
Doc. A/95

25 February 2003

ATSC Standard:

Transport Stream File System Standard

Advanced Television Systems Committee

1750 K Street, N.W.

Suite 1200

Washington, D.C. 20006

www.atsc.org

ATSC Transport Stream File System Standard 25 February 2003

 2

The Advanced Television Systems Committee, Inc., is an international, non-profit organization

developing voluntary standards for digital television. The ATSC member organizations represent

the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable,

satellite, and semiconductor industries.

Specifically, ATSC is working to coordinate television standards among different

communications media focusing on digital television, interactive systems, and broadband

multimedia communications. ATSC is also developing digital television implementation

strategies and presenting educational seminars on the ATSC standards.

ATSC was formed in 1982 by the member organizations of the Joint Council on InterSociety

Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and

Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National

Cable Television Association (NCTA), and the Society of Motion Picture and Television

Engineers (SMPTE). Currently, there are approximately 170 members representing the

broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite,

and semiconductor industries.

ATSC Digital TV Standards include digital high definition television (HDTV), standard

definition television (SDTV), data broadcasting, multichannel surround-sound audio, and

satellite direct-to-home broadcasting.

ATSC Transport Stream File System Standard 25 February 2003

 3

Table of Contents

1. SCOPE..6

1.1 Organization 6

2. REFERENCES..6

2.1 Normative References 6

2.2 Informative References 7

3. DEFINITIONS AND STRUCTURES ...7

3.1 Compliance Notation 7

3.2 Acronyms and Abbreviations 8

3.3 Global Terms 8

3.4 Section and Data Structure Syntax Notation 11

3.5 Elements with Undefined Semantics 12

3.6 Code Points (Informative) 12

4. INTRODUCTION (INFORMATIVE)...13

5. STRUCTURES..16

5.1 Carousel NSAP Address 16

5.2 Interoperable Object Reference (IOR) Format 17

5.3 References within the Same TSFS 18

5.4 References to Remote Objects 22

5.5 BIOP Message Formats 25

5.6 Uniform Resource Identifiers 33

6. OBJECTINFO DESCRIPTORS ..33

6.1 Descriptor Identification and location 34

6.2 Content Type Descriptor 34

6.3 Time Stamp Descriptor 35

7. TRANSPORT..35

7.1 DSM-CC Message Header 36

7.2 Transport of Service Gateway IOR 37

7.3 Transport of Module Delivery Parameters 39

7.4 Semantics of TransactionId 42

7.5 Signaling of Transport Stream File Systems 43

7.6 Private Usage Collision Avoidance 45

Annex A: Carousel Design (Informative) 47

ATSC Transport Stream File System Standard 25 February 2003

 4

Annex B: Object and File System Acquisition (Informative) 48

1. INTRODUCTION...48

2. LOCAL OBJECT ACQUISITION..48

3. REMOTE OBJECT RESOLUTION...51

4. TRANSPORT STREAM FILE SYSTEM ACQUISITION...53

5. URI RESOLUTION..54

Annex C: TSFS Objectives (Informative) 51

1. OBJECTIVES FROM RFP..57

2. ACHIEVEMENT OF OBJECTIVES...57

2.1 Name Spaces 57

2.2 Selective Acquisition and Browsing 58

2.3 Carriage within Virtual Channels 58

2.4 Optimization Opportunities 58

2.5 Meta-Data Extensibility 59

ATSC Transport Stream File System Standard 25 February 2003

 5

Index of Tables and Figures

Table 5.1 Carousel NSAP Address Syntax 16

Table 5.2 Definition of the IOR Structure 18

Table 5.3 Value of typeId_bytes 18

Table 5.4 BIOPProfileBody Structure 20

Table 5.5 MessageSelector Structure 22

Table 5.6 Definition of the LiteOptionsProfileBody Structure 23

Table 5.7 Value of kind_data Bytes 24

Table 5.8 Syntax of Directory Message Format 26

Table 5.9 Object Kind and Binding Type Codes 29

Table 5.10 Syntax of File Message Format 31

Table 6.1 objectInfo descriptors and locations 34

Table 6.2 Syntax of ContentTypeDescriptor 34

Table 6.3 Syntax of TimeStamp_descriptor 35

Table 7.1 Syntax of a DSI Message 37

Table 7.2 Syntax of BIOP: ServiceGatewayInfo 38

Table 7.3 Syntax of a DII Message 39

Table 7.4 TransactionId Sub-fields 42

Table 7.5 DST Tap Referencing a Transport Stream File System 44

Table 7.6 TSFS Selector for Tap Referencing a TSFS 45

Table C.7 TSFS Objectives 57

Figure 4.1 Graphical encapsulation overview and relation to other standards. 13

Figure 4.2 (a) Directory object (b) File object. 14

Figure 7.1 Encapsulation and fragmentation of BIOP messages. 36

Figure B1 Resolving an object from its IOR with BIOP profile body. 49

Figure B2 Use of Tap for locating a program element. 50

Figure B3 Finding service gateway from NSAP address (no remultiplexing case). 52

Figure B4 Finding service gateway from NSAP address (remultiplexed case). 53

Figure B5 How to acquire objects in a simple directory structure. 54

Figure B6 URIs derived from TSFS directory structure. 55

ATSC Transport Stream File System Standard 25 February 2003

 6

Transport Stream File System Standard

1. SCOPE

This standard was prepared by the Advanced Television Systems Committee (ATSC)

Technology Group on Distribution (T3). The document was approved by T3 on 15 August 2002

for submission by letter ballot to the full ATSC membership. The document was approved by the

members of the ATSC on 25 February 2003.

This document
1
defines the ATSC Transport Stream File System (TSFS) standard for delivery

of hierarchical name-spaces, directories and files. This standard builds on the data service

delivery mechanism defined in the ATSC Data Broadcast Standard [A90]. It was designed based

on responses to an RFP whose requirements are listed in Annex C.

1.1 Organization

This document is organized as follows:

• Section 1 — Provides this general introduction.

• Section 2 — Lists references and applicable documents.

• Section 3 — Provides a definition of compliance notation, acronyms, abbreviations, terms,

syntax notations, and code points for this document.

• Section 4 — Provides an informative description of the relationship of this standard to other

standards and the overall architecture of the TSFS structures.

• Section 5 — Describes the structures and object messages required by this standard.

• Section 6 — Describes the usage of descriptors in the object messages defined in this

standard.

• Section 7 — Describes the binding of a TSFS to the ATSC transport.

• Annex A — Provides an informative discussion of TSFS design.

• Annex B — Provides an informative discussion of object acquisition in a TSFS.

• Annex C — Provides an informative description of the driving requirements for this

standard, and how this standard meets them.

2. REFERENCES

2.1 Normative References

[DSMCC] ISO/IEC 13818-6:1998, “Information technology – Generic coding of moving

pictures and associated audio information - Part 6: Extensions for DSM-CC,”

September 1, 1998, Sections 5.6.1, 5.6.3, 11.2.2-11.2.6, 11.3.1, 11.3.2.1-11.3.2.3,

11.3.2.5, 11.3.3.

1
 NOTE: The user’s attention is called to the possibility that compliance with this standard may require use of an

invention covered by patent rights. By publication of this standard, no position is taken with respect to the

validity of this claim, or of any patent rights in connection therewith. The patent holder has, however, filed a

statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and

conditions to applicants desiring to obtain such a license. Details may be obtained from the publisher.

ATSC Transport Stream File System Standard 25 February 2003

 7

[MPEG] ISO/IEC 13818-1:2000, “Information technology – Generic coding of moving

pictures and associated audio information: Systems,” December 1, 2000.

[SEC] ISO/IEC 16500-7:1999, “Information Technology – Generic digital audio-visual

systems – Part 7: Basic security tools,” December 16, 1999.

[A90] ATSC Document A/90, “ATSC Data Broadcast Standard,” July 26, 2000.

[A65] ATSC Document A/65A, “ATSC Program and System Information Protocol for

Terrestrial Broadcast and Cable”, May 31, 2000.

[MIME] IETF RFC 2045, “Multipurpose Internet Mail Extensions (MIME) Part One: Format

of Internet Message Bodies,” section 5, November 1996.

[URI] IETF RFC 2396, “Uniform Resource Identifiers: Generic Syntax,” August 1998.

[URI-LID] SMPTE 343M-2002, “Declarative Data Essence – Local Identifier (lid:) URI

Scheme,” 2000.

[IEEE802] IEEE Std 802-1990, “IEEE Standards for Local and Metropolitan Networks:

Overview and Architecture,” May 31, 1990.

[Trigger] ATSC Document A/93, “ATSC Synchronized/Asynchronous Trigger Standard,”

February 4, 2002.

2.2 Informative References

[DVB-DB] ETSI EN 301 192 v1.2.1, “Digital Video Broadcasting (DVB); specification

for data broadcasting,” June 1999.

[DVB-IG] ETSI TR 101 202 v1.1.1 (1999-02), “Digital Video Broadcasting (DVB);

Implementation Guidelines for Data Broadcasting,” February 1999.

