0x3C = DSM-CC section with Download
data messages.

section_syntax_indicator 1 0b checksum.

private_indicator 1 1b Complement of the
section_syntax_indicator flag.

reserved 2

11b Reserved fields are always filled in with
‘1’s.

dsmcc_section_length 12 0x048 Number of bytes from the start of
table_id_extension through the last byte
of the CRC32/Checksum field.

table_id_extension 16 0x0002 This field will convey a copy of the
moduleId value found in the DDB.

reserved 2 11b

version_number 5 0x00 This field will convey a copy of the least
significant 5-bits of the moduleVersion
value found in the DDB.

current_next_indicator 1 1b Data is always current.

section_number 8 0x00 LSB of blockNumber.

last_section_number 8 0x00 This field is set to the maximum value
that is encoded in the section_number
field.

protocolDiscrimiator 8 0x11 DSM-CC message.

dsmccType 8 0x03 U-N Download message.

messageId 16 0x1003 DDB

downloadId 32 0x00000000 Identifier of the download scenario in
progress. In the case of a data carousel
scenario of the data download protocol,
this field is set to the value of the
carousel_id if it is specified in the
download_descriptor in the associated
Data Service Table.

reserved 8 0xFF

adaptationLength 8 0x00 Set to 0x00 when no PTS field is
present.

messageLength 16 0x0033 Length of message immediately
following this field up to, but not
including the checksum/CRC32 field.

moduleId 16 0x0002 The moduleId field identifies to which
module this block belongs.

moduleVersion 8 0x00 Initial version.

reserved 8 0xFF

blockNumber 16 0x0000 Position of block with the module. Zero
corresponds to the first block.

blockDataByte N*8 The quick brown
fox jumped over
the lazy dog.

Actual data from file/module.

checksum 32 0x00000000 Checksum set to zero signals that no
checksum was calculated.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

113

The following is the hex representation of an MPEG2 Transport Stream packet carrying the
Table C3 DDB:

4740 FF12 003C 7048 0002 C100 0011 0310

0300 0000 00FF 0000 3300 0200 FF00 0054

6865 2071 7569 636B 2062 726F 776E 2066

6F78 206A 756D 7065 6420 6F76 6572 2074

6865 206C 617A 7920 646F 672E 0000 0000

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF

1.1.4 Sample DII for Group 1 (French)

Table C4 lists the sample DII for Group 1 (French).

Table C4 Sample DII for Group 1 (French)

Field Name No. of Bits Field Value Notes

sync_byte 8 0x47 Sync byte.

transport_error_indicator 1 0b Indicates no error.

payload_unit_start_indicator 1 1b Section starts in this packet.

transport_priority 1 0b No special priority.

PID 13 0x00FF Arbitrarily chosen for use in this
example.

transport_scrambling_control 2 00b 00b = Not scrambled.

adaptation_field_control 2 01b 01 = No adaptation field, payload only.

continuity_counter 4 0x3 4
th
 packet

pointer_field 8 0x00 Section starts immediately after this
field.

table_id 8 0x3B 0x3B = DII.

section_syntax_indicator 1 0b Checksum used.

private_indicator 1 1b Complement of the
section_syntax_indicator flag.

reserved 2

11b

dsmcc_section_length 12 0x033 The number of bytes from
table_id_extension through the last byte
of the CRC32/Checksum field.

table_id_extension 16 0x0004 The 2 least significant bytes of the
transactionId.

reserved 2 11b Reserved fields are always filled in with
‘1’s.

version_number 5 00000b This field is set to 00000b.

current_next_indicator 1 1b DII current.

section_number 8 0x00 Always 0x00.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

114

last_section_number 8 0x00 Always 0x00.

protocolDiscriminator 8 0x11 DSM-CC message.

dsmccType 8 0x03 U-N Download message.

messageId 16 0x1002 DII.

transactionId 32 0x80000004 Originator subfield = 10b
Version subfield = 0x0000
Identifier subfield = 000000000000010b
Updated subfield = ‘0’

reserved 8 0xFF

adaptationLength 8 0x00 Set to 0x00

messageLength 16 0x001E Length of message immediately
following this field up to, but not
including the checksum/CRC32 field.

downloadId 32 0x00000000 carousel_id.

blockSize 16 0x0FE2 4066 bytes (non-synchronized)

windowSize 8 0x00 Not used in broadcast.

ackPeriod 8 0x00 Not used in broadcast.

tCDownloadWindow 32 0x00000000 Not used in broadcast.

