
Doc. A/94

16 August 2002

ATSC Standard:

ATSC Data Application Reference Model

Advanced Television Systems Committee

1750 K Street, N.W.

Suite 1200

Washington, D.C. 20006

www.atsc.org

ATSC ATSC Data Application Reference Model 16 August 2002

 2

The Advanced Television Systems Committee, Inc., is an international, non-profit organization
developing voluntary standards for digital television. The ATSC member organizations represent
the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable,
satellite, and semiconductor industries.

Specifically, ATSC is working to coordinate television standards among different
communications media focusing on digital television, interactive systems, and broadband
multimedia communications. ATSC is also developing digital television implementation
strategies and presenting educational seminars on the ATSC standards.

ATSC was formed in 1982 by the member organizations of the Joint Council on InterSociety
Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and
Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National
Cable Television Association (NCTA), and the Society of Motion Picture and Television
Engineers (SMPTE). Currently, there are approximately 160 members representing the
broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite,
and semiconductor industries.

ATSC Digital TV Standards include digital high definition television (HDTV), standard
definition television (SDTV), data broadcasting, multichannel surround-sound audio, and
satellite direct-to-home broadcasting.

ATSC ATSC Data Application Reference Model 16 August 2002

 3

Table of Contents

1. SCOPE..7

1.1 Status 7

1.2 Purpose 7

1.3 Application 7

1.4 Organization 7

2. REFERENCES..8

2.1 Normative References 8

2.2 Informative References 9

2.3 Reference Acquisition 9

3. DEFINITIONS AND STRUCTURES ...9

3.1 Conformance Keywords 10

3.2 Acronyms and Abbreviations 10

3.3 Terms 11

3.4 Section and Data Structure Syntax Notation 13

3.5 Special Field Meanings 13

4. SYSTEM ASSUMPTIONS (INFORMATIVE) ..13

5. OVERVIEW (INFORMATIVE)...14

5.1 Data Models 14

5.2 Application Model 14

5.2.1 Application Categories 14

5.2.2 Application Announcement 15

5.2.3 Application Signaling 15

5.2.4 Resource Signaling 16

5.3 Security and Policy 16

6. APPLICATION STATE MODEL ...16

6.1 Background on SDF and PSI Facilities (Informative) 16

6.2 Events 17

6.3 States 18

6.4 State Transitions 18

6.5 State Transition Diagram 19

7. IDENTIFICATION AND NAMING ...19

7.1 The tv: Scheme 20

7.2 The lid: Scheme 20

7.3 Content Types and Their URI Dependent Behavior 21

ATSC ATSC Data Application Reference Model 16 August 2002

 4

8. DATA ENCAPSULATION ..22

8.1 IP Packets 22

8.2 Modules 22

8.3 Files 23

8.4 Streams 23

8.4.1 MPEG-2 Video Picture UserData (DTVCC) 23

8.5 Triggers 23

8.5.1 Asynchronous Events 23

9. DESCRIPTORS AND STRUCTURES ..23

9.1 Compatibility Wrapper Descriptor 24

9.2 DSM-CC Compatibility Descriptor 24

9.3 Broadcaster Policy Descriptor 25

9.4 Service Name Descriptor 27

9.5 URI Descriptor 27

9.6 Summary of Descriptor Locations (Informative) 28

10. ANNOUNCEMENT ...28

10.1 Application Announcement 29

11. SIGNALING..29

11.1 Virtual Channel Signaling 29

11.2 Application Signaling 29

11.3 Resource Signaling 30

11.4 Broadcaster Policy 31

11.5 External Resource Signaling (Informative) 31

12. APPLICATION BUFFER MODELS..31

12.1 DTVCC Buffer Model 32

12.2 Module Buffer Model 32

12.2.1 Data Module Buffers 32

12.2.2 Application Buffer Model 33

12.3 Stream Buffer Model 34

12.3.1 Data Piping 34

12.3.2 Asynchronous Download 35

Annex A: Use of the Signaling and Announcement Facilities (Informative) 36

Annex B: Receiver Tuning Operations (Informative) 37

Annex C: URI Resolution Procedures (Informative) 38

ATSC ATSC Data Application Reference Model 16 August 2002

 5

Annex D: Application Environment (Informative) 39

1. APPLICATION ENVIRONMENT MODEL...39

1.1 Display Model 39

1.2 Audio Model 39

1.3 Viewer Input 39

1.4 Resource Acquisition 40

Annex E: Descriptors from Other Standards (Informative) 42

1. DSM-CC COMPATIBILITY DESCRIPTOR...42

1.1 Content Type Descriptor 42

1.2 Acquisition Descriptor 43

ATSC ATSC Data Application Reference Model 16 August 2002

 6

Index of Tables and Figures

Table 6.1 State Transition Summary 19

Table 7.1 Video/Audio Query Syntax and Their Resulting Content Types. 22

Table 9.1 Compatibility Wrapper Descriptor 24

Table 9.2 Broadcaster Policy Descriptor 25

Table 9.3 Policy and Bitfield Assignment 26

Table 9.4 Service Name Descriptor 27

Table 9.5 URI Descriptor 28

Table 9.6 Descriptor Location Summary 28

Table 11.1 Protocol Encapsulations 30

Table 12.1 Buffer Model Notations. 34

Table E.1 DSM-CC Compatibility Descriptor 42

Table E.2 Content Type Descriptor 42

Table E.3 Acquisition Descriptor 43

Figure 4.1 Relationship among ATSC Standards. 13

Figure 6.1 State transition diagram. 19

Figure 12.1 DSM-CC Module Buffer Model. 34

Figure A.1 SDF linkage. 36

Figure D.1 Receiver reference model data flow. 40

ATSC ATSC Data Application Reference Model 16 August 2002

 7

ATSC Data Application Reference Model

1. SCOPE

1.1 Status

This document is an ATSC Standard, having passed ATSC Member Ballot on August 16, 2002.
A list of current ATSC Standards and other technical documents can be found at
http://www.atsc.org/standards.html.

1.2 Purpose

This standard defines an Application Reference Model (ARM) including a binding of application
environment facilities onto the ATSC Data Broadcast Standard [A/90].

This standard includes a system-wide resource naming scheme, a state model, data models
and constraints and extensions to A/53, A/65, and A/90 to implement application environments.

1.3 Application

The architecture and facilities of this standard are intended to apply to terrestrial (over-the-air)
broadcast systems and receivers. In addition, the same architecture and facilities may be applied
to other transport systems (such as cable or satellite).

1.4 Organization

This standard is organized as follows:

• Section 1: Describes purpose, application, and organization of this standard

• Section 2: Enumerates normative and informative references

• Section 3: Defines acronyms, terminology, and conventions

• Section 4: Describes the requirements and provides an introduction

• Section 5: Provides an informative overview of the technical solution

• Section 6: Defines the application state model and transport events

• Section 7: Defines the resource naming system and formal content types

• Section 8: Constrains the data models to their A/90 encapsulations

• Section 9: Defines new descriptors, as well as constraints on A/90 descriptors

• Section 10: Defines required announcement semantic use of the descriptors and provides
constraints on existing A/65 and A/90 table fields and descriptors

• Section 11: Defines required signaling semantic use of the descriptors and provides
constraints on existing A/65 and A/90 table fields and descriptors

• Section 12: Defines the application buffer models

• Annex A: Provides an informative example of the DST usage and linkages

• Annex B: Provides informative receiver tuning procedures

• Annex C: Provides informative receiver URI resolution procedures

• Annex D: Describes an informative application environment model that might implement
this standard

ATSC ATSC Data Application Reference Model 16 August 2002

 8

• Annex E: Provides informative copies of important externally-defined descriptors as a
convenience to the reader of this document.

This standard makes use of certain notational devices to provide valuable informative and
explanatory information in the context of normative and, occasionally, informative sections.
These devices take the form of paragraphs labeled as Example or Note. In each of these cases,
the material is to be considered informative in nature.

2. REFERENCES

This section defines the normative and informative references employed by this standard. With
the exception of Section 2.1, this section and its subsections are informative; in contrast, Section
2.1 is normative.

2.1 Normative References

The following documents contain provisions which, through reference in this standard, constitute
provisions of this standard. At the time of publication, the editions indicated were valid. All
referenced documents are subject to revision, and parties to agreements based on this standard
are encouraged to investigate the possibility of applying the most recent edition of the referenced
document.

When a conflict exists between this standard and a referenced document, this standard takes
precedence.

Note: This standard uses a reference notation based on acronyms or convenient labels for
identifying a reference (as opposed to using numbers).

[A53] ATSC Digital Television Standard, Doc. A/53, ATSC

[A65] Program and System Information Protocol for Terrestrial Broadcast and
Cable, Doc. A/65A, ATSC

[A90] Data Broadcast Standard, Doc. A/90, ATSC

[HTTP] Hypertext Transfer Protocol – HTTP/1.1, RFC 2616, IETF

[IPM] Delivery of IP Multicast Sessions over ATSC Data Broadcast, Doc. A/92,
ATSC

[MIME] Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, RFC 2045, IETF

[MPEG] Information Technology — Generic coding of moving pictures and associated
audio — Part 1: Systems, ISO/IEC 13818-1 | ITU-T Rec. H.222.0:1996,
ISO/ITU

[TRIGGER] Synchronized/Asynchronous Trigger Standard, Doc. A/93, ATSC

[TSFS] Data Transport Stream File System, Proposed Standard, Doc. T3-582, ATSC

[URI] Uniform Resource Identifiers: Generic Syntax, RFC 2396, IETF

[URI-LID] The Local Identifier (lid:) URI Scheme, Standard 343M, SMPTE

[URI-TV] Uniform Resource Identifiers for Television Broadcasts, RFC2838, IETF

[UUID] Information technology, “Open Systems Interconnection – Remote Procedure
Call”, Annex A, “Universal Unique Identifier” ISO/IEC 11578:2000, ISO

ATSC ATSC Data Application Reference Model 16 August 2002

 9

[VIDEO-MPEG] Information Technology — Generic coding of moving pictures and associated
audio — Part 2: Video, ISO/IEC 13818-2, ISO

2.2 Informative References

[A91] Data Implementation Guidelines, Doc. A/91, ATSC

[ATVCC] Line 21 Data Services, Standard EIA/CEA-08-B, EIA

[DTVCC] Digital Television Closed Captioning, Standard EIA-708-B, EIA

[DSMCC] Digital Storage Media, Command and Control (DSM-CC), ISO/IEC 13818-6,
ISO

[SMPTE-EBU] Final Report: Analysis and Results, EBU/SMPTE Task Force for Harmonized
Standards for the Exchange of Program Material and Bit Streams, July 1998,
SMPTE

[VIDEO] Amendment No. 1 to ATSC Standard: ATSC Digital Television Standard,
Doc. A/53B with Amendment 1, ATSC

2.3 Reference Acquisition

ATSC Standards:

Advanced Television Systems Committee (ATSC), 1750 K Street N.W., Suite
1200 Washington, DC 20006 USA; Phone: +1 202 828 3130; Fax: +1 202 828
3131.