[DVB-MHP] ETSI TS 102 812 v1.1.1 (2001-11), “Digital Video Broadcasting (DVB);

Multimedia Home Platform (MHP),” specification 1.1 (November 2001),

Annex B (Normative): Object Carousel, section B.2.3.4.

[SMPTE-EBU] SMPTE/EBU “Final Report of the Task Force for Harmonized Standards for

the Exchange of Program Material and Bitstreams,” July 1998.

[MRD] ATSC Technology Group Report T3-548, “ATSC Usage of the MPEG-2

Registration Descriptor,” October 9, 2001.

[COLLISION] NTSC Technology Group Report T3-549, “Collision Avoidance for Private

Fields and Ranges,” October 9, 2001.

[RFP] ATSC T3/S13 Document S13-148, “Request for Proposal for Potential

Revisions to ATSC Standards in the Area of Transport Stream File System

Functionality,” March 28, 2001.

3. DEFINITIONS AND STRUCTURES

3.1 Compliance Notation

As used in this document, “shall” denotes a mandatory provision of the standard. “Should”

denotes a provision that is recommended but not mandatory. “May” denotes a feature whose

presence does not preclude compliance, that may or may not be present at the option of the

implementer.

ATSC Transport Stream File System Standard 25 February 2003

 8

3.2 Acronyms and Abbreviations

The following acronyms and abbreviations are used within this specification:

AFI authority and format identifier

BIOP broadcast inter-ORB protocol

bslbf bit serial, leftmost bit first

CRC cyclic redundancy check

DAU data access unit

DDB download data block

DII download information indication

DSI download server initiate

DSM-CC digital storage media command and control

DST data service table

IOR interoperable object reference

MPEG Moving Picture Experts Group

NRT network resources table

NSAP network service access point

ORB object request broker

OUI organizationally unique identifier, as defined in [IEEE802]

PID packet identifier

PMT program map table

PSIP Program and System Information Protocol

TS transport stream

TSID transport stream ID

TSFS transport stream file system

uimsbf unsigned integer, most significant bit first

URI uniform resource identifier

U-U user-to-user

3.3 Global Terms

The following terms are used throughout this document:

ATSC Advanced Television Systems Committee. The committee responsible for the

coordination and development of voluntary technical standards for advanced television

systems.

aligned A bit in a coded bit stream is byte-aligned if its position is a multiple of 8-bits from the

first bit in the stream.

binding A binding is a collection of bytes in a directory object that defines an association

between a name and a reference (IOR) to an object. A binding may also contain descriptive

information about the bound object.

binding name The name that appears in a binding.

ATSC Transport Stream File System Standard 25 February 2003

 9

binding structure The DirectoryMessageBody() of a directory object, consisting of a list of bindings

associating object names with their locations.

BIOP object An object formatted according to the generic BIOP message structure defined in

[DSMCC].

carousel A carousel identifies a group of objects transmitted repeatedly from a particular service

provider for a specific purpose (service).

content type A content-type is the top-level media type used to declare the general type of data,

as defined in [MIME]. A subtype is used to convey a specific format for that type of data.

For example, a media type of “image/xyz” indicates that the data is an image, even without

knowledge of the specific image format “xyz”.

CRC The cyclic redundancy check used to verify the correctness of the data.

data receiver Any device capable of receiving and consuming data carried in an ATSC transport

stream.

data service A collection of scheduled applications and associated data elementary streams as

signaled in one Data Service Table. A data service is characterized by a profile and level.

data source The provider of data that is being inserted into the MPEG-2 transport stream.

decoded stream The decoded reconstruction of a compressed bit stream.

decoder An embodiment of a decoding process.

decoding (process) The process defined in the Digital Television Standard that reads an input

coded bit stream and outputs decoded pictures, audio samples, or data objects.

directory link An alternative term for a binding.

directory path A sequence of directory links, in which for each link in the sequence except the

last one the object referenced by the link is the directory containing the next link in the

sequence.

elementary stream (ES) A generic term for one of the coded video, coded audio, or other coded

bit streams. One elementary stream is carried in a sequence of PES packets with one and

only one stream_id.

forbidden This term, when used in clauses defining the coded bit stream, indicates that the value

shall never be used. This is usually to avoid emulation of start codes.

interoperable object reference A data structure IOP::IOR that contains the information necessary

to locate an object in a network; originally developed as part of the CORBA specification,

later specialized by the ISO DSM-CC Standard to the case of an MPEG-2 broadcast network.

Kbps 1,000 bits per second.

lid A URI scheme defined by [URI-LID].

Mbps 1,000,000 bits per second.

module delivery parameters The delivery parameters of data modules are conveyed in

DownloadInfoIndication messages. One DownloadInfoIndication message can convey the module

delivery parameters of multiple data modules of the same U-U Object Carousel.

MPEG Refers to standards developed by the ISO/IEC JTC1/SC29 WG11, Moving Picture

Experts Group. MPEG may also refer to the Group.

MPEG-2 Refers to the collection of ISO/IEC standards 13818-1 through 13818-6.

ATSC Transport Stream File System Standard 25 February 2003

 10

multiplexer (mux) A physical device that is capable of inserting MPEG-2 transport stream

packets into and deleting MPEG-2 transport stream packets from an MPEG-2 transport

stream.

NSAP address Network Service Access Point (NSAP) consists of AFI, Type, carouselId,

specifier, privateData, as specified in Figure 11-2 of [DSM-CC]. It is a globally unique

identifier that is used to identify a particular service domain.

object An object is an entity transmitted using the Object Carousel Protocol; it is a serialized

object rather than an object definition. This could be raw data representing a file, a directory

or a service gateway.

object key A collection of bytes that uniquely identifies an object of a TSFS within the data

carousel module that contains it.

packet A packet is a set of contiguous bytes consisting of a header followed by its payload.

packet identifier (PID) A 13-bit identifier appearing in the header of an MPEG-2 Transport

Stream packet that is used to associate Transport Stream packets of a program element or

other data stream, such as a PSI or PSIP stream.

payload The bytes following the header bytes in a packet. The adaptation header of an MPEG-2

Transport Stream packet is not considered part of the payload of the packet.

program A collection of program elements. Program elements may be elementary streams.

Program elements need not have any defined time base; those that do have a common time

base and are intended for synchronized presentation. The term program is also commonly

used in the context of a “television program” such as a news broadcast scheduled daily. In

this specification the term “event” is used for the latter to avoid ambiguity.

program element A generic term for one of the elementary streams or other data streams that

may be included in an ISO/IEC 13818-1 (MPEG-2) Program. The MPEG-2 Transport

Stream packets conveying a Program Element are referenced by a unique PID value in the

MPEG-2 Program.

program specific information (PSI) PSI consists of normative data defined in [MPEG] which

is necessary for the demultiplexing of transport streams and the successful regeneration of

programs.

profile A defined subset of data delivery characteristics. This differs from the definition

provided in ISO/IEC 13818-2.

PSIP ATSC Program and System Information Protocol, which defines a collection of tables

describing virtual channel attributes, event features, and other information.

reserved This term, when used in clauses defining the coded bit stream, indicates that the field

may be used in the future for Digital Television Standard extensions. All reserved bits are set

to ‘1’.

section A data structure comprising a portion of an ISO/IEC 13818-1 or ISO/IEC 13818-6-

defined table, such as the Program Association Table (PAT), Conditional Access Table

(CAT), Program Map Table (PMT), or DSMCC section. All sections begin with the table_id

and end with a checksum or a CRC_32 field, and their starting points within a packet payload

are indicated by the pointer_field mechanism defined in the ISO/IEC 13818-1 International

Standard.

ATSC Transport Stream File System Standard 25 February 2003

 11

service description framework The information conveyed in the program element providing

the Data Service Table and optionally the Network Resource Table of a single data service.

service domain A Service Domain identifies a structured group of objects. It is an abstract entity

defined for the purpose of scoping. Each instance of an Object Carousel represents a Service

Domain. Each Service Domain is identified by a globally unique NSAP address. Each

Service Domain has a Service Gateway serving as its root directory.

service gateway A Service Gateway is the one and only entry-point to the content that is

broadcast by the Object Carousel. It serves as the root directory of the Object Carousel.

There is a Service Gateway associated with each Service Domain.

stream An ordered series of bytes. The usual context for the term stream is the series of bytes

extracted from Transport Stream packet payloads which have a common unique PID value

(e.g., video PES packets or Program Map Table sections).

table A collection of re-assembled sections bearing a common table_id and version number.

table instance A collection of re-assembled sections with a common table_id, table_id_extension,

and version_number. Examples are the PSIP EITs and the Data Broadcasting DETs, where the

source_id appears in the table_id_extension field to distinguish different instances of the tables.

tap A data structure used to establish a link from an object reference to a lower layer

communication channel.

transport stream Refers to the MPEG-2 transport stream syntax for the packetization and

multiplexing of video, audio, and data signals for digital broadcast systems [MPEG].

transport stream packet header The leading fields in an MPEG-2 Transport Stream packet up

to and including the continuity_counter field.