tCDownloadScenario 32 0x00000000 Timeout period in microseconds for
entire download.

compatibilityDescriptorLength 16 0x0000 Always 0x0000

numberOfModules 16 0x0001 Number of modules in the loop to follow.

moduleId 16 0x0003 Unique identifier for the module.

moduleSize 32 0x0000003D Size of the module payload (don’t count
DDB syntax or checksum) in bytes when
bounded.

moduleVersion 8 0x00 Version number of the module.

moduleInfoLength 8 0x00 Length of the loop to follow.

privateDataLength 16 0x0000 User private.

checksum 32 0x00000000 Checksum set to zero signals that no
checksum was calculated.

The following is the hex representation of the Table C4 DII message in an MPEG2 Transport
Stream packet:

4740 FF13 003B 7033 0004 C100 0011 0310

0280 0000 04FF 0000 1E00 0000 000F E200

0000 0000 0000 0000 0000 0000 0100 0300

0000 3D00 0000 0000 0000 00FF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

115

1.1.5 Sample DDB (for French module)

Table C5 gives the sample DDB (for French module).

Table C5 Sample DDB (for French module)

Field Name No. of
Bits

Field Value Notes

sync_byte 8 0x47 Sync byte.

transport_error_indicator 1 0b No error.

payload_unit_start_indicator 1 1b Section starts in this packet.

transport_priority 1 0b No special priority.

PID 13 0x00FF Arbitrarily chosen for use in this
example.

transport_scrambling_control 2 00b 00b = Not scrambled.

adaptation_field_control 2 01b 01 = No adaptation field, payload
only.

continuity_counter 4 0x4 5
th
 packet.

pointer 8 0x00 Section starts immediately after this
field.

table_id 8 0x3C 0x3C = DSM-CC section with
Download data messages.

section_syntax_indicator 1 0b checksum.

private_indicator 1 1b Complement of the
section_syntax_indicator flag.

reserved 2

11b Reserved fields are always filled in
with ‘1’s.

dsmcc_section_length 12 0x058 Number of bytes from the start of
table_id_extension through the last
byte of the CRC32/Checksum field.

table_id_extension 16 0x0003 This field will convey a copy of the
moduleId value found in the DDB.

reserved 2 11b

version_number 5 0x00 This field will convey a copy of the
least significant 5-bits of the
moduleVersion value found in the
DDB.

current_next_indicator 1 1b Data is always current.

section_number 8 0x00 LSB of blockNumber.

last_section_number 8 0x00 This field is set to the maximum value
that is encoded in the section_number
field.

protocolDiscrimiator 8 0x11 DSM-CC message.

dsmccType 8 0x03 U-N Download message.

messageId 16 0x1003 DDB

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

116

downloadId 32 0x00000000 Identifier of the download scenario in
progress. In the case of a data
carousel scenario of the data
download protocol, this field is set to
the value of the carousel_id if it is
specified in the download_descriptor
in the associated Data Service Table.

reserved 8 0xFF

adaptationLength 8 0x00 Set to 0x00 when no PTS field is
present.

messageLength 16 0x0043 Length of message following this field
including the dsmccAdaptationHeader
as specified by the adaptationLength.

moduleId 16 0x0003 The moduleId field identifies to which
module this block belongs.

moduleVersion 8 0x00

reserved 8 0xFF

blockNumber 16 0x0000 Position of block with the module.
Zero corresponds to the first block.

blockDataByte N*8 The rapide
renard brun
saute au
dessus du
chien qui se
repose.

Actual data from file/module.

checksum 32 0x00000000 Checksum set to zero signals that no
checksum was calculated.

The following is the hex representation of an MPEG2 Transport Stream packet carrying the
Table C5 DDB:

4740 FF14 003C 7058 0003 C100 0011 0310

0300 0000 00FF 0000 4300 0300 FF00 0054

6865 2072 6170 6964 6520 7265 6E61 7264

2062 7275 6E20 7361 7574 6520 6175 2064

6573 7375 7320 6475 2063 6869 656E 2071

7569 7365 2072 6570 6F73 652E 0000 0000

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF

1.2 DSM-CC Addressable Section Example

The example given next shows the encoding of a UDP/IP datagram where the UDP/IP
datagram’s data payload is the text message, “The quick brown fox jumped over the lazy dog.”
The sentence is carried via a single DSMCC_addressable_section that fits within a single MPEG2
Transport Stream packet. The UDP datagram is sent to UDP destination port 4800 (0x12C0)
from source port 1387 (0x056B). The IP destination address is 224.7.8.9, and the source IP
address is 192.168.1.220. The deviceId is the RFC 1112 converted MAC address for the

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

117

multicast IP destination address. The section protection is provided by a CRC32 calculation, and
signaled accordingly in the DSMCC_addressable_section by the protection_indidcator set to 0b.