EIA Standards:

Electronic Industries Alliance (EIA), Corporate Engineering Department, 2500
Wilson Boulevard, Arlington, Virginia 22201 USA; Phone: +1 703 907 7500;
Fax: +1 703 907 7501.

IETF Standards:

Internet Engineering Task Force (IETF), c/o Corporation for National Research
Initiatives, 1895 Preston White Drive, Suite 100, Reston, VA 20191-5434, USA;
Phone: +1 703 620 8990; Fax: +1 703 758 5913.

ISO Standards:

International Organization for Standardization (ISO), 1, rue de Varembé, Case
postale 56, CH-1211 Geneva 20, Switzerland; Phone: +41 22 749 01 11; Fax: +41
22 733 34 30.

SMPTE Standards:

The Society of Motion Picture and Television Engineers, (SMPTE), 595 West
Hartsdale Ave, White Plains, NY 10607, USA; Phone: +1 914 761 1100; Fax: +1
914 761 3115.

3. DEFINITIONS AND STRUCTURES

This section defines conformance keywords, acronyms and abbreviations, and terms as
employed by this standard.

ATSC ATSC Data Application Reference Model 16 August 2002

 10

3.1 Conformance Keywords

As used in this document, the conformance keyword shall denotes a mandatory provision of the
standard. The keyword should denotes a provision that is recommended but not mandatory. The
keyword may denotes a feature whose presence does not preclude compliance, that may or may
not be present at the option implementer.

As used in this document, the auxiliary verb will denotes simple futurity and is not
considered a conformance keyword. It may, however, by used in conjunction with statements
containing conformance keywords in order to elaborate the meaning of those statements.

3.2 Acronyms and Abbreviations

bslbf bit string, left bit first

CAT conditional access table

CVCT cable virtual channel table

DCC directed channel change

DET data event table

DII download information indication

DSI download server initiate

DSM-CC digital storage media—command and control

DST data service table

DTVCC digital television closed captioning

EBU European Broadcast Union

EIA Electronic Industries Alliance

EIT event information table

EPG electronic program guide

ETT extended text table

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Organization for Standardization

ITU International Telecommunication Union

LTST long term service table

MIME Multipurpose Internet Mail Extensions

MPEG Moving Picture Experts Group

NRT network resources table

OUI organization unique identifier

PAT program association table

ATSC ATSC Data Application Reference Model 16 August 2002

 11

PID packet identifier

PMT program map table

PSI program specific information

RFC request for comments

SB smoothing buffer

SDF service description framework

SLD service location descriptor

SMPTE Society of Motion Picture and Television Engineers

STD system target decoder

TSFS transport stream file system

TVCT terrestrial virtual channel table

uimsbf unsigned integer, most significant bit first

URI uniform resource identifier

UUID universal unique identifier

VCT virtual channel table

3.3 Terms

application An aggregation of related data items, including but not limited to: procedural code,
declarative data, and other data [A90].

application environment The context (client system) in which an application is processed.

application resource A bit-stream serialization (a physical embodiment) of a part of an
application that implements one of the data models defined in this document.

asynchronous data Stand-alone or audio/video-related data transmitted with no strong timing
requirements in the sense that it is not associated with any transmitted clock references and
availability of data in a data receiver is not governed by any such clock references [A90].

channel See virtual channel.

content A general term which refers to either an application or application resource.

data service A collection of applications and associated data Program Elements as signaled in a
Data Service Table (DST) of the Service Description Framework [A90].

datagram A datagram is the fundamental protocol data unit in a packet-oriented data delivery
protocol. Typically, a datagram is divided into header and data areas, where the header
contains full addressing information (source and destination addresses) with each data unit.
Datagrams are most often associated with connectionless network and transport layer
services.

environment See application environment.

event A binding of a program to a Virtual Channel at a specific time.

ATSC ATSC Data Application Reference Model 16 August 2002

 12

program Used here in the context of a “television program” such as a scheduled daily news
broadcast. It is a collection of video, audio and/or data elements that has a finite length. This
is in contrast to an MPEG Program.

program element An MPEG-2-defined term for one of the streams that may be included in an
MPEG-2 Program. For example: audio, video, data, etc.

scrambling The alteration of the characteristics of a video, audio, PSI or coded data stream in
order to prevent unauthorized reception of the information in a clear form. This alteration is a
specified process under the control of a conditional access system.

resource See application resource.

resource identifier An identifier which labels a resource; e.g., a URI.

resource reference The use of a resource identifier to refer to a resource.

section A data structure comprising a portion of an ISO/IEC 13818-1 [13818-1] or ISO/IEC
13818-6 [13818-6] defined table, such as the Program Association Table (PAT), Conditional
Access Table (CAT), Program Map Table (PMT) or DSM-CC section. All sections begin
with the table_id and end with the CRC_32 or a checksum field, and their starting points within a
Transport Stream packet payload are indicated by the pointer_field mechanism defined in
[13818-1].

service description framework (SDF) The information conveyed in the Program Element of
stream type 0x95 and providing the Data Service Table and possibly the Network Resource
Table of a single data service [A90].

STD input buffer A first-in, first-out buffer at the input of a system target decoder for retention
of data from Program Elements before decoding [A90].

stream An unbounded, ordered sequence of bytes.

stream data A stream is a data object which has no specific start or end. The decoding system
may need only a small fraction of the total data to activate a given application. An example
includes stock ticker services.

system target decoder (STD) A hypothetical reference model of a decoding process used to
describe the semantics of the Digital Television Standard multiplexed bit stream [A90].

tap A reference to a data resource, including but not limited to: a data Program Element, a file
system component, or a network resource [A90].

transport stream Refers to the MPEG-2 Transport Stream syntax for the packetization and
multiplexing of video, audio, and data signals for digital broadcast systems in [13818-1].

user The reader and/or implementer of this Standard.

viewer The person using a receiver to view the Virtual Channel.

virtual channel A virtual channel is the designation, usually a number, that is recognized by the
viewer as the single entity that will provide access to an analog TV program or a set of one or
more video elementary streams and Program Elements. It is called “virtual” because its
identification (name and number) may be defined independently from its physical location.

ATSC ATSC Data Application Reference Model 16 August 2002

 13

3.4 Section and Data Structure Syntax Notation

This document contains symbolic references to syntactic elements. The notation used is
distinctive to aid the reader in recognizing elements that are the same as they are in referenced
standards. These references are typographically distinguished by the use of a different font (e.g.,
restricted), may contain the underscore character (e.g., sequence_end_code) and may consist of
character strings that are not English words (e.g., dynrng).

3.5 Special Field Meanings

reserved Fields in this Standard marked “reserved” shall not be assigned by the user, but shall be
available for future use. Decoders are expected to disregard reserved fields for which no
definition exists that is known to the decoder. Each bit in the fields marked “reserved” shall
be set to one until such time as they are defined and supported.

user_private Indicates that the field is not defined within the scope of this Standard.

zero Indicates that the bit or bit field shall have the value zero.

4. SYSTEM ASSUMPTIONS (INFORMATIVE)

This Standard builds on ATSC Standards for the general transport as well as the carriage of data.
Specifically, it is built on A/53 (including A/52) [A53], A/65 [A65], A/90 [A90], A/91 [A91],
A/92 [IPM], A/93 [TRIGGERS], and the Transport Stream File System [TSFS]. The relationship
of this Standard to other ATSC Standards is shown in Figure 4.1. Note that the location of these
blocks do not designate subset relationships.

A/65

A/53

A/90

A/92 A/93 TSFS

This Standard

A/70

Figure 4.1 Relationship among ATSC Standards.

ATSC ATSC Data Application Reference Model 16 August 2002

 14

5. OVERVIEW (INFORMATIVE)

This standard defines an architecture and framework for A/90 Data Service applications and the
environments in which those applications are processed. This architecture is specified in terms of
the following models:

• Data model

• Application model

• Application environment model

5.1 Data Models

The following basic data models are supported by this Standard:

• Internet Protocol (IP) packets

• Modules

• Files

• Streams

• Triggers

IP packets are the standard carriage of internet protocol packets just as on any other IP
network transport as defined in [A90].

Modules are bounded sequences of bytes that use the DSM-CC data download name space,
namely downloadId, groupId, moduleId and version number as defined in [A90].

Files are bounded sequences of bytes with a text-based, hierarchical namespace, and
attributes found for traditional files in common operating systems such as defined in [TSFS].

Streams are unbounded sequences of bytes such as defined in Section 8.4.

Triggers are structures used to provide synchronization services containing a reference to an
application that is intended to process it, a reference to a target, or opaque data bytes. It may
optionally contain a presentation time stamp, and is more fully defined in [TRIGGERS].