URI Uniform Resource Identifiers (URIs) provide a simple, unified and extensible mechanism

for identifying a resource. The URI framework [URI] provides a way to concatenate a base-

URI with a relative-URI to form an absolute URI identifying a resource.

virtual channel number A virtual channel number is the designation that is recognized by the

user as the single entity that will provide access to an analog TV programming or a set of one

or more digital elementary streams. It is called “virtual” because its identification (name and

number) may be defined independently from its physical location.

virtual channel A virtual channel is an analog TV broadcast or a set of one or more digital TV

program elements providing a unified service and identified by a virtual channel number.

3.4 Section and Data Structure Syntax Notation

Tables defined in this standard conform to the generic private section syntax defined in [MPEG]

and the DSM-CC section format defined in [DSMCC]. This document contains symbolic

references to syntactic elements. The notation used is distinctive to aid the reader in recognizing

elements that are the same as they are in referenced standards. These references are

typographically distinguished by the use of a different font (e.g., restricted), may contain the

underscore character (e.g., sequence_end_code) and may consist of character strings that are not

English words (e.g., dynrng).

reserved — Fields in this Standard marked “reserved” shall not be assigned by the user, but shall

be available for future use. Decoders are expected to disregard reserved fields for which no

ATSC Transport Stream File System Standard 25 February 2003

 12

known definition exists for the decoder. Each bit in the fields marked “reserved” shall be set

to ‘1’ until such time as they are defined and supported.

user_private — A value or range of values of a code point that may be privately defined by users

of a particular standard. It must be possible to determine the identity of the standards body or

private party specifying a user private value. In instances where the ownership of the

definition of the bytes is not otherwise explicit, the MPEG-2 Registration Descriptor shall be

used for this purpose.

zero — Indicates that the bit or bit field shall have the value zero.

3.5 Elements with Undefined Semantics

In a number of places in this standard there appear statements that certain elements (which have

been included for compatibility with [DSMCC] and [DVB-MHP]) “have no meaning in this

standard.” This means that such elements will normally not be present in Transport Stream File

Systems implementing this standard, but implementers should not assume that such elements

will never be present. It is possible that there may be a future version of this standard in which

some of these elements are used in order to support some kind of extended functionality.

3.6 Code Points (Informative)

For convenience, this section lists all values of table_id, stream_type, descriptor_tag,

encapsulation_protocol, and selector_type that are used in this standard.

3.6.1 Table ID Values

The table_id values defined or used in this standard are:

0x3B DSM-CC section containing DSI or DII message (defined in [DSMCC]).

0x3C DSM-CC section containing DDB message (defined in [DSMCC]).

3.6.2 Stream Type Values

The stream_type value used in this standard is:

0x0B DSM-CC sections containing data carousel messages (defined in [DSMCC]).

3.6.3 Descriptor Tag Values

The descriptor_tag values used in this standard are:

0x72 Content Type descriptor (defined in [Trigger]).

0xB9 Time Stamp descriptor (defined in this standard).

3.6.4 Encapsulation Protocol Values

The encapsulation_protocol value defined in this standard is:

0x0F Transport Stream File System.

3.6.5 Selector Type Values

The selector_type values defined or used in this standard are:

0x0001 Message selector (defined in [DSM-CC]).

0x109 TSFS selector (defined in this standard).

ATSC Transport Stream File System Standard 25 February 2003

 13

4. INTRODUCTION (INFORMATIVE)

This section describes the overall architecture of the ATSC Transport Stream File System. The

ATSC Transport Stream File System is based on the Object Carousel design specified in

[DSMCC], section 11. Figure 4 shows how this standard fits in with other standards.

MPEG-2 Transport Stream

PES MPEG-2 Private Section

ATSC

data

piping

Application

level interface

 : Service specific

 : ATSC defined

 : Other standards (IETF,ISO)

 : DSM-CC defined

ATSC

data

streaming

service

specific

DSM-CC addressable

section encapsulation

service

specific

datagram

spec. (eg IP/IPX)

DSM-CC

Data Download

service

specific

ATSC

data download

service

specific

Applications

Data

Piping

Protocol encapsulation: Data

Streaming

Addressable Section

Encapsulation

Data

Download

DSM-CC

Section

DSM-CC

Object Carousel

ATSC

TSFS

service

specific

This

Standard

Figure 4.1 Graphical encapsulation overview and relation to other

standards.

The ATSC TSFS Standard supports the transmission of the following types of BIOP objects

defined in section 11.3.2 of [DSMCC]: DSM::Directory, DSM::File, and DSM::ServiceGateway. Carriage

of these objects is done by means of the DSM-CC Data Carousel protocol as described in

sections 11 and 9 of [DSMCC]. However, the ATSC TSFS standard further constrains the syntax

and semantics of the BIOP objects to satisfy the requirements set forth in [RFP].

Each of these objects contains a header giving the object key (unique identifier within the

data carousel module containing it) and the type (directory, file, or service gateway) of the

object. The header of a DSM::File object also has an objectInfo structure giving the file size, content-

type (MIME type), and a “last modified” time stamp. The header of a DSM::Directory or

DSM::ServiceGateway object has an objectinfo structure that optionally contains a “last modified”

time stamp. It does not convey a content-type, since a content-type as defined in [MIME] is not

applicable to directory objects. The body of a DSM::File object is just the file content. The body of

ATSC Transport Stream File System Standard 25 February 2003

 14

a DSM::ServiceGateway or DSM::Directory object consists of a list of bindings (references to other

objects, with associated binding names).

A binding contains a binding name, the object type of the referenced object (directory, file,

or service gateway), an IOP::IOR (Interoperable Object Reference) giving the location of the

referenced object, and an objectInfo structure that may contain some or all of the same information

as the objectInfo structure in the header of the referenced object. A binding is often called a

directory link or a directory entry, and an IOP::IOR is often just called an IOR.

Figure 4.2 illustrates the general structure of a DSM::Directory object and DSM::File object. A

DSM::Directory object includes an objectInfo structure and a binding structure referencing zero or

more child objects (DSM::Directory or DSM::File objects). The binding information includes an

objectInfo field for the purpose of providing early information about a referenced object. When

descriptors are listed in such an objectInfo structure, their contents are identical to the contents of

the descriptors listed in the objectInfo structure that appears in the header of the object itself.

(a) (b)

DSM::Directory object

objectInfo

time-stamp

binding structure

time-stamp

objectInfo

DSM::File object

objectInfo

name

content-size

content-type

content-size

content-type

time-stamp

IOP::IOR

binding

file content

Figure 4.2 (a) Directory object (b) File object.

A DSM::ServiceGateway object is similar to a DSM::Directory object. The main difference between

these two objects is simply in the syntax of the name or names listed in the binding structure. For

a DSM::ServiceGateway object, a binding name is always a base URI while for a DSM::Directory object

a binding name is a relative path.

Each TSFS has exactly one Service Gateway object, which serves as the top level directory

of the TSFS. The objects in the TSFS can all be reached by following a directory path (sequence

of directory links) starting from the Service Gateway. An object in a TSFS can be referenced

from multiple directories in the TSFS, so there can be multiple paths from the Service Gateway

to an object in the TSFS. Such paths cannot create any circular paths in the directory reference

ATSC Transport Stream File System Standard 25 February 2003

 15

structure. For example, the situation where directory A contains a reference to directory B,

which in turn contains a reference to directory A, cannot occur.

As mentioned above, the names that appear in the binding structures of the Service Gateway

object all conform to the syntax of an absolute URI, as specified in [URI], and the names that

appear in the binding structures of lower level directories of a TSFS all conform to the syntax of

a relative path, as specified in [URI]. The effect of this is that each file or directory object in a

TSFS, with the exception of the Service Gateway object itself, has an associated absolute URI

that can be used to reference the object, obtained by concatenating the names in a sequence of

directory references leading from the Service Gateway to the object, with slashes (/) as

delimiters between them. If there are multiple such sequences of directory references leading to

the object, then it has multiple URIs associated with it.

An IOR referencing an object in the same TSFS contains the object key for the referenced

object, the carousel ID and module ID of the data carousel module containing the object, a Tap

identifying the Program Element containing the DownloadInfoIndication (DII) message describing the

delivery parameters for the module, and optionally a Tap identifying the Program Element

containing the DownloadDataBlock (DDB) messages carrying the module itself. The DII message

gives such information as the block size, module size, module version, and delivery timeout

intervals for the module, together with a Tap identifying the Program Element containing the

DDB messages carrying the module. All objects of a TSFS are carried in a single virtual channel.

However, it is also possible to have bindings that contain references to objects in other TSFSs

(often called “soft links”). These other TSFSs may be in the same virtual channel or a different

virtual channel, even a different virtual channel in a different transport stream. Thus, the logical

name space of a TSFS may span multiple virtual channels and even multiple transport streams.

An IOR referencing an object in a different TSFS identifies the TSFS containing the object

and gives the directory path (sequence of directory links) in that TSFS that leads from the

Service Gateway of that TSFS to the object.