Table C6 DSM-CC Addressable Section Example

Field Name No. of
Bits

Field Value Notes

sync_byte 8 0x47 Sync byte.

transport_error_indicator 1 0b No error.

payload_unit_start_indicator 1 1b Section starts in this packet.

transport_priority 1 0b No special priority.

PID 13 0x0055

transport_scrambling_control 2 00b 00b = Not scrambled.

adaptation_field_control 2 01b 01 = No adaptation field, payload
only.

continuity_counter 4 0010b 3
rd
 packet.

pointer 8 0x00 Section starts immediately after this
field.

DSMCC_addressable_section() {

 table_id 8 0x3F

 ‘0’ 1 0b

 error_detection_type 1 0b 0b indicates that the
checksum/CRC32 field contains a
CRC32.

 reserved 2

11b

 section_length 12 0x056 The number of bytes from deviceID_6
to end of the
DSMCC_addressable_section.

 deviceID [7..0] 8 0x09 Least significant byte of the deviceID
(i.e., byte 6).

 deviceID [15..8] 8 0x08 Byte 5 of the deviceID

 reserved 2 11b

 payload_scrambling_control 2 00b 00b = Unscrambled.

 address_scrambling_control 2 00b 00b = Unscrambled.

 LLC_SNAP_flag 1 0b 0b indicates that the datagram is IP
and not LLC encapsulated.

 ‘1’ 1 1b

 section_number 8 0x00 Only 1 section per
DSMCC_addressable_section for IP.

 last_section_number
8

0x00 Only 1 section per
DSMCC_addressable_section for IP.

 deviceID[23..16] 8 0x07 Byte 4 of the deviceID.

 deviceID [31..24] 8 0x5E Byte 3 of the deviceID.

 deviceID [39..32] 8 0x00 Byte 2 of the deviceID.

 deviceID [47..40] 8 0x01 Byte 1 of the deviceID (most
significant byte).

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

118

 if (LLC_SNAP_flag == ‘1’) {

 LLC_SNAP() 8 * 8 Included if the LLCSNAP_flag is set to
1b.

 } else {

 datagram_data 8 IP Header, 20 bytes, starts with 0x45
0x00...0x07, 0x08, 0x09.
UDP Header, 8 bytes, 0x05
6B...0x5A, 0x39.
Text = The quick brown fox jumped
over the lazy dog.

 }

 if (section_number == last_section_number) {

 for (j=0;j<N2;j++) {

 stuffing_byte 8 No stuffing bytes.

 }

 }

 checksum/CRC_32 32 0xCB316ED
2

CRC32

}

The following is the hex representation of an MPEG-2 Transport Stream packet carrying a
UDP/IP datagram encapsulated in DSM-CC addressable section.

1.3 Data Piping Example

Table C7 illustrates the coding of a sentence using the Data Piping protocol and the stuffing of
the packet using the MPEG-2 adaptation field. The entire sentence is contained with a single
MPEG Transport Stream packet.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex C 10 June 01

119

Table C7 Data Piping Example

Field Name No. of
Bits

Field
Value

Notes

sync_byte 8 0x47 Sync byte.

transport_error_indicator 1 0b No error.

payload_unit_start_indicator 1 0b

transport_priority 1 0b No special priority.

PID 13 0x0055

transport_scrambling_control 2 00b 00b = Not scrambled.

adaptation_field_control 2 11b 11 = Adaptation field followed by payload.

continuity_counter 4 0000b 1
st
 packet.

adaptation_field_length 8 0x2D The number of bytes (45) immediately following the
adapation_field_length to the end of the adaptation field.
0 = Insertion of a single stuffing byte.
The example requires a total of 46 bytes of stuffing. One
byte is occupied by the adaptation length field and the
other byte is filled by the adaptation flags field. The
remaining 44 bytes are located in the stuffing_bytes loop.

if (adaptation_field_length > 0) {

 flags 8 0x00 Set to zero.

 for (i=0; i<N; i++) { N is 44 bytes.

 stuffing_byte N * 8 44 bytes of 0xFF.