5.2 Application Model

The following sections define an application model by means of which applications are
organized, delivered (interchanged), and processed.

A resource is an embodiment of one of the data models described previously. A resource is
equivalent to a SMPTE data essence material (see [SMPTE-EBU]).

An application is a collection of resources and their related metadata, along with application
metadata.

An application environment is the receiver environment that processes an application.

5.2.1 Application Categories

An application category is its relationship to the Virtual Channel. The categories supported here
are:

• Bound

• Shared

A bound application is one that is associated with a single Virtual Channel and can be
activated only by tuning to that channel, and is stopped by tuning away. In contrast, some

ATSC ATSC Data Application Reference Model 16 August 2002

 15

applications may be associated with a collection of related Virtual Channels, such as a set of
ATSC minor channels within a single major channel (e.g., all XBC channels: 10.1 and 10.2, etc).
It is desirable that such an application survive channel changes as long as the receiver stays
within the associated channel group. An example is a broadcaster-specific Electronic Program
Guide (EPG) that provides a small navigation bar on the bottom of the screen for a group of
related channels. The receiver should recognize the fact that the same application is signaled on
the multiple channels that the viewer is switching from and to, and not stop, then reload and
restart the application. However, such an application should suspend during this channel
transition. This is a shared application.

It is often desirable that the execution of certain applications is independent of channel
changes. An example of such unbound applications is a non-broadcaster-specific EPG. The
application resides in the receiver after being downloaded through either a virtual channel or
other means. A viewer can activate and stop the application regardless which virtual channel is
being watched. The states and transitions needed for the category of Unbound Application are
outside the scope of this Standard.

5.2.2 Application Announcement

The future availability of an application for possible processing and presentation by an
application environment may be announced in the transport. The intention of application
announcement is to notify the receiver of the future availability of the application so that the
receiver can take an appropriate action to schedule use of the application and/or inform the
viewer. This is defined in Section 11.2.

The announcement of an application is characterized by its metadata:

• Profile and Level
1

• Availability Time and Duration

• Rating Information

• Language

and the following optional metadata:

• Title

• Description

Note that [A90] provides for announcement of events within Data Services only and not
individual applications.

5.2.3 Application Signaling

The availability of an application for processing and presentation by an application environment
is signaled in the transport. This is defined in Section 11.3.

The signaling of an application is accompanied by metadata that describes all the resources
that embody the application. This application signaling metadata is as follows:

• Application Identifier

• Profile and Level
2

• Category (as defined in 5.2.1)

• Invocation Directive (bootstrap or runtime)
3

1
 This is the profile and level of the application, and not the data service profile and level defined in A/90.

2
 op. cit.

ATSC ATSC Data Application Reference Model 16 August 2002

 16

• Identifier of the Root Resource

It is not expected that this metadata will be presented to a viewer, but will instead be used by
the application environment for processing the application.

5.2.4 Resource Signaling

Each resource listed in the application can include the following metadata:

• Identifier

• Content Type

In addition, for Module data models, there is the additional metadata:

• Acquisition Directive

And, for File data models:

• Miscellaneous Attributes as defined in [TSFS].

A resource identifier takes the form of an absolute universal resource identifier (URI)
according to [URI]. This identifier is globally unique. A resource content type takes the form of a
MIME media type [MIME]. Note that MIME media types may take parameters.

An optional acquisition directive is conveyed by means of an Application Descriptor, as
defined in [TRIGGER], that indicates to the application environment that it should promptly
acquire the resource, with the expectation that a trigger referencing the resource will be arriving
soon.

5.3 Security and Policy

There is no requirement for added support at the transport level for security models or
conditional access. This topic is not covered in this document, and the reader is referred to
[A70].

However, content authors and broadcasters may wish to assert their policy positions with
respect to control of certain actions a data service may take. This takes the form of asserting a
denial of certain “policies,” where each “policy” gives permission for a certain specific type of
action in the application environment. In the absence of any explicit assertion to deny a policy,
any permissions affected by the policy remain grantable. To assert denial of policies a
Broadcaster Policy Descriptor is transmitted. In general, this will result in one or more
permissions being denied.

6. APPLICATION STATE MODEL

At this time, the ATSC A/90 Service Description Framework (SDF) provides limited capabilities
to signal an application software environment for state changes. The state model defined here
makes use of the available facilities to define some useful application behavior for the
application environment.

6.1 Background on SDF and PSI Facilities (Informative)

Data services for a Virtual Channel are defined and signaled by the Data Service Table (DST).
Each DST contains a list of applications that are currently available in the broadcast stream. Each

3
 Strictly speaking, the “bootstrap” and “runtime” directives apply to resources, not applications. As applied to

applications, “bootstrap” is used here to mean that the application has at least one resource with the “bootstrap”
directive, and “runtime” is used here to mean that it has no resources with the “bootstrap” directive.

ATSC ATSC Data Application Reference Model 16 August 2002

 17

application is composed of one or more taps that reference specific resources or groups of
resources in the broadcast stream.

Each tap in the application loop contains an action_type that identifies the data item as “run-
time data” or “bootstrap data”. The latter is meant to indicate that the item referenced by the tap
is to be loaded and executed by the application environment.

Receipt of a DST by the receiver signals the presence of a data service and its applications. It
minimally defines for each application one or more “root” resources required to activate the
application via the tap(s) containing the action_type set to “bootstrap data” (0x01). There may be
more than one application that is activated in this manner.

When a new DST is received that omits a previously signaled application, this means that the
application is no longer available in the broadcast. The lack of receipt of any DST over some
period of time has no meaning since the recommended minimum cycle time is not required.

Since exact DST emission frequency is unknown
4
, it cannot reliably be used for any “fast”

signaling by including descriptors, for example, to signal application state changes. More
importantly, it cannot be counted on being emitted when an application is not being broadcast,
particularly during insertions of commercials at a broadcaster.

There are, however, strict timing requirements on the Program Map Table (PMT). The PMT
is a reliable source of what streams are currently valid with “good” time resolution (400ms
maximum).

6.2 Events

Based on the available SDF and PSI facilities described previously, the following events shall
have the indicate meaning:

• New – receipt of a DST that contains a new application with the action_type set to “bootstrap
data”

• AppGone – receipt of a DST that omits a previous application

• DSTGone – receipt of a PMT that omits the DST Program Element (0x95), or lack of a PMT
with the same program_number after the minimum cycle time.

• Continue – receipt of a DST with the same application

• ChanChange – when the channel is changed due to a Directed Channel Change descriptor in
the transport.

An application shall be considered to be a new application if an instance of the application is
not currently in a state other than Unloaded and if one of the following holds: (1) the previous
DST did not signal the presence of the application and the current DST signals the application
with action_type set to 0x01 (bootstrap data), or (2) the previous DST signaled the presence of the
application with action_type set to 0x00 (runtime data) and the current DST signals the application
with action_type set to 0x01 (bootstrap data).

The following events are from the application environment:

• LoadComplete – all minimally required resources (as defined by the application
environment) have been loaded.

• Terminate - resources need to be freed by the application.

• Load – loads an application

4
 Section 11 provides a recommendation, but it cannot be counted on.

ATSC ATSC Data Application Reference Model 16 August 2002

 18

• ChanChange – when the channel is changed as a result of an action from the application
environment (including a viewer initiated channel change).

The above events provide the inputs to a basic application state model. The application
environment should respond to or assert all the above events in a manner consistent with the
following subsections. Also note that the ChanChange events have the same state transitions
whether it was initiated by the transport or by the application environment. Hence it appears only
once in the discussion that follows. Note also that a single DST may generate multiple events for
multiple applications.

The above events are derived in part by the receiver noting changes to the version_number field
in the DST and the PMT TS_program_map_section for the related virtual channel. However, it is the
responsibility of the application environment to fully monitor all ATSC A/65 and A/90 tables
and descriptors to react to other changes and events it deems relevant. A change in the DST table
version_number field may or may not indicate one of the above transport events.

6.3 States

For the purpose of the model, each application in the application environment shall be
considered to be in one of four abstract states:

• Unloaded – consuming no receiver resources whatsoever, and is for all intents unknown to
the application environment.

• Loading – when the application environment has begun the loading process, but is not able to
execute yet due to missing critical resources.

• Running – loaded all minimally required resources (as defined by the application
environment) and is executing.

• Suspended – previously running and has stopped, but is still consuming resources and its
state is preserved.

The Unloaded and Loading states are not visible to the application itself. And, all of these
states are abstract. A specific instance of an application environment may not actually implement
these states.

Note: Specific application environments may employ their own, possibly different state
models; these are considered to be independent of the state model prescribed here.

6.4 State Transitions

An application shall start and end in the Unloaded state.

An application shall enter the Running state upon completion (as defined by the application
environment and signaled by the LoadComplete event) of the loading process while in the
Loading state.

An application shall transition from Suspended to Unloaded when the environment decides
that its resources are needed by another application in the Loading or Running state, as signaled
by the Terminate event.

An application shall transition from Suspended to Running when a DST is received that
contains that application (Continue).

The application environment may control the state changes with the explicit event, Load.

Note that this model implicitly handles the application category semantics defined in 5.2.1 by
always suspending an application on channel change. Thus, no additional explicit signaling is
required to distinguish them. The complete state transitions are specified in Table 6.1.

ATSC ATSC Data Application Reference Model 16 August 2002

 19

Table 6.1 State Transition Summary

State Event New State

Unloaded New, Load Loading

Unloaded AppGone, DSTGone, Continue, ChanChange, LoadComplete, Terminate Unloaded

Loading Continue Loading

Loading AppGone, DSTGone, ChanChange, Terminate Unloaded

Loading LoadComplete Running

Running Continue, LoadComplete Running

Running Terminate Unloaded

Running AppGone, DSTGone, ChanChange Suspended

Suspended Terminate Unloaded

Suspended AppGone, DSTGone, ChanChange, LoadComplete Suspended

Suspended Continue Running

6.5 State Transition Diagram

A state transition diagram is given in Figure 6.1.