Organization of the ATSC TSFS into the Data Modules of an ATSC Data Carousel [A90] is

not specified by this standard. For example, the BIOP Service Gateway and BIOP Directory

objects can be located in one or multiple data modules that may or may not be separate from the

data modules conveying the BIOP File objects. Such a design can be used to allow more

frequent transmissions of the data modules conveying the BIOP Service Gateway and the BIOP

Directory objects so upon tuning to a new Virtual Channel, receivers get an opportunity to

reconstruct an image of the file hierarchy with minimum latency.

There is a constraint imposed by [DSMCC] (in Sections 7.5.4 and 9.2.5) that all the DDB

messages carrying the modules of a single data carousel must be in the same program element,

and DDB messages carrying modules of different data carousels must be in different program

elements. However, the DSI and DII messages of a data carousel can be in the same program

elements as the DDB messages or can be in one or more other program elements, and the DSI

and DII messages of different data carousels can appear in the same program element.

To allow unambiguous identification of a TSFS in an ATSC Transport Stream, a new

protocol_encapsulation value is defined for the Data Service Table (DST) of the Data Broadcast

Standard [A90] to signal the Object Carousel encapsulation. For each TSFS used by an

application in a data service, the DST contains a Tap referencing the Program Element

containing the DSI message that signals the location of the Service Gateway object for the TSFS.

ATSC Transport Stream File System Standard 25 February 2003

 16

In the case where this Program Element resides in a remote ATSC Virtual Channel or a remote

ATSC Transport Stream, it is signaled in the Network Resources Table (NRT).

5. STRUCTURES

5.1 Carousel NSAP Address

Each instance of a TSFS represents a Service Domain, which is defined in Section 1.1 of

[DSMCC] as “a collection of interfaces to browse and select services” and is later referred to

informally in Section 5.1.2 of [DSMCC] as a “directory hierarchy.” Each Service Domain shall

have a globally unique identifier associated with it, called the Carousel NSAP (Network Service

Access Point) address. Table 5.1 describes the Carousel NSAP address structure, with overall

syntax as specified in [DSMCC] and privateData() syntax as specified by this standard.

Table 5.1 Carousel NSAP Address Syntax

Syntax No. of Bits Format

CarouselNSAPaddress() {

 AFI 8 uimsbf

 type 8 uimsbf

 carouselId 32 uimsbf

 specifierType 8 uimsbf

 specifierData 24 uimsbf

 privateData() {

 transportStreamID 16 uimsbf

 originalTSID 16 uimsbf

 program_number 16 uimsbf

 sourceId 16 uimsbf

 originalSourceId 16 uimsbf

 }

}

AFI — This 8-bit Authority and Format Identifier field shall be set to 0x00, as specified in

Section 11.2.2 of [DSMCC].

type — This 8-bit field shall be set to 0x00 indicating that the Carousel NSAP address points to a

U-U Object Carousel. The values in the range 0x01 to 0x7F are reserved to ISO/IEC 13818-

6. The values in the range 0x80 to 0xFF are user private and their use is outside the scope of

this specification.

carouselId — This 32-bit field shall uniquely identify the carousel within the Virtual Channel.

specifierType — This 8-bit field shall be set to 0x01 to indicate that the specifierData field is an

OUI, as specified in [DSMCC] Chapter 6.

specifierData — This 24-bit field shall be set to the IEEE OUI of ATSC, 0x000979. This field,

along with the specifierType, uniquely scopes the combination of transportStreamId and source_id

fields that follow.

ATSC Transport Stream File System Standard 25 February 2003

 17

transportStreamID – This 16-bit field shall contain the transport_stream_id (TSID) of the MPEG-2

transport stream containing the TSFS, as it appears in the Program Association Table of the

transport stream. During remultiplexing it may be changed to reflect the TSID of the new

transport stream carrying the TSFS.

originalTSID – This 16-bit field shall contain the TSID of the MPEG-2 transport stream in which

the virtual channel containing this TSFS was originally broadcast. It shall not be changed

during remultiplexing operations.

Note: Coordination of sources to ensure uniqueness of originalTSID

is outside the scope of this standard.

program_number – This 16-bit field shall contain the program_number from the program_map_section

[MPEG] associated with the Virtual Channel conveying the Service Gateway object of this

TSFS.

source_id – This 16-bit field shall contain the source_id for the virtual channel carrying the TSFS,

as it appears in the Virtual Channel Table. (Note that a TSFS may appear in more than one

virtual channel, since virtual channels may have overlapping program elements, so that a

TSFS may have more than one NSAP address associated with it. However, a single NSAP

address cannot refer to more than one TSFS.) During re-multiplexing it may be changed to

reflect a new source_id for the virtual channel.

originalSourceId – This 16-bit field shall contain the source_id for the virtual channel in which this

TSFS was originally broadcast. It shall not be changed during re-multiplexing operations.

Note that if the source_id is in the range 0x1000 to 0xFFFF, so that it is unique at the regional

level (per [A65]), then the source_id will never need to change during typical remultiplexing (e.g.,

for cable carriage), and a receiver will normally be able to find the correct virtual channel

containing the TSFS with a given Carousel NSAP Address from the source_id alone. If the

source_id is in the range from 0x0001 to 0x0FFF, then the combination of originalTSID and

originalSourceId forms an identifier for the virtual channel that is unique and invariant under

remultiplexing, but it will take more effort for a receiver to actually locate the TSFS from this

identifier. A discussion of the resolution process for a Carousel NSAP address appears in Annex

B Section 3.

5.2 Interoperable Object Reference (IOR) Format

An ATSC Transport Stream File System is a collection of DSM-CC BIOP object structures of

types DSM::Directory, DSM::File, and DSM::ServiceGateway. These objects are organized into a directory

hierarchy by means of bindings in the Directory and Service Gateway objects that associate

names with references to objects.

References to objects in an ATSC TSFS shall follow the format of an IOR, as specified in

Sections 5.6 and 11.3.1 of [DSMCC], with the additional constraints specified in this section.

Table 5.2 presents the constrained IOR structure. Table 5.3 shows the values of the type_id field

corresponding to each type of BIOP object that may be referenced by an IOR according to this

standard. Other object types have no meaning in this standard.

ATSC Transport Stream File System Standard 25 February 2003

 18

Table 5.2 Definition of the IOR Structure

Syntax No. of Bits Format

IOP::IOR () {

 typeId_length 32 uimsbf

 for (i=0; i<typeId_length; i++) {

 typeId_byte 8 bslbf

 }

 taggedProfile_count 32 uimsbf

 IOP::TaggedProfile() {

 BIOPProfileBody() or

 LiteOptionsProfileBody()

variable bslbf

 }

 for (n=0, n<taggedProfile_count-1; n++) {

 IOP::TaggedProfile() variable bslbf

 }

}

typeId_length — This 32-bit field shall be set to 0x00000004 indicating the use of the 3-character

alias with a terminating null byte.

typeId_byte — This 8-bit field shall contain one byte of the object type as specified in Table 5.3.

Table 5.3 Value of typeId_bytes

typeId_bytes Description

0x64697200 (ASCII “dir” with null terminator) DSM::Directory object

0x66696C00 (ASCII “fil” with null terminator) DSM::File object

0x73726700 (ASCII “srg” with null terminator) DSM::ServiceGateway

Note that in each case the value of typeId_byte includes a null byte terminator for the ASCII

string it represents (i.e., a byte with value 0x00).

taggedProfile_count — This 32-bit field shall be set to the number of IOP::TaggedProfile structures

that are present. Any instances of IOP::TaggedProfile that appear after the first one have no

meaning in this standard.

Complete descriptions of the BIOPProfileBody and LiteOptionsProfileBody appear in Sections 5.3

and 5.4, respectively.

5.3 References within the Same TSFS

When an IOR is used to reference a BIOP object within the same TSFS, the IOR shall contain a

BIOPProfileBody, as defined in Sections 11.3.1.1, 5.6.1, and 5.6.3.5 of [DSMCC] and shown in

Table 5.4. All objects within a single TSFS shall be conveyed in program elements that are

within the same MPEG-2 program. The BIOPProfileBody presented in Table 5.4 is a constrained

version of the BIOPProfileBody structure defined in [DSMCC]. It carries all the information

pertaining to an object that is needed to uniquely identify the object and locate it within a Service

ATSC Transport Stream File System Standard 25 February 2003

 19

Domain (specified by an NSAP address). The first two components of the BIOPProfileBody shall be

BIOP::ObjectLocation and DSM::ConnBinder components, in that order. Any additional components

have no meaning in this standard.

The BIOP::ObjectLocation component provides the 3-tuple <carouselId, moduleId, ObjectKey>, which

identifies the object uniquely. The DSM::ConnBinder structure uses the DSM::Tap() structure defined

in Section 5.6.1 of [DSMCC] to indicate where the object can be found in the MPEG-2 program.