 }

} // end if adaptation_field_length

payload N * 8 See the
next
column.

138 bytes of data equal to
“IG authors: John R. Mick Jr. – SkyStream Networks,
Rich Chernock - IBM, Regis Crinon – Intel, Edwin
Heredia - Samsung, Art Allison – NAB\n” where \n=0x0D
0x0A.

}

The following is the hex representation of an MPEG-2 Transport Stream packet containing
the Data Piping encapsulated sentence.

47 00 55 30 2d 00 ff ff ff ff ff ff ff ff ff ff G.U0-...........

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

ff ff 49 47 20 61 75 74 68 6f 72 73 3a 20 4a 6f ..IG authors: Jo

68 6e 20 52 2e 20 4d 69 63 6b 20 4a 72 2e 20 2d hn R. Mick Jr. -

20 53 6b 79 53 74 72 65 61 6d 20 4e 65 74 77 6f SkyStream Netwo

72 6b 73 2c 20 52 69 63 68 20 43 68 65 72 6e 6f rks, Rich Cherno

63 6b 20 2d 20 49 42 4d 2c 20 52 65 67 69 73 20 ck - IBM, Regis

43 72 69 6e 6f 6e 20 2d 20 49 6e 74 65 6c 2c 20 Crinon - Intel,

45 64 77 69 6e 20 48 65 72 65 64 69 61 20 2d 20 Edwin Heredia -

53 61 6d 73 75 6e 67 2c 20 41 72 74 20 41 6c 6c Samsung, Art All

69 73 6f 6e 20 2d 20 4e 41 42 0d 0a ison - NAB..

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex D 10 June 01

120

Annex D:
Service Description Framework Example

1. SCOPE

This annex illustrates the PSIP and SDF infrastructure that is associated with the examples of
Annex C. See Figure D1.

VCT

EIT-0

DET-0

PAT

PMT

DST
sourceId

service_type = 0x02

program_number

service location descriptor

{

stream_type = 0x95

elementary_PID = PIDw

stream_type = 0x0B

elementary_PID = PIDx

stream_type = 0x0D

elementary_PID = PIDy

stream_type = 0xFE

elementary_PID = PIDz

stream_type 0x02

elementary_PID PIDv

}

program_number

program_map_PID

source_id

event_id

title =“Example 1”

source_id

data_id

title=“<description>”

compatibilityDescriptor*

data service descriptor

{

level = 1

}

PID_count_descriptor

{

 total#PIDs = 5

 min#PIDs = 2

}

program_number

stream_type = 0x95

elementary_PID = PIDw

stream_type = 0x0B

elementary_PID = PIDx

associationTag = x

stream_type = 0x0D

elementary_PID = PIDy

associationTag = y

stream_type = 0xFE

elementary_PID = PIDz

assocationTag = z

stream_type 0x02

elementary_PID = PIDv

applicationCount=1

compatibilityDescriptor*

tapsCount = 3 {// Start Tap loop

{ // Tap 1 - DSM-CC Download

protocol_encapsulation = 0x01

systemStateFlag = 0x00

resourceLocation = 0

tapId = 1

use =0x04

associationTag = x

selectorLength = 0x00

tapInfoLength = 0x0E

download_encapsulation_

descriptor {

download_id = 0x00001234

carousel_period = 0x00000000

DIImsg_time_out_value = 0x00000000

} // end desc

} // end Tap 1

{ // Tap 2 - Addressable Section

protocol_encapsulation = 0x04

systemStateFlag = 0x00

resourceLocation =0

tapId = 2

use =0x04

associationTag = y

selectorLength = 0x08

selectorType = 0x0102

selectorBytes =1.0.94.x.y.z

tapInfoLength = 0x04

multiprotocol_encapsulation_

descriptor {

deviceId_address_range = 0x06

deviceId_mapping_flag = 1

max_sections_per_datagram = 0x01

} // end desc

} // end Tap 2

{ // Tap 3 - Data Piping

protocol_encapsulation = 0x0B

systemStateFlag = 0x00

resourceLocation =0

tapId = 3

use =0x04

associationTag = z

selectorLength = 0x00

tapInfoLength = 0x00

} // end Tap 3

} // end Tap Loop

PSIP Structures MPEG Structures A/90 Structures

Data Piping

(See Appendix B)

Addressable Sections

(See Appendix B)

MAC address (Data1)

1.0.94.0.0.0 - 1.0.94.127.255.255

DSM-CC Download

(See Appendix B)

Figure D1 Example ATSC table hierarchy.