Unloaded Loading

Suspended
Running

New

Load

LoadComplete

AppGone

DSTGone

ChanChange

Terminate

Continue

Terminate

AppGone

DSTGone

ChanChange

Terminate

Figure 6.1 State transition diagram.

7. IDENTIFICATION AND NAMING

It is necessary to identify, or name, the following items in the ATSC transport:

• Applications

• Resources

• Virtual Channels

Applications have a one-to-one relationship to specific transport tables and descriptors in the
broadcast as defined in [A65] and [A90].

ATSC ATSC Data Application Reference Model 16 August 2002

 20

Application resources are identified in part by a Tap in the application loop of the Data
Service Table (DST). However, a Tap can point to more than one resource.

Identification for applications, resources, and Virtual Channels shall be accomplished with
Uniform Resource Identifiers (URI's). There are two forms of broadcast-related URI schemes.
These forms are “tv:” [URI-TV] and “lid:” [URI-LID].

Any given item may have more than one URI associated with it. For example, a Virtual
Channel may have a URI designating the broadcast station as well as its affiliated network.

Conversely, any given URI may be associated with more than one item. For example, a URI
referencing a resource may be associated with equivalent (but not necessarily identical)
resources, possibly of different content types.

URIs operate on a tagged basis. That is, the items identified by URIs are explicitly bound in
some manner with the URI string values in the transport. When the receiver attempts to resolve a
URI to the item that it references, it conceptually searches through its memory and/or the
broadcast until it finds one or more matches. It then returns a (possibly empty) list of matching
references.

When a URI is bound to more than one item, the different resources are considered identical
from the application’s viewpoint and can be used interchangeably. This does not mean they are
identical, only that from the author's point of view, it does not matter which is chosen. In
complex transports, this may result in multiple matches.

URIs identify an individual item. If a given item has multiple parts, the individual parts may
be identified by adding fragment and/or query suffixes to the URI reference. Per [URI], the
interpretation of fragments and queries is content type dependent.

7.1 The tv: Scheme

The tv: URI scheme shall be used to refer to a Virtual Channel, and is defined in RFC 2838
[URI-TV]. Note that the use of just "tv:" refers to the currently streaming video/audio content
being displayed to the viewer. If the receiver has more than one tuner and decoder, then the
selection is the "main" content as determined by the receiver. So, use of the full form,
“tv:<service_name>” may cause the receiver to tune to that Virtual Channel, or it may not in the
case of multiple tuners and the “main” content is determined by the receiver to not be on that
Virtual Channel. This is also affected by the Broadcast Policy Descriptor described in this
document, as well as the A/65 DCC mechanisms that take precedence over data service
application execution.

Note that the resolution algorithm for tv:<service_name> requires that the channels be
labeled accordingly (see Service Name Descriptor below).

Query syntax is permitted and is content type dependent as more fully defined below.

7.2 The lid: Scheme

A “lid” URI is defined by [URI-LID] and has the form:

lid://name/path?query#fragment

where name is a registered domain name and path is a unique path name assigned by the content
author that owns the domain name. The domain name is used to guarantee uniqueness between
organizations and the path provides a mechanism for managing uniqueness within an
organization. Per [URI-LID], use of the uuid form of name is deprecated. However, designers

ATSC ATSC Data Application Reference Model 16 August 2002

 21

should be aware that it is used in some existing applications and may appear in the received
bitstream.

These URIs are assigned by the organization responsible for creating the resource that they
designate. For example, given an organization that creates an application, then the URI that
designates that application would often use a domain name that is associated with that
organization.

A receiver needs to be able to receive URIs and their associated resources from an arbitrary
combination of Virtual Channels or transport streams without worrying about name space
collisions. Furthermore, a receiver needs to be able to record (either permanently or in a cache)
an arbitrary subset of a broadcast and “replay” it at any time, again without having to worry
about name space collisions.

Lid: may refer to the following broadcast resources:

• Module

• File

• Stream

• (stream of) IP packets

Resources are identified (labeled) in the broadcast, and references are made to those
resources by the application environment. The permissible syntax is slightly different for each.
Fragment or query syntax shall not be used in the transport labeling of the resources. Regarding
references by the application environment:

• Lid: may have a fragment component. The fragment is interpreted in a content type
dependent manner and is outside the scope of this Standard.

• Lid: may have a query component. The query is interpreted in a content type dependent
manner as defined below.

7.3 Content Types and Their URI Dependent Behavior

When used to refer to a Virtual Channel, “tv:<service_name>” shall refer only to the content
type, "video/mpeg". The lid: URI may refer to a module or file with the content type,
“video/mpeg”.

The “video/mpeg” content type supports the query syntax, extending [URI-LID], and [URI-
TV]. The query string is of the form:

scheme[?component[;component]*]

scheme = any valid URI scheme that resolves to a content type of “video/mpeg”

component = ["video"|"audio"|"data"|"dtvcc"[=component_name]]

Note that per [URI], Section 3.4, reserved characters must be escaped.

The query component, “video”, shall refer to the content’s video elementary stream. Note
that this video encoding content is constrained by Table 3 of [A53] for tv: scheme references.

The query component, “audio” refers to the channel's “current” audio Program Element. The
“current” video or audio is intended to be the one currently playing, or otherwise determined by
the receiver to be the “main” one. In the case of multiple audio tracks, this is the audio that is
currently selected when using “tv:”, the default audio for the receiver in the case of
“tv:<service_name>”, and the default language audio in the case of lid:.

The query component, “data”, refers to the aggregate of Program Elements that comprise the
ATSC Data Service, including the DST and related tables of the service description framework.

ATSC ATSC Data Application Reference Model 16 August 2002

 22

The query component, “dtvcc”, refers to the closed captioning stream as defined in Section
8.4.1.

Each query component may contain the optional assignment of a string value defined as
“component_name” which may be encoded as Unicode. This is used to refer to a specific
Program Element as labeled by the component name descriptor defined in [A65], section 6.7.8.
The program element specified is the program element of the specified type for which any of the
strings in the “number_strings” loop of the multiple_string_structure for the component_name of
the program element matches the string value in the query component.

The above queries may be combined as provided in the BNF above. For example,

tv:xbc.com?video;audio=crowd%20noise;data,dtvcc.

The above would resolve to a stream with all the basic Virtual Channel components, but
specifically including the audio track containing the “crowd noise” as labeled by the component
name descriptor.

Table 7.1 Video/Audio Query Syntax and Their Resulting Content Types.

Query Syntax Content Type Description

<none> “video/mpeg” The multiplex of the Virtual Channel Program Elements selecting
video, audio and/or data in a receiver dependent manner.

“video” “video/mpv” The video component of the channel only.

“audio” “audio/ac3” The “current” audio component of the Virtual Channel only.

“data” ”video/mpeg” The multiplex of the Virtual Channel Program Elements selecting
only data in a receiver dependent manner.

“dtvcc” “application/ octet-stream” The closed captioning stream as defined in Section 8.4.1

8. DATA ENCAPSULATION

Each of the data payloads for use in accordance with the data models defined in Section 5.1 shall
be delivered using the encapsulations described in this section.

8.1 IP Packets

IP Packets shall be encapsulated using the “Asynchronous IP Datagrams in Addressable
Sections” coded as encapsulation type 0x04 per [A90]. For more background, see the
recommendations of [A91]. When the datagrams carry IP Multicast packets, they shall adhere to
[IPM].

8.2 Modules

Modules shall be encapsulated using the “Asynchronous non-flow controlled scenario of the
DSM-CC Download protocol encapsulated in DSM-CC sections” (protocol_encapsulation 0x01). In
the case of carouseled modules, they are encapsulated using the “Asynchronous carousel
scenario of the DSM-CC download protocol encapsulated in DSM-CC sections”
(protocol_encapsulation 0x0D). Implementations shall adhere to [A90], and should follow the
recommendations of [A91].

Groups of modules may be supported through the use of the DSI as more fully defined in
[A90] and [A91]. This mechanism may be used to organize and convey large numbers of
modules.

ATSC ATSC Data Application Reference Model 16 August 2002

 23

8.3 Files

Files shall be encapsulated according to [TSFS].

8.4 Streams

Streams shall be encapsulated using either of the following asynchronous stream encapsulations:

• Asynchronous non-flow controlled scenario of the DSM-CC Download protocol
encapsulated in DSM-CC sections (encapsulation_type 0x01)

• Proprietary Data Piping (encapsulation_type 0x0B)

In either case, the receiver shall adhere to [A90].

Also, for the DSM-CC encapsulation, the moduleSize shall be set to zero in the DII. Since
there is only a single module in the download scenario is this streaming case, the DII may be
emitted infrequently. As recommended in [A91], only a single level download scenario should
be used, so the DSI shall not be emitted. The recommendations of [A91] should be followed.

8.4.1 MPEG-2 Video Picture UserData (DTVCC)

Other types of streams that may be present in an ATSC broadcast stream are the closed
captioning streams and other data streams that may appear in the user_data area in the video frame
headers, as specified by [A/53], Annex A, Section 5.2.2, see also [ATVCC] and [DTVCC].
These streams are outside the scope of this Standard.

8.5 Triggers

Triggers shall be encapsulated according to [TRIGGERS]. Both synchronized and asynchronous
triggers may be used; furthermore, they may be used to refer to targets in the transport or
delivery of event payloads. In the case of asynchronous event payloads, further constraints apply
as defined in the following subsection.

8.5.1 Asynchronous Events

For asynchronous triggers carrying event payloads, and not referring to targets in the transport
stream, the trigger event structure fields shall be constrained as follows:

event_type – shall be set to 0x00 (Trigger Event).

target_type and target_length – shall both be set to 0x00.

user_data_length – shall be set to the length of the event payload.