The first Tap in the DSM::ConnBinder structure of the BIOPProfileBody shall identify the Program

Element that has the DII message giving the delivery parameters for the module containing the

object referenced by the IOR. There may be an additional Tap which identifies a Program

Element that has the DDB messages carrying the module itself. Any further taps in the

DSM::ConnBinder structure have no meaning in this standard.

ATSC Transport Stream File System Standard 25 February 2003

 20

Table 5.4 BIOPProfileBody Structure

Syntax No. of Bits Format

BIOPProfileBody {

 profileId_tag 32 uimsbf

 profile_data_length 32 uimsbf

 profile_data_byte_order 8 uimsbf

 component_count 8 uimsbf

 BIOP::ObjectLocation {

 objectLocation_tag 32 uimsbf

 objectLocation_length 8 uimsbf

 carouselId 32 uimsbf

 moduleId 16 uimsbf

 version.major 8 uimsbf

 version.minor 8 uimsbf

 objectKey {

 objectKey_length 8 uimsbf

 For (k=0; k< objectKey_length; k++) {

 objectKey_byte 8 bslbf

 }

 }

 }

 DSM::ConnBinder {

 connBinder_tag 32 uimsbf

 connBinder_length 8 uimsbf

 tap_count 8 uimsbf

 for (j=0; j<tap_count; j++) {

 DSM::Tap {

 tapId 16 uimsbf

 tapUse 16 uimsbf

 associationTag 16 uimsbf

 selector() variable bslbf

 }

 }

 }

 for (j=0; j<component_count – 2; j++) {

 LiteOptionsComponent() variable bslbf

 }

}

ATSC Transport Stream File System Standard 25 February 2003

 21

profileId_tag — This 32-bit field shall be set to 0x49534F06 indicating that this is a BIOP Protocol

Profile (see [DSM-CC] Section 5.6.3.5).

profile_data_length — This 32-bit field shall specify the total number of bytes in this

BIOPProfileBody structure following (i.e., excluding) this field.

profile_data_byte_order — This 8-bit field shall be set to 0x00 (FALSE) indicating big-endian byte

ordering for the subsequent fields of the message.

component_count — This 8-bit field shall be set to the number of components in this

BIOPProfileBody structure. The first component shall be BIOP::ObjectLocation and the second shall

be DSM::ConnBinder. Any further components have no meaning in this standard.

objectLocation_tag — This 32-bit field shall be set to 0x49534F50 as specified in Section 5.6.3.5

of [DSMCC], indicating that this is a BIOP::ObjectLocation structure.

objectLocation_length — This 8-bit field shall specify the number of bytes in the

BIOP::ObjectLocation structure following this field (not including this field).

carouselId — This 32-bit field shall be set to the downloadId value for the download scenario of the

module containing the object, as specified in Section 11.3.3.1 of [DSMCC]. All objects of a

single TSFS shall be carried in modules of the same download scenario. All DownloadDataBlock

and DownloadInfoIndication messages within the download scenario share the same downloadId, as

specified in Section 11.3.3.2 of [DSMCC].

moduleId — This 16-bit field shall be set to the moduleId of the module containing the object, as

defined in [DSM-CC]. The moduleId values in the range 0xFFF0-0xFFFF are reserved per

[SEC].

version.major — This 8-bit field shall contain the value 0x01, indicating the major version

number of the BIOP protocol used in this message.

version.minor — This 8-bit field shall contain the value 0x00, indicating the minor version

number of the BIOP protocol used in this message.

objectKey_length — This 8-bit field shall specify the number of bytes in the object key. The

number of bytes shall be no greater than 4 bytes, so as to avoid large keys. Note that object

keys are only intended to identify the objects uniquely within a specific module of a specific

TSFS and are not intended to serve as the URIs of the objects.

objectKey_byte — This 8-bit field shall contain a byte of the object key, which uniquely identifies

the object within the module containing the object. Two objects in the same module are

regarded as equivalent if and only if their objectKey_byte fields are identical.

connBinder_tag — This 32-bit field shall be set to 0x49534F40 indicating that this is a

DSM::ConnBinder structure, as specified in Section 5.6.3.3 of [DSMCC].

connBinder _length — This 8-bit field shall be set to the total length in bytes of this

DSM::ConnBinder structure after this field (not including this field).

tap_count — This 8-bit field shall indicate the number of Taps in this DSM::ConnBinder structure.

Note: The DSM::Tap() structure used here is defined in Section 5.6.1

of [DSMCC].

tapId — The value of this 16-bit field shall be set to 0xFFFF, indicating that the usage of this

field is reserved.

ATSC Transport Stream File System Standard 25 February 2003

 22

tapUse — The first Tap in the list of Taps shall have this 16-bit field set to 0x0016

(BIOP_DELIVERY_PARA_USE), indicating that this Tap identifies a Program Element containing

a DII message describing the delivery parameters for the module containing the object. There

may be another Tap in the list that has this 16-bit field set to 0x0017 (BIOP_OBJECT_USE),

indicating that the Tap identifies a Program Element containing the DDB messages

conveying the module itself. (The semantics of these values of tapUse are specified in

[DSMCC], Section 11.3.1.1.2.) Any Taps with other values of tapUse have no meaning in this

standard.

associationTag — This 16-bit field shall uniquely identify a Program Element listed in the

Program Map Section for the current virtual channel. The value of this field shall match the

association_tag value of an association_tag_descriptor in the Program Map Section.

selector() — The selector() structure is defined in Section 5.6.1 of [DSMCC] and shown in Table

12.8 of [A90]. When the value of tapUse is 0x0016 (BIOP_DELIVERY_PARA_USE), the selector()

field shall contain a MessageSelector(), as defined in Section 5.6.1.1 of [DSMCC] and

described in Table 5.5. This MessageSelector() structure is an instantiation of the generic

selector() structure. It is used to specify which of the possibly multiple DII messages in the

Program Element identified by a Tap is being referenced by the Tap. When the value of

tapUse is 0x0017 (BIOP_OBJECT_USE), the selector() shall consist solely of an 8-bit selector_length

field, which shall be set be 0x00 to indicate that the remainder of the selector() is empty.

Table 5.5 MessageSelector Structure

Syntax No. of Bits Format

MessageSelector() {

 selector_length 8 uimsbf

 selector_type 16 uimsbf

 transactionId 32 uimsbf

 timeout 32 uimsbf

 }

selector_length — This 8-bit field shall be set to 0x0A, indicating that the number of bytes in the

selector() structure following this field (not including this field) is 10.

selector_type —This 16-bit field shall be set to 0x0001 to indicate that the selector() is a

MessageSelector().

transactionId — This 32-bit field shall be set to the transactionId of the DII message to be

referenced.

timeout — This 32-bit field shall indicate the timeout period in microseconds to be used to time

out the acquisition of the DII message.

5.4 References to Remote Objects

When an IOR is used to reference a BIOP object residing in a different TSFS from that in which

the IOR appears, the IOR shall contain a LiteOptionsProfileBody containing a ServiceLocation

component as defined in Section 5.4.2 of [DSMCC] and described in Table 5.6. The Service

Location component contains the NSAP address of the other TSFS and a Name() structure

ATSC Transport Stream File System Standard 25 February 2003

 23

consisting of a list of names and corresponding object types, providing a specification for the

directory path from the Service Gateway of that TSFS to the referenced object. Table 5.1

describes the syntax of the Carousel NSAP Address. Annex B Section 3 describes how the

Carousel NSAP Address of a LiteOptionsProfileBody can be resolved to find the corresponding

Service Gateway of the remote TSFS.

Table 5.6 Definition of the LiteOptionsProfileBody Structure

Syntax No. of Bits Format

LiteOptionsProfileBody {

 profileId_tag 32 uimsbf

 profile_data_length 32 uimsbf

 profile_data_byte_order 8 uimsbf

 component_count 8 uimsbf

 DSM::ServiceLocation {

 componentId_tag 32 uimsbf

 component_data_length 8 uimsbf

 carouselNSAPaddress_length 8 uimsbf

 carouselNSAPaddress() 160

 Name() {

 nameComponents_count 32 uimsbf

 for (j=0; j<nameComponents_count; j++) {

 nameComponent_length 32 uimbsf

 for (k=0; k<nameComponent_length; k++) {

 nameComponent_data 8 bslbf

 }

 kind_length 32 uimsbf

 kind_data 32 uimsbf

 }

 }

 InitialContext_length 32 uimsbf

 for (j=0; j<initialContext_length; j++) {

 InitialContext_data_byte 8 bslbf

 }

 }

 for (n=0; n<component_count-1; n++) {

 LiteComponent()

 }

}

profileId_tag — This 32-bit field shall be set to 0x49534F05 indicating that this is a Lite Options

Protocol Profile (see [DSM-CC] Section 5.6.3.4).