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex D 10 June 01

121

1.1 ATSC Table Hierarchy Discussion

Figure D illustrates one Virtual Channel conveying a DSM-CC data download protocol stream, a
single IP Multicast stream, and a Data Piping stream each as separate Program elements that are
part of a single Data Service. All three Program elements comprising the Data Service are being
related to a video elementary stream. Hence in this example, the PSIP service_type is 0x02. Also, it
is assumed that the Program elements are conveyed in the same MPEG-2 program as the
Program element conveying the Service Description Framework (SDF) information. This
example does not have any requirement for Internet network access or for external Program
elements. Therefore, Figure D does not include a Network Resource Table (NRT).

In Figure D, the dashed lines show field correspondences. Fields linked by a dashed line have
the same value. Solid, thick lines refer to elementary_PID based identification of the MPEG-2
Transport Stream packets conveying a particular Program element—like the solid line from the
program_map_PID field in the Program Association Table (PAT) to the Program Map Table (PMT).

The Virtual Channel Table (VCT) is transmitted in MPEG-2 Transport Stream packets
referenced by the PID value 0x1FFB. The source_id field associated with the Virtual Channel in
the VCT allows for the identification of the instances of the Event Information Tables (EIT-k's)
announcing the audio-visual event schedule. It also identifies the instances of the Data Event
Tables (DET-k's) announcing the schedule of the associated Data Service. The location of the
EIT-k's and DET-k's in the MPEG-2Transport Stream is specified in the PSIP Master Guide
Table (MGT). The instances of the DET-k's conveying the Data Service schedule include a title
text structure that may be reported in the on screen display of the Program Guide.

The schedule of the audio-visual and associated data event appears ultimately in an instance
of an EIT-0 or DET-0 table, respectively. The audio, video and data Program elements belong to
the same Virtual Channel so the audio-visual event can be enhanced by the Data Service.

The PSIP Service Location Descriptor (SLD) in the VCT is used to aggregate the Program
elements making up the Virtual Channel. The Virtual Channel must include one and only one
Program Element of stream_type 0x95. The elementary_PID value PIDw associated with the Program
element of stream_type value 0x95 specifies the MPEG-2 Transport Stream packets conveying the
Data Service Table and the Network Resources Table (not included) in the Virtual Channel.

The elementary_PID value PIDx of stream_type value 0x0B identifies the MPEG-2 Transport
Stream packets conveying the DSM-CC data download protocol encapsulation. The
elementary_PID value PIDy of stream_type value 0x0D identifies the MPEG-2 Transport Stream
packets conveying the DSM-CC addressable sections where the IP Multicast data datagrams are
encapsulated. The elementary_PID value PIDz of stream_type value 0xFE (user specified) identifies
the Transport Stream packets conveying the Data Piping protocol.

The elementary_PID values PIDw, PIDx, PIDy, and PIDz are also listed in the PMT. The
Virtual Channel may include additional elementary_PID values for video and audio streams. This
concept is shown in Figure D where a video elementary stream of type 0x02 is signaled in the
SLD and the PMT. Since in this example the Data Service is related to a video event, the
service_type value in the VCT is equal to 0x02.

The Program Association Table (PAT) in the ATSC Transport mutliplex identifies the PID
value of the MPEG-2 Transport Stream packets conveying the Program Map Table (PMT). The
PMT includes an MPEG-2 program featuring the video, audio and data elementary streams
aggregated by the PSIP Virtual Channel. The MPEG-2 program_number in the PAT and the
PMT match the program_number associated with the Virtual Channel listed in the VCT.

The DST consists of one application featuring three Tap structures. The Tap structures
include an associationTag allowing identification of the location (the elementary PID value) of

ATSC Implementation Guidelines for the Data Broadcast Standard, Annex D 10 June 01

122

the Program element within the ATSC Transport multiplex. The elementary_PID value associated
with the Program element is obtained by matching the associationTag value in the Tap structure
with the associationTag value in the Association Tag Descriptor within the PMT.

The selector bytes of the Tap include the MAC Multicast address of the datagrams conveying
the SDP protocol. The Tap information loop includes a Multiprotocol Encapsulation Descriptor
to signal the number of active bytes used in the deviceId fields of the DSM-CC Addressable
Sections. The deviceId_address_range field value is set to 0x06 to indicate that all deviceId bytes are
active. The deviceId_mapping_flag is set to 1 to indicate that deviceId fields represent a MAC
address.