When the triggers for more than one application are not multiplexed into the same Program
Element, then the app_id_byte_length shall be set to zero. When the data server has chosen to
multiplex triggers from more than one application into a single Program Element, then the
app_id_byte_length shall be set to 0x0012 (18

10
); app_id_description shall be set to 0x0000; and

app_id_bytes shall be set to the binary UUID of the application to which the trigger belongs.

9. DESCRIPTORS AND STRUCTURES

In order to provide adequate announcement and signaling, several new descriptors and structures
are needed. These are defined in this section.

• Compatibility Wrapper

• Identifier

• Service Name

ATSC ATSC Data Application Reference Model 16 August 2002

 24

• Broadcaster Policy

9.1 Compatibility Wrapper Descriptor

The DSM-CC Compatibility Descriptor is not an MPEG-2 System descriptor due to the 16-bit
length field, and thus it cannot go into the standard descriptor loops of many A/65 and A/90
tables, such as the EIT and DET. Therefore, some means is needed to carry the compatibility
data in an MPEG compliant manner in the appropriate descriptor loops of these tables. To meet
this need, a Compatibility Wrapper Descriptor is defined and used to carry the Compatibility
Descriptor.

The DST of A/90 provides a DSM-CC Compatibility Descriptor for each application in the
DST, since the different applications may be targeted to different classes of receivers and may
have different compatibility requirements. It is not allowed to put more than one descriptor of the
same descriptor type in an event descriptor loop of an EIT or DET, so the Compatibility Wrapper
descriptor is designed to encapsulate multiple DSM-CC Compatibility Descriptors if need be.
The syntax for the Compatibility Wrapper Descriptor shall be as shown in Table 9.1.

Table 9.1 Compatibility Wrapper Descriptor

Syntax No. of Bits Mnemonic

compatibility_wrapper_descriptor() {

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 for (j=0; j<N; j++) {

 compatibility_descriptor_byte 8 bslbf

 }

}

descriptor_tag – This 8 bit field shall be set to 0xAE.

descriptor_length – This 8-bit field shall specify the number of bytes in the compatibility_-

descriptor_byte field.

compatibility_descriptor_byte – The bytes shall be the in-order bytes from the DSM-CC
compatibility_descriptor() as defined in [A90].

Note that since the maximum value of the descriptor_length field is 255, that the sum of the
Compatibility Descriptors being carried in the compatibility_descriptor_byte field is limited.

9.2 DSM-CC Compatibility Descriptor

The Compatibility Descriptor as defined in [A90], Section 6 and is reproduced in Table E-1 for
convenience. Note that the fields in this descriptor are further constrained as noted in the field
descriptions that follow.

compatibilityDescriptorLength – This 16-bit field shall specify the total length of the descriptors that
follow including the descriptorCount field but not including the compatibilityDescriptorLength field
itself. This value is constrained to 253 or less.

descriptorCount – This 16-bit field shall specify the number of descriptors which follow this field.

The first descriptor loop values shall be set as specified below.

ATSC ATSC Data Application Reference Model 16 August 2002

 25

descriptorType – This 8-bit field shall be set to 0x02 to indicate that this is describing system
software per [DSMCC].

descriptorLength – This 8-bit field shall specify the total length of the descriptor, not including the
descriptorType and descriptorLength fields.

specifierType – This 8-bit field shall be set to 0x01 to indicate that the specifierData field is an OUI
per [DSMCC].

specifierData – This 24-bit field shall be set to the OUI of ATSC, “0x0009790”. This field, along
with the specifierType and descriptorType, uniquely scope the model and version fields that follow.

model – This 16-bit field as defined in DSM-CC. When the OUI is set to the value for ATSC,
then this field shall indicate the specific application environment defined by ATSC. All
values other than those listed in the ATSC Registry are ATSC Reserved. See the ATSC
Registry for assignments.

version – This 16-bit field is set to a value that is dependent on the model field. The standard
which implements a specific application environment shall define the semantics of this field.
For example, it could be used to define profiles and levels of the environment that this
application is compatible with.

subDescriptorCount – This 8-bit field shall represent the number of private subDescriptors for the
descriptor. No subDescriptors are defined in this Standard and users shall not define any
subDescriptors when the OUI is set to the value for “ATSC” as defined here. They may only
be defined for other OUI values.

The subDescriptor() structure contains additional private descriptors whose semantics are
specified by the organization identified by the specifier fields. The subDescriptor structure and
syntax is defined in [DSMCC].

9.3 Broadcaster Policy Descriptor

The broadcaster policy descriptor is used to control application environment behavior and is
defined in Table 9.2. This descriptor applies to all applications signaled and broadcast in a data
service, but does not necessarily have any affect on native applications.

Table 9.2 Broadcaster Policy Descriptor

Syntax No. of Bits Format

broadcaster_policy_descriptor () {

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 for (i=0;i<descriptor_length;i++) {

 policy_byte 8 bslbf

 }

}

descriptor_tag – This 8 bit field is set to 0xAF.

descriptor_length – This 8 bit field is set to the length of this descriptor – the number of bytes in
the policy_byte field.

ATSC ATSC Data Application Reference Model 16 August 2002

 26

policy_byte – These bytes shall be constructed as a bit vector with one bit per policy. The bit-
vector shall be formed by concatenating policy _byte [i] bits. The value of each bit shall be ‘1’ if
the policy is asserted as “denied”. The policies and the bit positions defined for each are
shown in Table 9.3. The most significant bit of the first byte is bit zero. Unused bits in the
last byte of policy_byte shall be set to zero. Trailing bits (higher numbers in Table 9.3) may be
omitted by using a descriptor_length of one (or any less than the total number of bytes needed to
carry the bits defined in Table 9.3). When this is done, the unspecified bits are defined to
have the value of zero (0).

Table 9.3 Policy and Bitfield Assignment

Policy Bit Position

All 0

Change of RF Channel 1

Change of Virtual Channel 2

Executing Content 3

Access to External Interfaces 4

Ability to Overlay A/53 Video 5

Ability to Scale A/53 Video 6

Ability to Use Inactive Regions of Display 7

Mix or Augment Audio 8

Replace Audio 9

Write Viewer Preference Data 10

Read Viewer Preference Data 11

ATSC Reserved 12-2023

The policies in Table 9.3 are defined further below for when denial is asserted (bit set to one)
for all the applications in the Data Service. The currently selected Virtual Channels is the set
of Virtual Channels that a receiver is processing and decoding at any given moment in time.
While normally, this may be only one, it is only limited by the capabilities of the receivers, and
may consist of multiple Virtual Channels, including any mix of video/audio/data or data-only
services.

All – As if each bit of every policy were set individually.

Change of RF Channel – The application shall not be permitted to change the currently selected
RF channel to another RF channel.

Change of Virtual Channel – The application shall not be permitted to change the set of
currently selected Virtual Channels.

Executing Content – If the signaled application contains executable content (such as Java® or
ECMAScript) execution shall not be allowed.

Access to External Interfaces – No transmission shall be made via an external communication
port. Examples include Modems, DSL, ISDN, USB, IEEE1394.

Ability to Overlay A/53 Video – The application shall neither alter nor obscure the video of any
currently selected Virtual Channel within their displayed A/53 Table 3 format, independent
of the source of the video. See [VIDEO] for more information.

ATSC ATSC Data Application Reference Model 16 August 2002

 27

Ability to Scale A/53 Video – The receiver native processing determines the size of a display
based on factors outside the scope of this Standard. If this permission is denied, then the
application shall not alter the size of the video being displayed independent of the source of
the video. See [VIDEO] for more information.

Ability to Use Inactive Regions of Display – The application shall neither alter nor obscure the
video of the currently selected Virtual Channels outside their displayed A/53 “Table 3”
format, independent of the source of the video. For example: If a given video has nominally
dark areas either to the sides of the A/53 video (4:3 picture on a 16:9 glass) or on the top and
bottom of the A/53 video (16:9 picture on 4:3 glass) and this permission is denied then the
application shall not use either of those areas when they are present. See [VIDEO] for more
information.

Mix or Augment Audio – A/52 audio is not mixed with anything else, or altered in any way.

Replace Audio – A/52 audio is not muted or replaced.

Write Viewer Preference Data – The application is prohibited from altering the viewer
preference or any viewer-related data.

Read Viewer Preference Data – The application is prohibited from reading the viewer
preference data.

9.4 Service Name Descriptor

The Service Name Descriptor shall be used to label Virtual Channels for the purpose of resolving
references to the tv: URI scheme [URI-TV] “broadcaster” (i.e., service name) field. The syntax
shall be as defined in Table 9.4.

Table 9.4 Service Name Descriptor

Syntax No. of Bits Format

service_name_descriptor () {

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 for (i=0;i<descriptor_length;i++) {

 service_name_byte 8 bslbf

 }

}

descriptor_tag – This 8 bit field shall be set to 0xB0.

descriptor_length – This 8 bit field shall be set to the length of this descriptor – the number of
bytes in the service_name_byte field.

service_name_byte – These bytes shall conform to the syntax as required by [URI-TV] for the
broadcast field of the URI scheme. Multiple broadcast fields may be included by separating
them with the “;” ASCII character. For example, “xbc.com;kxbc.com”.

9.5 URI Descriptor

The URI Descriptor is used to label data elements in a transport independent manner for the
purpose of identifying them and resolving references to them. The syntax is defined in Table 9.5.

ATSC ATSC Data Application Reference Model 16 August 2002

 28

Table 9.5 URI Descriptor

Syntax No. of Bits Format

URI_descriptor () {

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 for (i=0;i<descriptor_length;i++) {

 URI_byte 8 bslbf

 }

}

descriptor_tag – This 8 bit field shall be set to 0xB1.

descriptor_length – This 8 bit field shall be set to the length of this descriptor – the number of
URI_byte’s.