ATSC Transport Stream File System Standard 25 February 2003

 24

profile_data_length — This 32-bit field shall specify the total number of bytes in this

LiteOptionsProfileBody structure following (i.e., excluding) this field.

profile_data_byte_order — This 8-bit field shall be set to 0x00 (FALSE) indicating big-endian byte

ordering for the subsequent fields of the message.

component_count — This 8-bit field shall be set to the number of components that appear in this

LiteOptionsProfileBody. The first component shall be a Service Location structure. Any other

components that may be present have no meaning in this standard.

componentId_tag — This 32-bit field shall be set to 0x49534F46, indicating that this is a Service

Location structure.

component_data_length — This 8-bit field shall specify the number of bytes in the

DSM::ServiceLocation structure following this field (not including this field).

carouselNSAPaddress_length — This 8-bit field shall be set to 0x14, indicating that the Carousel

NSAP Address is 20 bytes long.

CarouselNSAPaddress() — This 20-byte field shall contain the Carousel NSAP Address of the

remote TSFS.

nameComponents_count — This 8-bit field shall be set to the number of directory links in the

directory path from the Service Gateway to the referenced object in the remote TSFS.

nameComponent_length — This 32-bit field shall be set to the length of the binding name,

including the null terminating byte, for this link in the directory path from the Service

Gateway to the referenced object in the remote TSFS.

nameComponent_data — This 8-bit field shall contain a byte of the binding name for this link in

the directory path from the Service Gateway to the referenced object in the remote TSFS.

The binding name shall be terminated by a null byte.

kind_length — This 32-bit field shall be set to 0x04 indicating the use of the 3-character alias with

a null byte terminator for the object type of the bound object for this link in the directory

path.

kind_data — This 4-byte field shall contain the object type of the bound object for this link, as

specified in Table 5.7. Note that the object type of the last link in the path description

identifies the object type of the object referenced by the IOR.

Table 5.7 Value of kind_data Bytes

typeId_byte Description

0x64697200 (ASCII “dir” with null terminator) DSM::Directory object

0x66696C00 (ASCII “fil” with null terminator) DSM::File object

InitialContext_length — This 32-bit field shall be set to the length of the Initial Context data. Any

initial context data that are present have no meaning in this standard.

InitialContext_data_byte — If InitialContext_length is non-zero, this 8-bit field shall contain a byte of

Initial Context data. Such data have no meaning in this standard.

As an alternative to providing a name and object type in the DSM::ServiceLocation() for each

directory link in the path from the remote Service Gateway to the referenced object, the

nameComponents_count may be set to 0x0001, and a single name may be provided, with

ATSC Transport Stream File System Standard 25 February 2003

 25

nameComponent_data bytes containing the full path from the remote Service Gateway to the

referenced object, obtained by concatenating the individual names in the path with a slash (‘/’)

used as a delimiter, and with kind_data set to the object type of the referenced object.

Under the rules for link names given in Sections 5.5.1 and 5.5.3, and the rules for associating

URIs with TSFS objects given in Section 5.6, this amounts to giving the URI of the referenced

object as defined by its position in the remote TSFS. The object may then be located using the

process described in Annex B Section 5.

5.5 BIOP Message Formats

An ATSC Transport Stream File System shall consist of DSM-CC BIOP objects, each of which

shall be of type DSM::Directory, DSM::File, or DSM::ServiceGateway. Each TSFS shall contain exactly

one object of type DSM::ServiceGateway. Every other object in the TSFS shall be reachable by at

least one directory path from the Service Gateway object, i.e., by at least one sequence of

bindings with the property that the first binding in the sequence is contained in the Service

Gateway object, the object referenced by each binding in the sequence except the last one is a

directory containing the next binding in the sequence, and the object referenced by the last

binding in the sequence is the object to be reached. The references in such a sequence shall be in

the form of Interoperable Object References (IORs) containing a BIOPProfileBody.

A TSFS may also contain bindings referencing objects in other Transport Stream File

Systems in the same virtual channel or other virtual channels, possibly in other transport streams,

through IORs containing a BIOPLiteOptionsProfileBody. This enables a TSFS name hierarchy to span

multiple virtual channels logically, even though the TSFS is physically carried in a single virtual

channel.

The TSFS objects are carried in BIOP object messages. These messages are instantiated from

the Generic Message Format specified in [DSMCC]. Each message consists of a header, a sub-

header, and a message body.

5.5.1 Directory Message Format

An object of type DSM::Directory shall be conveyed by a BIOP::DirectoryMessage, as defined in

Section 11.3.2.2 of [DSMCC] and further constrained by this standard. The BIOP::DirectoryMessage

is an instantiation of the Generic Object Message defined in [DSMCC]. The following rules

constrain this instantiation:

• The objectKind field shall contain the value 0x64697200 (the null-terminated ASCII string

“dir”).

• The messageBody structure shall contain the BIOP::DirectoryMessageBody structure.

• The BIOP::DirectoryMessageBody structure consists of a collection of zero or more bindings. A

binding correlates a binding name to an IOR and provides additional information about the

object. The IOR shall include the BIOPProfileBody when the referenced object is in the same

TSFS, and shall include the LiteOptionsProfileBody when the referenced object is in a different

TSFS.

The semantics of the fields of the BIOP::DirectoryMessageBody are as defined in [DSM-CC] with

the following additional constraints imposed by this ATSC TSFS Standard:

• The BIOP::Name() field contains the binding name of the referenced object. This shall conform

to the syntax of a relative path with respect to the parent directory, as defined in [URI].

ATSC Transport Stream File System Standard 25 February 2003

 26

Characters which are not present in US-ASCII, as well as reserved characters, shall be

encoded by first taking the UTF-8 representation of these characters, and then escaping the

octets of the UTF-8 representation using the %xx escape syntax defined by [URI] Section

2.1. For example, the relative URI component “café” would be encoded as “caf%c3%a9”,

since the character “é” is encoded in UTF-8 as the octet sequence 0xC3 0xA9.

• The objectInfo field in a binding may contain objectInfo descriptors for the bound object if those

same descriptors are present in the objectInfo of the corresponding object message. The

objectInfo descriptors are defined in Section 6.

• The IOR in a binding shall not reference a Service Gateway.

• There shall be no circular paths in the directory structure of a TSFS.; i.e., it shall not be

possible to follow a sequence of directory links from object to object and arrive back at the

starting point of the sequence. This shall be true whether the links are to local or remote

objects.

Table 5.8 defines the syntax of the DSM::DirectoryMessage, as constrained by this standard.

Table 5.8 Syntax of Directory Message Format

Syntax No. of Bits Format

BIOP::DirectoryMessage() {

 MessageHeader() {

 Magic 32 uimsbf

 biop_version.major 8 uimsbf

 biop_version.minor 8 uimsbf

 byte_order 8 uimsbf

 message_type 8 uimsbf

 message_size 32 uimsbf

 }

 MessageSubHeader () {

 objectKey {

 objectKey_length 8 uimsbf

 for (i=0; i<objectKey_length; i++) {

 objectKey_data_byte 8 bslbf

 }

 }

 dirObjectKind_length 32

 dirObjectKind_data 32

 dirObjectInfo_length 16 uimsbf

 dirObjectInfo {

 for (j=0; j<dirObjectInfo_length; j++) {

 dirObjectInfo_descriptor_byte 8 bslbf

 }

 }

 serviceContextList_count 8 uimsbf

ATSC Transport Stream File System Standard 25 February 2003

 27

 for (j=0; j<serviceContextList_coun t; j++) {

 serviceContext() {

 context_id 32 uimsbf

 context_data_length 16 uimsbf

 for (k=0; k<context_data_length; k++) {

 context_data_byte 8 bslbf

 }

 }

 }

 }

 messageBody_length 32 uimsbf

 DirectoryMessageBody() {

 bindings_count 16 uimsbf

 for (i=0; i<bindings_count; i++) {

 BIOP::Name() {

 nameComponent_count 8 uimsbf

 id_length 8 uimsbf

 for (j=0; j<id_length; j++) {

 id_byte 8 bslbf

 }

 kind_length 8 0x04

 kind_data 32 uimsbf

 }

 binding_type 8 uimsbf

 IOP::IOR()

 childObjectInfo_length 16 uimsbf

 childObjectInfo {

 If (kind_data == 0x66696C00) {

 ContentSize 64 uimsbf

 for (j=0; j<childObjectInfo_length - 8; j++) {

 childObjectInfo_descriptor_byte 8 bslbf

 }

 }

 else {

 for (j=0; j<childObjectInfo_length; j++) {

 childObjectInfo_descriptor_byte 8 bslbf

 }

 }

 }

 }

 }

ATSC Transport Stream File System Standard 25 February 2003

 28

magic — This field shall be set to 0x42494F50 to indicate that this is a BIOP message. (The

value of this field corresponds to the string “BIOP” encoded in ISO Latin-1.)

biop_version.major — This 8-bit field shall be set to 0x01, indicating the major version number of

the BIOP protocol used in this message.

biop_version.minor — This 8-bit field shall be set to 0x00, indicating the minor version number of

the BIOP protocol used in this message.

byte_order — This 8-bit field shall be set to 0x00 (FALSE) indicating big-endian byte ordering

for the subsequent fields of the message (including message_size).

message_type — This 8-bit field shall be set to 0x00 to indicate a BIOP object message.