URI_byte – Consecutive bytes of the URI string shall be placed here that conform to [URI] syntax.

A URI encapsulated in a URI Descriptor may be either an absolute or relative URI. If it is
relative, then it shall be combined with additional relative or absolute URIs at a higher descriptor
scoping level (as defined in A/90) in order to form an absolutized URI.

9.6 Summary of Descriptor Locations (Informative)

The semantics of the descriptors in this section are defined in the following sections of this
document on Announcement and Signaling. However, an informative summary of the descriptor
locations is provided in Table 9-6. Note that “M” indicates the structure is mandatory, and “O”
indicates it is optional. A blank column indicates that the use the descriptor is undefined in that
location.

Table 9.6 Descriptor Location Summary

Structure DST DST
App

DST
Tap

DSI DII VCT EIT DET

DSM-CC Compatibility Descriptor M

Compatibility Wrapper M M

URI O O O O

Content Type O O O

Service Name O O O

Acquisition O O

Broadcaster Policy O O O O

10. ANNOUNCEMENT

Announcement is the advance notification of data services using the facilities of [A65] and
[A90], both of which shall be adhered to. Data Services for applications using this Standard shall
be announced using either the Event Information Table (EIT), the Data Event Table (DET), or
both according to [A90] and [A91]. Both tables are required whenever the Data Service is
present that carries applications defined by this Standard and the announcement information is
different than for the video/audio service. Any table, descriptor or field not specifically
mentioned here shall be used in accordance with the appropriate Standard.

ATSC ATSC Data Application Reference Model 16 August 2002

 29

10.1 Application Announcement

The Compatibility Wrapper Descriptor shall be included in all EIT-k’s or DET-k's (as
appropriate) in the event descriptor loop. The application environment (model) and version shall
be conveyed as specified in the DSM-CC compatibility descriptor as constrained in Section 9.2
(syntax provided in Table E.1).

All content in a virtual channel within the time period specified for an event is constrained by
[A/65] to be compatible with the ratings in the Content Advisory Descriptor associated with the
event in the EIT according to [A65]. This includes data content as well as audio/video content. In
the case of a data-only channel, A/90 does not specifically address this issue, but a Content
Advisory Descriptor may be associated with each data event in the DET instances for the data-
only virtual channel, and all data content for all applications during the time period covered by
the data event should be compatible with such content advisories.

The application language for each program element may be conveyed in the Service Location
Descriptor (SLD) in the VCT according to [A65].

When specified separately from the video/audio service, the application title, availability
time and duration shall be conveyed in the title_text(), start_time, and length_in_seconds fields of the
DET respectively as defined in [A90].

If multiple applications have different announcement parameters, then separate Virtual
Channels shall be utilized aggregating the applications with like announcement parameters into
unique Data Services.

11. SIGNALING

Signaling is the full description of a Data Service and its applications and resources currently
present on the transport as defined in [A53], [A65], and [A90], all of which shall be adhered to.
Virtual Channels, applications and resources shall be further signaled according to this section.
Any table, descriptor or field not specifically constrained here shall be used in accordance with
the appropriate Standard.

The minimum cycle time of the DST should be no greater than 500 ms. Service providers
that vary from this expected value should only do so when their assessment shows this is not
needed for their service. Note that this value directly impacts the time the receiver needs to
discover the details of a data service after a channel change.

11.1 Virtual Channel Signaling

Each Virtual Channel is implicitly signaled when it is the “current channel” as defined by the tv:
usage. In order to support the resolution of tv:<service_name>, Virtual Channels may each be
labeled with one or more service_name’s. When done, this labeling shall use the Service Name
Descriptor, placed in the inner descriptor loop associated with a specific Virtual Channel.

This descriptor may also be placed in the EIT or DET where the Virtual Channel changes its
service over time.

11.2 Application Signaling

Each application shall be signaled as described in this section.

The DST compatibility_descriptor() field shall be constrained as defined in Section 9.2 of this
Standard (syntax provided in Table E.1). This shall convey the application environment and
version and shall override any announcement Compatibility Descriptor found in the EIT or DET.

The DST app_id_description field shall be set to 0x0000 to indicate a UUID namespace.

ATSC ATSC Data Application Reference Model 16 August 2002

 30

The DST app_id_byte field shall be set to a UUID as defined in [UUID], and shall be globally
unique for all transports, including non-ATSC transports. The app_id_byte_length shall be set to
0x0012 (18

10
).

Each application in the DST shall signal at least one Tap.

One or more Taps of each application may have their action_type field set to 0x01 (Bootstrap
data) to signal that this Tap should be loaded and executed by the application environment. All
other Taps of an application shall set their action_type field to 0x00 (Run-time data). If the
action_type field is set to 0x01, then that Tap is assumed to unambiguously signal a root resource.
Note that this may result in a minimum of 2 or more Taps being defined per application. For
example, one Tap may be used to signal a data carousel containing all the resources for the
application, with action_type field set to 0x00, and another Tap may be used to signal a specific
module within the carousel that contains the root resource, with action_type field set to 0x01.

11.3 Resource Signaling

In general, a single Tap in the Data Service Table can reference an individual resource, such as a
file, or it may reference a collection of data resources, such as an entire file system.

Each resource referenced by a data service application's Taps, either directly or indirectly,
shall be construed as belonging to (being in the scope of) the referencing application. All
resources that belong to an application which are delivered through the transport stream shall be
referenced by a Tap, either directly or indirectly.

Note: A Tap which references a collection of data resources, such as a transport stream file
system, makes indirect reference to zero or more resources in accordance with what constitutes
the collection of referenced resources.

Note: Multiple data service applications in a single or multiple data services may make
reference to a single resource or collection of resources. In such a case, ownership of a resource
is shared among all referencing applications.

The Tap protocol_encapsulation field should be constrained from [A90], Table 12.5 to be one of
those listed in Table 11.1, plus what is needed for [TSFS].

Table 11.1 Protocol Encapsulations

Value Encapsulated Protocol

0x01 Asynchronous non-flow controlled scenario of the DSM-CC Download protocol
encapsulated in DSM-CC sections

0x02 Non-streaming Synchronized Download protocol encapsulated in DSM-CC sections

0x04 Asynchronous IP datagrams in Addressable Sections

0x0B Proprietary Data Piping

0x0D Asynchronous carousel protocol of the DSM-CC Download protocol

The DST action_type field shall be set according to the section above on application signaling.

The DST Tap selector() field values shall be constrained to those values specified in Table
12.9 of [A90] for those encapsulations listed in Table 11.1, and, in addition, those values
specified by [TSFS].

Unless otherwise identified as a [TSFS] component, each Tap in the application may include
in its tap_info loop one or more URI Descriptors using a URI as defined in [URI]. Multiple URIs
may label each Tap. The use of relative URIs is permitted, in which case an absolutized URI
shall be determined according to rules specified in Section 9.5. In all cases, each application

ATSC ATSC Data Application Reference Model 16 August 2002

 31

resource shall be labeled with at least one absolutizable URI, whether directly via the use of a
URI Descriptor in a Tap, indirectly via the use of multiple scoped relative URIs in a data
carousel (i.e., by use of URI Descriptors in DII, DSI, and DST Application), or indirectly via
TSFS component labeling.

Each Tap in the application that does not reference a [TSFS] component may include in its
tap_info loop a Content Type Descriptor as defined in [TRIGGER] (syntax provided in Table E.2).
The value of the contentTypeByte string could be, for example, “image/jpeg” to designate that the
module this Tap points to contains a JPEG file.

Each Tap that has its action_type set to 0x01 shall contain a Content Type Descriptor.

Each Tap that points to a module or group may contain a Content Type Descriptor to indicate
the content type of the resource or resources in the module or group, and may contain an
Acquisition Descriptor to indicate that this resource or resources should be acquired by the
receiver as more fully defined in [TRIGGER] (syntax provided in Table E.3). These descriptors
may also be placed in the DSI or DII as appropriate when referring to modules or groups.

11.4 Broadcaster Policy

When a broadcaster desires to assert a constraint policy for one or more Virtual Channels, then
the Broadcaster Policy Descriptor may be in the number_of_channels descriptor loop of the
TVCT/CVCT (VCT)—constraining all contents of each Virtual Channel for which policies are
being asserted. This only affects Virtual Channels that actually contain a Data Service, and
produces no effect otherwise.

When a Data Service provider desires to assert constraint policies for its Data Service (which
will then be carried on a Virtual Channel), then the Broadcaster Policy Descriptor may be in the
outer descriptor loop of the DST—constraining all content of that Data Service.

This descriptor applies to all the applications in the Data Service of the Virtual Channel for
which the policy is asserted. In the case where the currently selected Virtual Channels is more
than one, and there is more than one video/audio service being processed, then this policy applies
to the audio and video area under the control of the Virtual Channel in which the policy is
present.

To construct the final policy list, the receiver is expected to perform the union (bitwise
logical OR) of the policies in the descriptors in the VCT and the DST for each Virtual Channel.
The default condition for each policy is zero when the policy is unspecified, or the descriptor is
not present.

In the event of semantic conflict with the A/65 Directed Channel Change (DCC) descriptor,
the action of the DCC descriptor shall take precedence.

Note that the policy applies equally to all the applications in a Data Service and does not
provide any control of the individual application except in the case where there is only one
application present in the Data Service.

11.5 External Resource Signaling (Informative)

Applications that reference resources external to the Data Service in which they are carried use a
Network Resource Table (NRT) as required by [A90].

12. APPLICATION BUFFER MODELS

This section describes the buffer models needed for each data model at the application level:

• The buffer model for IP packets shall be as specified in [IPM].

ATSC ATSC Data Application Reference Model 16 August 2002

 32

• The buffer model for triggers shall be as specified in [TRIGGERS].

• The buffer model for files shall be as specified in [TSFS].

12.1 DTVCC Buffer Model

DTVCC data is consecutive blocks of bytes as defined in 8.4.1. The raw userdata is extracted
from the video decoder buffer and stripped to the constrained block. The combined cc_data_1 and
cc_data_2 bytes can arrive at the maximum rate of 960 character per second. Added to this data is
the MPEG-2 video UserData header information as specified in 8.4.1 to frame the block. This
header data is constrained to the picture header, so this can be as much as an additional 12 + 31 =
43 bytes per picture, but is picture rate dependent. The input maximum data rate as a function of
picture rate is as follows:

input_data_rate = 12 + (picture_rate * 1.5 * (960/picture_rate))

The maximum block structure size is further constrained by the cc_count field to be:

12 + (31 * 3) = 105 bytes

DTVCC blocks enter the application buffer a block at a time at no more than the
input_data_rate as defined above. The DTVCC application buffer shall provide for the buffering of
two complete blocks, or 2 * 105 = 210 bytes. In this model, DTVCC blocks shall be extracted
instantaneously a block at a time at a minimum of the video picture rate.

12.2 Module Buffer Model

The ATSC A/90 Data Broadcast Specification specifies in its Service Description Framework
two procotol_encapsulation values based on the DSM-CC User-to-Network Download protocol.
These values are 0x01 and 0x0D. The pupose of this section is to define an Application Buffer
Model for ATSC A/90 data conveyed by means of these two protocol encapsulations that are
used for the File data model. Refer to Figure 12.1.

The Application Buffer Model comes after the T-STD Buffer Model specified in ATSC A/90
for the delivery of Download protocol data. The primary, conventional de-multiplexing stage is
the MPEG-2 Transport Stream de-multiplexer based on the Transport Stream packet’s PID
value. The de-multiplexer forwards the packets to their respective data Program Element T-STD
buffers (a Transport Buffer TBn and a Smoothing Buffer SBn). In the case of the DSM-CC
Download Protocol, the payloads of the Transport Stream packets are all portions of DSM-CC
sections conveying Download Control messages or Download Data messages. Control messages
are conveyed in sections of table_id value 0x3B while Download Data messages are conveyed in
sections of table_id value 0x3C. For DSM-CC sections with table_id 0x3C, the section_number field
identifies the least significant byte of the blockNumber of the data module conveyed in the section.
The payloads of the DSM-CC section sharing the same table_id, table_id_extension and
version_number field values are re-assembled in the order specified in the block_number field in the
receiver to reconstruct the data modules.

12.2.1 Data Module Buffers

The purpose of the Application Buffer Model for the DSM-CC U-N Download Protocol is two
fold:

• To enable re-assembly of the data modules in a data receiver

• To enable re-assembly of the data modules directory information

ATSC ATSC Data Application Reference Model 16 August 2002

 33

As a result, the buffer model is based on a secondary channel de-multiplexer based on the
value of the table_id field in the DSM-CC sections. DSM-CC sections of table_id value 0x3C
convey a DownloadDataBlock message (Data Message). DSM-CC sections of table_id value
0x3B convey a DownloadInfoIndication message, a DownloadServerInitiate message or a
DownloadCancel Message (Control messages).

12.2.2 Application Buffer Model

Data Program Element n is of stream_type 0x0B. Bytes are removed from buffer SBn at the rate
sb_leak_n. The value of sb_leak_n is specified by the sb_leak value associated with the data service
profile or it is specified by the value of the sb_leak_rate field in a smoothing_buffer_descriptor
associated with data Program Element n. The size of SBn, SBSn, is implicitly specified by the
data_service level or it is listed explicitly in the ISO/IEC 13818-1 smoothing_buffer_descriptor.

The Data/Control Message de-multiplexer separates the DSM-CC section with table_id value
0x3B from DSM-CC sections with table_id value 0x3C. DSM-CC sections having table_id value
0x3B are forwarded to a Control Message de-multiplexer. DSM-CC sections having table_id value
0x3C are forwarded to a Data Module de-multiplexer.

Buffer CTLMSGn is used to hold the payload of the Control Messages of data Program
Element n. When the 15 most significant bits of table_id_extension are all set ‘0’, the control
message is a top level control message. This message is either a DownloadCancel message, or a
DownloadServerInitiate message in the case of a two-layer control carousel scenario and it is a
DownloadInfoIndication message in the case of a one-layer control carousel scenario. When at
least one of the 15 most significant bits of the table_id_extension is set to ‘1’, the control message is
a DownloadInfoIndication message. Only bytes from a Control Message payload of data
Program Element n enter buffer CTLMSKn; other bytes are discarded and may be used to
control the system or verify the integrity of the data. This means in particular that the DSM-CC
section header bytes, the CRC32 or checksum bytes and the dsmccMessageHeader bytes of a
Control Message do not enter buffer CTLMSGn. Bytes enter buffer CTLMSGn at the rate
sb_leak_n. The value of sb_leak_n is specified by the sb_leak value associated with the data service
profile or it is specified by the value of the sb_leak_rate field in a smoothing_buffer_descriptor
associated with data Program Element n. The size of buffer CTLMSGn is CTLMSGSn. The
value of CTLMSGSn shall be equal to 4072 bytes multiplied by 2 in the case of a one-layer
control Download protocol (The factor 2 accounts for a DownloadIndication message and the
DownloadCancel message). The value of CTLMSGSn shall be equal to 4072 bytes multiplied by
the total number of DownloadInfoIndication messages plus two in the case of a two-layer control
Download protocol (The additional factor 2 accounts for the DownloadServerInitiate message
and the DownloadCancel message). Download protocol. Buffer CTLMSGn shall not overflow.

Buffer DATMODn is used to re-assemble the payloads of the DownloadDataBlock messages
carrying sections of a data module. The re-assembly is done in order as specified by the value of
the blockNumber field in the DownloadDataBlock messages. Only bytes of the data modules in
Program Element n enter buffer DATMODn. The other bytes are discarded and may be used to
control the system or verify the integrity of the data. This means that the DSM-CC section
header bytes, the CRC32 or checksum bytes, the dsmccDownloadDataHeader bytes and the first 6
bytes of the DownloadDataBlock messages do not enter buffer DATMODn. Bytes enter buffer
DATMODn at the rate sb_leak_n. The value of sb_leak_n is specified by the sb_leak value
associated with the data service profile or it is specified by the value of the sb_leak_rate field in a
smoothing_descriptor associated with data Program Element n. The size of buffer DATMODn is
DATMODSn. The value of DATMODSn is equal to the sum of the two largest module sizes
listed in any of the DownloadInfoIndication messages of the Download scenario (the value of

ATSC ATSC Data Application Reference Model 16 August 2002

 34

DATMODSn is such that it allows the largest data module to be fetched by the application while
the second largest data module is being re-assembled). The value of DATMODSn is equal to the
size of the data module if the Download scenario is made of a single data module.

The content of buffer DATMODn is decoded by decoder Dn.

Figure 12.1 shows the DSM-CC U-N Download Application Buffer Model. The following
notations in Figure 12.1 are defined in Table 12.1.

Table 12.1 Buffer Model Notations.

TB
n
 is the transport buffer.

SB
n
 is the smoothing buffer for data Program Element n

CTLMSG
n
 is the Control Message buffer for data Program Element n

DATMOD
n
 Is the Data Message buffer for data Program Element n

D
n
 is the data module decoder of data Program Element n

TBn SBn

Control

Message

Buffer

CTLMSGn

DSM-CC U-N DOWNLOAD PROTOCOL APPLICATION BUFFER MODEL

Defined in ATSC A/90

Data/Control

Message

De-multiplexer

Data

Message

Buffer

DATMODn

Dn

Figure 12.1 DSM-CC Module Buffer Model.

12.3 Stream Buffer Model

The buffer model for streams shall be as specified in [A90] for each of the two encapsulations
that map to “streams”:

• Data Piping

• Asynchronous Download

12.3.1 Data Piping

The data piping buffer shall be 2 x 188 = 376 bytes minimum. Bytes should be removed at:

(stream bitrate – (size of section and transport headers))/8 bytes/second

ATSC ATSC Data Application Reference Model 16 August 2002

 35

12.3.2 Asynchronous Download

The asynchronous download section buffer shall be 2 x 4096 = 8192 bytes minimum. Bytes
should be removed at:

(stream bitrate – (size of section and transport headers))/8 bytes/second

ATSC ATSC Data Application Reference Model, Annex A 16 August 2002

 36

Annex A:
Use of the Signaling and Announcement Facilities (Informative)

Figure A.1 below illustrates the usage of fields and descriptors in the Data Service Table in order
to represent the properties of applications and resources as described in this Standard. For the
special case where the only resource used by the application is a one-level data carousel, Figure
A-1 shows the linkages.

DST
Applications loop

CompatibilityDescriptor()
SubDescriptor loop

AppID()
Tap loop

Protocol_encapsulation
SystemStateFlag
ResourceLocation
Tap()
TapInfo loop

String A ppData
AppInfo loop

ServiceInfo loop
ServicePrivateData

AppID

UUID

Tap
Ushort Tapid
Ushort use

Selector()

Identifier
Descriptor
String URI

ContentType

Descriptor
String ContentType

Broadcaster

Policy
Descriptor

Policy flags

DII
Module loop

Ushort ModuleID
Ushort moduleVersion
Descriptor loop

Acquisition
Descriptor

Ulong maxage

PMT

Ushort associationTag (PID)

VCT
Source_id

Service Name Descriptor

Descriptor loop

EIT/DET

Compatibility Wrapper

Compatibility Descriptor

Descriptor loop
Source_id

Ushort associationTag

Figure A.1 SDF linkage.