message_size — This 32-bit field shall contain the length in bytes of the BIOP::DirectoryMessage,

including all bytes following this field (not including this field) up to the end of the

BIOP::DirectoryMessage.

objectKey_length — This 8-bit field shall contain the length in bytes of the object key, which shall

be no greater than 4 bytes.

objectKey_data_byte — This 8-bit field contains a byte of the object key. The object key shall

identify the object that is conveyed in this message uniquely within the data carousel module

that contains this message. The value of the object key is only meaningful to the Broadcast

Server and is treated as an opaque identifier (i.e., is not interpreted) by the Client.

dirObjectKind_length — This 32-bit field shall be set to 0x00000004, indicating that the

dirObjectKind_data field is 4 bytes long.

dirObjectKind_data — This 32-bit field shall be set to 0x64697200 (null-terminated ASCII “dir”),

indicating that this is a directory object. It is identical to the Kind string that is present in all

IORs referring to this object.

dirObjectInfo_length — This 16-bit field shall specify the length in bytes of the objectInfo structure

for this directory object.

dirObjectInfo_descriptor_byte — This 8-bit field shall contain a byte of the objectInfo structure, which

shall consist of a list of descriptors. See Section 6 for syntax and semantics of the descriptors

that may appear in this structure.

serviceContextList_count — This 8-bit field shall be set to the number of Service Context elements

appearing in the Service Context List. Any Service Context elements that appear have no

meaning in this standard.

context_id — This 32-bit field contains an identifier for the Service Context element.

context_data_length — This 16-bit field shall contain the length of the Service Context data.

context_data_byte — This 8-bit field contains a byte of Service Context data.

messageBody_length — This 32-bit field shall contain the length in bytes of the

DirectoryMessageBody, which consists of all bytes following this field (not including this field)

up to the end of the BIOP::DirectoryMessage.

binding_count — This 16-bit field shall contain the number of bindings in this directory. For each

binding, a BIOP::Name structure is defined, followed by an IOR, optionally followed by the

objectInfo for the referenced object.

nameComponent_count — This 8-bit field shall be set to 0x01 indicating that the Name() structure

for each binding consists of a single name component.

ATSC Transport Stream File System Standard 25 February 2003

 29

id_length — This 8-bit field shall specify the length in bytes of the identifier (name) for this

binding, including the null byte terminator for the string.

id_byte — This 8-bit field shall contain a byte of the identifier (name) for this binding. The

identifier shall conform to the syntax of a relative path, as defined in [URI], followed by a

null byte terminator. Characters which are not present in US-ASCII, as well as reserved

characters, shall be encoded by first taking the UTF-8 representation of these characters, and

then escaping the octets of the UTF-8 representation using the %xx escape syntax defined by

[URI] Section 2.1. For example, the relative URI component “café” would be encoded as

“caf%c3%a9”, since the character “é” is encoded in UTF-8 as the octet sequence 0xC3

0xA9. All binding names in a single directory object shall be distinct.

kind_length — This 8-bit field shall be set to 0x04 to indicate that the object type is 4 bytes (32

bits) long.

kind_data — This 32-bit field shall contain the object type of the referenced object, as specified in

Table 5.9.

binding_type — This 8-bit field shall contain the type of binding, as specified in Table 5.9.

Table 5.9 Object Kind and Binding Type Codes

kind_data binding_type Description

0x64697200 0x02 DSM::Directory object

0x66696C00 0x01 DSM::File object

Other Other Reserved

IOP::IOR — This field shall contain an IOP::IOR, as specified in Table 5.2. If the IOR references a

remote object, the referenced object shall not be a Service Gateway. It shall be either a

directory or file in the remote TSFS directory structure. (The reason for this is that under the

rules for binding names given in this section and Section 5.5.3, and the rules for associating

URIs with objects given in Section 5.6, a link to a remote Service Gateway would result in

URIs associated with the other objects in the remote TSFS that would not be well formed.

See Section 5.6 for the definition of how URIs are formed from directory names, and see

Annex B Section 5 for examples.)

childObjectInfo_length — This 16-bit field shall contain the length in bytes of the objectInfo structure

for the object referenced by this directory entry.

ContentSize — This 64-bit field, which is only present when the referenced object is of type

DSM::File, shall contain the number of bytes in the file content, or shall contain the value 0 to

indicate that the number of bytes in the file content is not provided in this binding. (Note that

even though ContentSize is a 64-bit field, the maximum size of a file in a TSFS is actually

somewhat less that 256M bytes, since it must fit within a single data carousel module, which

can consist of at most 64K blocks of slightly less than 4K bytes each.)

childObjectInfo_descriptor_byte — This 8-bit field shall contain a byte of the list of descriptors (i.e.,

the descriptor loop) that may appear in the objectInfo structure. See Section 6 for a definition

of the descriptors that may appear here. A descriptor shall not be present in the objectInfo

structure here unless it is also present in the objectinfo structure of the referenced object.

ATSC Transport Stream File System Standard 25 February 2003

 30

5.5.2 File Message Format

An object of type DSM::File shall be conveyed by a BIOP::FileMessage, as defined in Section 11.3.2.3

of [DSMCC] and further constrained by this standard. The BIOP::FileMessage is an instantiation of

the Generic Object Message defined in [DSMCC]. The following rules constrain this

instantiation:

• The objectKind field shall contain 0x66696C00 (the null-terminated ASCII string “fil”).

• The DSM::File::ContentSize attribute shall appear at the beginning of the fileObjectInfo field of the

BIOP File message. Other attributes of the file conveyed in this message may be specified in

the fileObjectInfo field via objectInfo descriptors defined in Section 6.

• The messageBody structure shall contain the BIOP::FileMessageBody structure, which is a stream

of bytes containing the content of a file.

Table 5.10 defines the syntax of the DSM::FileMessage, as constrained by this standard.

ATSC Transport Stream File System Standard 25 February 2003

 31

Table 5.10 Syntax of File Message Format

Syntax No. of Bits Format

BIOP::FileMessage() {

 MessageHeader () {

 magic 4x8 uimsbf

 biop_version.major 8 uimsbf

 biop_version.minor 8 uimsbf

 byte_order 8 uimsbf

 message_type 8 uimsbf

 message_size 32 uimsbf

 }

 MessageSubHeader() {

 objectKey_length 8 uimsbf

 for(j=0; j<objectKey_length; j++) {

 objectKey_ byte 8 uimsbf

 }

 fileobjectKind_length 32 uimsbf

 fileobjectKind_data 32 uimsbf

 fileObjectInfo {

 fileObjectInfo_length 16 uimsbf

 ContentSize 64 uimsbf

 for(j=0; j<fileObjectInfo_length - 8; j++) {

 fileObjectInfo_descriptor_byte 8 bslbf

 }

 }

 serviceContextList_count 8 uimsbf

 for (j=0; j<serviceContextList_count; j++) {

 serviceContext() {

 context_id 32 uimsbf

 context_data_length 16 uimsbf

 context_data_bytes var bslbf

 }

 }

 }

 messageBody_length 32 uimsbf

 FileMessageBody() {

 content_length 32 uimsbf

 for(j=0; j< content_length; j++) {

 content_byte 8 bslbf

 }

 }

}

ATSC Transport Stream File System Standard 25 February 2003

 32

magic — This field shall be set to 0x42494F50 to indicate that this is a BIOP message. The value

of this field corresponds to the string “BIOP” encoded in ISO Latin-1.

biop_version.major — This 8-bit field shall be set to 0x01, indicating the major version number of

the BIOP protocol used in this message.

biop_version.minor — This 8-bit field shall be set to 0x00, indicating the minor version number of

the BIOP protocol used in this message.

byte_order — This 8-bit field shall be set to 0x00 (FALSE) indicating big-endian byte ordering

for the subsequent fields of the message (including message_size).

message_type — This 8-bit field shall be set to 0x00, to indicate a BIOP object message. The

values in the range from 0x01 to 0xFF are reserved by ISO/IEC 13818-6.

message_size — This 32-bit field shall contain the length in bytes of the BIOP::FileMessage,

including all bytes following this field (not including this field) up to the end of the

BIOP::FileMessage.

ObjectKey_length — This 8-bit field shall contain the length in bytes of the object key. The value

shall be no greater than 4.

ObjectKey_byte — This 8-bit field shall contain a byte of the object key, which shall identify the

object that is conveyed in this message uniquely within the data carousel module that

contains this message. The value of the object key is only meaningful to the Broadcast Server

and is treated as an opaque identifier (i.e., is not interpreted) by the Client.

fileObjectKind_length — This 32-bit field shall be set to 0x00000004, indicating that the

fileObjectKind_data field is 4 bytes (32 bits) long.

fileObjectKind_data — This 32-bit field shall be set to 0x66696C00 (null terminated ASCII “fil”),

indicating that this is a file object. It shall be identical to the Kind string present in all IORs

referring to this file object.

fileObjectInfo_length — This 16-bit field shall specify the length in bytes of the objectInfo structure

for this file object.