ATSC ATSC Data Application Reference Model, Annex B 16 August 2002

 37

Annex B:
Receiver Tuning Operations (Informative)

The announcement of data events in a DET or EIT serves mainly to attract the attention of a
viewer when browsing the interactive program guide. However, the event start time serves to
indicate when receivers should prepare to receive SDF information. SDF is a collection of two
tables, the Data Service Table (DST) and the Network Resources Table (NRT). The first one will
be used for early broadcast applications while the second one will become important once return
channel technology is enabled.

When a viewer tunes to a Virtual Channel, a receiver should first attempt to find if data
components exist in the channel. A receiver should examine the PMT to see if an SDF stream is
available (recognizable by a stream_type value of 0x95). If this is the case, then the receiver
should extract the DST and its list of applications. If one of the applications is a kind that it can
decode (recognizable by an app_id_description value of 0x0000), then the receiver should determine
(using the DST) the PID values of packets carrying application resources.

Several PID values may need to be tracked concurrently. One of them will signal the boot
resources (recognizable by an action_type value of 0x01 in the DST) and a receiver should wait for
boot data to appear. Before the boot data appears, receiver may (or may not) cache other
resources described by the DST. Once the boot data arrives, receivers should execute this data as
quickly as possible. When the application is running, some resources may have been cached and
some may be available in broadcast carousels.

When a viewer switches to a different channel, a receiver may delete all information of the
data service, or they may cache some resources in case the viewer switches back to the original
channel.

ATSC ATSC Data Application Reference Model, Annex C 16 August 2002

 38

Annex C:
URI Resolution Procedures (Informative)

Some guidance is required on the resolution of URI’s by the receiver. A receiver in general can
not determine the type of item identified by an arbitrary lid: URI from inspecting the URI alone.
A receiver must examine the actual mapping information in the transport in order to make this
determination.

It is assumed that the receiver is acquiring and decoding all tables required by A/65 and
A/90, specifically including the VCT and DST, as well as all DII messages for the Data Service
that is currently signaling the application making the request. The identifiers (URI's) that are
labeling the various supported content types should be cached by the receiver. The receiver
should maintain a table of all received identifiers along with either a transport-specific location
information (as defined in [TSFS]), or a pointer to its internal representation of the resource.

When the application environment is asked to resolve a URI, these tables are searched for a
string match, and suitable application environment dependent reference(s) returned to the
requestor. In the case of a tv: URI, it should focus on the strings from Service Name descriptors
it found in the VCT of the Virtual Channel containing the Data Service. In the case of a lid: URI,
it should focus on the strings from URI descriptors it found in the DST and the DII messages of
all data resources for the Data Service.

If the string fails to match in the case of a tv: URI, then the receiver should expand the search
to all Virtual Channels in this transport.

If the string still fails to match in the case of a tv: URI, then the receiver should expand the
search to Virtual Channels in other transport streams that it can receive in an attempt to
exhaustively ensure the resource is not available. Note that this last step may take a significant
amount of time, and receivers should cache all the Service Name descriptor information from all
Virtual Channels in all transport streams that it can receive, if possible.

A match should always be found for the string in the case of a lid: URI, since any resource
for the Data Service that is outside the Virtual Channel containing the Data Service should be
listed in the NRT and referenced through the DST.

When matching the component name query strings for the “video/mpeg” content types
(Section 7.3), the receiver needs to inspect all the elements of the multiple string structure of the
component name descriptor. A match is found if ANY element matches. The search may not
return more than one Program Element as Amendment 2A to [A65] constrains the strings to
being unique within a Virtual Channel.

ATSC ATSC Data Application Reference Model, Annex D 16 August 2002

 39

Annex D:
Application Environment (Informative)

1. APPLICATION ENVIRONMENT MODEL

An application environment needs to provide certain capabilities that are required in order to
decode, present, and interact with an application. This standard defines a model for this
environment by means of defining certain capabilities that are expected to be supported by the
environment. Specifically, this includes a state model and an implied data flow interconnectivity.
A block diagram of the data flow in such a receiver model is shown in Figure D.1.

This figure is not meant to describe an actual implementation, but rather to communicate the
interconnections and data flows required to properly design such a receiver.

The gray blocks are not covered by this standard and are included for clarity only. The clear
blocks are described briefly below and described in more detail in the following sections.

The state model of Section 6 controls how the application environment is required to react to
changes in the transport stream. This is not a complete state model for the application
environment, but one that the environment is expected to build on.

The application buffer model of Section 12 is a description of the data models that are
supported by this foundation and their respective buffer models for delivering the data to the
application environment. Each data model supported is discussed.

The display model is the model that the environment must be designed to for output of
graphics and on screen display (OSD) information

1.1 Display Model

An application environment is expected to support real-time decoding and presentation of
streaming video content in accordance with [A53], and to mix the OSD with the video in the
receiver.

The graphics capabilities of the application environment required to support this merged
presentation with the video consists of an on-screen display (OSD) according to a minimum
640x480 resolution. The OSD must be capable of supporting the true color model (independent
of how it is physically implemented).

The minimum color requirements of [ATVCC], [DTVCC], W3C, JavaTV and the common
“color cube” are called to the attention of application environment implementers.

1.2 Audio Model

An application environment is expected to support real-time decoding and presentation of
streaming audio content in accordance with [A53], mixed with the audio output of the
environment.

1.3 Viewer Input

An application environment supports viewer interaction with graphics content and the audio. The
viewer input capabilities of the application environment required to support this interaction
minimally consist of a navigation device that permits the viewer to enter the following:

• Move left, right, up, down

• Digits zero through nine

ATSC ATSC Data Application Reference Model, Annex D 16 August 2002

 40

• Activate (select or enter)

In addition to these capabilities, an application environment optionally supports either a
virtual keyboard or a physical keyboard device. In the absence of either of these, certain
applications will not be able to accept direct viewer input; e.g., input to text fields.

An application environment may also support a pointer device.

Platform

Services,

IO,

Memory

MPEG2 video dec

AC3 audio dec

MPEG PSI dec

ATSC

PSIP dec

ATSC SDF dec

TBn

TBn

TBn

TBn

TBn

Bn

MBn

Bn

Bsys

Bn

TBn

SBnTBn

Bn

TBn SBn

EBn

DEBn

SBn

Display

Model

Async. data

Synchronous data

Sync’ed data

STT, RRT, MGT, VCT

EIT-k’s, DET-k’s, ETT-k, LTST

TBn

TBn Bsys

PAT

PMT

DST, NRT

Audio

stream_type 0x81

Video

stream_type 0x02

App

Buffer

Model

Application

Environment.

User

Input

Audio

Model

Back-

channel

State

Model

UserData

DTVCC

Figure D.1 Receiver reference model data flow.

1.4 Resource Acquisition

During the processing of an application, the application environment resolves references to
resources. Resolution of a reference constitutes determining where the resource is located, and its
access parameters. Resources can be accessed only after their references have been resolved.
Access requires that the environment ensure at least partial availability of the resource accessed.

An implementation of an application environment may take a conservative approach to
resource availability, requiring all resources to be fully available prior to permitting the
application to be instantiated; conversely, an application environment may take a lazy approach,
requiring only that resource metadata be available prior to application instantiation. In the latter
case, the application environment would suspend the application or provide viewer feedback
while referenced, but unavailable resources are being obtained.

ATSC ATSC Data Application Reference Model, Annex D 16 August 2002

 41

Application resources may be either fully or partially cached, and thus available for an
undetermined period of time; and there are no normative minimum or maximum retention time
periods.

ATSC ATSC Data Application Reference Model, Annex E 16 August 2002

 42

Annex E:
Descriptors from Other Standards (Informative)

1. DSM-CC COMPATIBILITY DESCRIPTOR

This descriptor is defined in ISO/IEC 13818-6, and reproduced in [A90] and here for the
convenience of the reader.

Table E.1 DSM-CC Compatibility Descriptor

Syntax No. of Bits Format

compatibility_descriptor() {

 CompatibilityDescriptorLength 16 uimsbf

 DescriptorCount 16 uimsbf

 for(i=0;i<descriptorCount;i++) {

 DescriptorType 8 uimsbf

 DescriptorLength 8 uimsbf

 specifierType 8 uimsbf

 specifierData 24 uimsbf

 model 16 uimsbf

 version 16 uimsbf

 subDescriptorCount 8 uimsbf

 for(j=0;j<subDescriptorCount;j++) {

 subDescriptor()

 }

 }

}

1.1 Content Type Descriptor

The content type descriptor is defined in [TRIGGER]. The syntax is reproduced here for the
convenience of the reader.

Table E.2 Content Type Descriptor

Syntax No. of Bits Format

contentTypeDescriptor () {

 descriptorTag 8 0x72

 descriptorLength 8 uimsbf

 for(i=0; i<descriptorLength; i++) {

 contentTypeByte 8 uimsbf

 }

}

descriptorTag – This 8-bit field value shall have the value 0x72 to identify this descriptor as a
contentTypeDescriptor.

ATSC ATSC Data Application Reference Model, Annex E 16 August 2002

 43

descriptorLength – This 8-bit field shall represent the remaining size of the descriptor in bytes.

contentTypeByte – This field shall be set to the value of MIME media type (as defined in [MIME],
Section 5) of the data referenced by the Tap with which this descriptor is associated. ASCII
encoding shall be used for the contents of this field.

1.2 Acquisition Descriptor

The Acquisition Descriptor is defined in [TRIGGER]. The syntax is reproduced here for the
convenience of the reader.

Table E.3 Acquisition Descriptor

Syntax No. of Bits Format

acquisition_descriptor () {

 descriptor_tag 8 0x89

 descriptor_length 8 0x04

 max_age 32 uimsbf

}

descriptor_tag – This 8-bit unsigned integer shall have the value 0x89, identifying this descriptor
as an acquisition_descriptor.

descriptor_length – This 8-bit unsigned integer shall be assigned to the value 0x04 to indicate that
four bytes follow this field up to the end of this descriptor.

max_age – This 32-bit field shall represent the maximum target acquisition period in units of 90
kHz clock cycles.