ContentSize — This 64-bit field shall contain the number of bytes in the file content, which is the

same as the value of the content_length field below. (Note that even though this is a 64-bit

field, the maximum size of a file in a TSFS is actually somewhat less that 256M bytes, since

it must fit within a single data carousel module, which can consist of at most 64K blocks of

slightly less that 4K bytes each.)

fileObjectInfo_descriptor_byte — This 8-bit field shall contain a byte of a list of descriptors (i.e., a

descriptor loop). See Section 6 for the syntax and semantics of the descriptors that appear in

this structure.

serviceContextList_count — This 8-bit field shall be set to the number of Service Context elements

appearing in the Service Context List. Any Service Context elements have no meaning in this

Standard.

context_id — This 32-bit field shall contain an identifier for the Service Context element.

context_data_length — This 16-bit field shall contain the length of the Service Context data.

context_data_byte — This 8-bit field shall contain a byte of the Service Context data.

ATSC Transport Stream File System Standard 25 February 2003

 33

messageBody_length — This 32-bit field shall contain the length of the FileMessageBody() structure

following this field (not including this field). It shall be four (4) greater than the content_length

field immediately following it.

content_length — This 32-bit field shall contain the length of the file following this field.

content_byte — This 8-bit field shall contain a byte of the file’s data.

5.5.3 Service Gateway Message Format

The BIOP Service Gateway message is an instantiation of the generic object format. The

following rules constrain this instantiation.

• The objectKind field shall contain the value 0x73726700 (the null-terminated ASCII string

“srg”).

• The messageBody structure of ServiceGateway shall contain the BIOP::DirectoryMessageBody

structure, defined in Section 5.5.1.

• The binding names in the directory shall conform to the syntax of an absolute URI, as

specified in [URI], rather than the relative path syntax used in an ordinary directory object.

Characters which are not present in US-ASCII, as well as reserved characters, shall be

encoded by first taking the UTF-8 representation of these characters, and then escaping the

octets of the UTF-8 representation using the %xx escape syntax defined by [URI] Section

2.1. For example, the relative URI component “café” would be encoded as “caf%c3%a9”,

since the character “é” is encoded in UTF-8 as the octet sequence 0xC3 0xA9.

Thus, the BIOP Service Gateway message is syntactically and semantically identical to the

BIOP Directory message, except that the objectKind field contains the string “srg” (followed by a

null byte terminator), and the binding names in the message conform to the syntax of an absolute

URI rather than the syntax of a relative path.

5.6 Uniform Resource Identifiers

For each directory path leading from the Service Gateway of a TSFS to an object of the TSFS, a

URI shall be associated with the object, constructed by concatenating the binding names of the

directory links in the path, omitting the terminating null character of each name and using a slash

character (‘/’) as a delimiter between the names. Thus, every object in the TSFS has one or more

URIs associated with it, depending on the number of paths leading to it from the Service

Gateway. Annex B Section 5 shows examples of this.

In keeping with the common semantics for URIs, whenever two objects in the same or

different Transport Stream File Systems have the same URI associated with them, they shall be

considered to be equivalent objects.

6. OBJECTINFO DESCRIPTORS

A binding is a data structure in a directory that binds a name to a referenced object. It often also

includes some information about the object. In the case of a TSFS, a binding consists of a

BIOP::Name structure, a binding_type, an IOP::IOR structure, and a childObjectInfo (or just objectInfo)

structure.

In the objectInfo fields in an object message, and in the objectInfo fields of a binding structure,

after any DSM-CC defined fields, one or more objectInfo descriptors may be carried to describe

the attributes of the object.

ATSC Transport Stream File System Standard 25 February 2003

 34

6.1 Descriptor Identification and location

Table 6.1 lists the defined objectInfo descriptors and their allowable locations in various object

messages. For each entry marked as “S”, the corresponding descriptor shall appear in the

corresponding location. For each entry marked as “F”, the corresponding descriptor shall not

appear in the corresponding location. For each entry marked as “O”, the corresponding

descriptor may appear in the corresponding location, subject to the constraint that a descriptor

may only appear in the objectInfo of a binding in a directory message when an identical copy of

this descriptor is present in the objectInfo in the header of the object message for the object

referenced by the binding as well.

Table 6.1 objectInfo Descriptors and Locations

Descriptor Tag Gateway Directory File Binding Description

Content Type 0x72 F F S O content (MIME) type

Time Stamp 0x81 O O S O last modified time

F = Forbidden, S = Mandatory, O = Optional

Thus, both Content Type and Time Stamp descriptors shall appear in the fileObjectInfo of a File

object message, a Content Type descriptor shall not appear in the dirObjectInfo of a Directory or

Service Gateway object message, a Time Stamp descriptor may appear in the dirObjectInfo

structure of a Directory or Service Gateway object message, and both Content Type and Time

Stamp descriptors may appear in the objectInfo structure of a binding in a Directory or Service

Gateway, but only if the same descriptors appear in the object message for the bound object.

6.2 Content Type Descriptor

The Content Type descriptor is defined in [Trigger] and reproduced in Table 6.2 for

convenience. In the case of any discrepancy between the description in Table 6.2 and that

appearing in [Trigger], the latter shall take precedence. This descriptor shall appear within the

objectInfo of a DSM::File, and it may appear within the objectInfo of a binding referring to a file

object. It shall not be present in the objectInfo within a DSM::Directory or DSM::ServiceGateway object

message, or a binding referring to a DSM::Directory BIOP object.

Table 6.2 Syntax of ContentTypeDescriptor

Syntax No. of Bits Format

contentTypeDescriptor() {

 escriptor_ tag 8 uimsbf

 descriptor_ length 8 uimsbf

 for (j=0; j<descriptor_length; j++) {

 content_type_data_byte 8 bslbf

 }

}

descriptor_tag — This 8-bit field shall identify the descriptor. For the ContentTypeDescriptor it shall

be set to 0x72.

ATSC Transport Stream File System Standard 25 February 2003

 35

descriptor_length — This 8-bit field shall specify the number of bytes in the identifier that

follows.

content_type_data_byte — This 8-bit field shall contain a byte of a string that indicates the content

(MIME) type of the object, as specified in [MIME]. (This is the string that would appear in

the Content-Type field of a MIME message referring to an attachment of this content type.)

6.3 Time Stamp Descriptor

The syntax of a Time Stamp descriptor is defined in Table 6.3. The Time Stamp descriptor may

be used to specify the time at which the object (to which the containing objectInfo structure

belongs) was last modified. It shall appear in every DSM::File message, and it may appear in

DSM::Directory and DSM::ServiceGateway messages. It may appear in a binding if it also appears in the

object message to which the binding refers.

Table 6.3 Syntax of TimeStamp_descriptor

Syntax No. of Bits Format

TimeStamp_descriptor() {

 descriptor_ tag 8 uimsbf

 descriptor_ length 8 uimsbf

 timeStamp 64 uimsbf

}

descriptor_tag — This 8-bit field identifies this descriptor. For the TimeStamp_descriptor this field

shall be set to 0xB9.

descriptor_length — This 8-bit field specifies the number of bytes of the descriptor that

immediately follow the descriptor_length field (not including this field). The value of this field

shall be set to 0x08.

timeStamp — This 64-bit unsigned integer quantity shall represent UTC time when the object was

last modified, measured in milliseconds since 00:00:00 of January 1, 1970, GMT. The value

0xFFFFFFFFFFFFFFFF shall indicate that the time is not available. For a Directory or

Service Gateway object, “modified” shall mean that a binding has been added or deleted, or a

binding name has been changed. For a file, “modified” shall mean that there has been a

change in the Content Type descriptor value, content_length, or one or more content_byte values.

Note that the “epoch” or starting point for this time measurement is different from that used

in the PSIP Event Information Tables. Note also that it is UTC time, not GPS time.]

7. TRANSPORT

Objects of a TSFS shall be transported in DSM-CC data carousels as defined in [DSMCC]. Each

object (BIOP message) shall be transmitted in a single module of a DSM-CC data carousel. One

module may contain one or more objects. Each module is fragmented into one or more blocks

that are carried in DDB (DownloadDataBlock) messages as shown in Figure 7.1. Each DDB message

is of the same size, except for the last block of the module, which may be of a smaller size. The

Module delivery parameters, which are required to retrieve and assemble the objects, are sent in

DII (DownloadInfoInitiate) messages. A DSI (DownloadServerInitiate) message provides the Carousel

NSAP Address for the TSFS, and also provides an IOR that identifies the ServiceGateway object

ATSC Transport Stream File System Standard 25 February 2003

 36

for the TSFS. All of the DDB, DII, and DSI messages are encapsulated in DSM-CC sections, a

special case of MPEG-2 sections, with table_id value 0x3C for DDB messages and table_id value

0x3B for DII and DSI messages, as specified in Section 9.2.2 of [DSMCC].

The DDB and DII messages that belong to a single data carousel, or download scenario,

within an MPEG-2 program are distinguished by the fact that they all contain the same value in

their downloadId field. (In the case of a DDB message the downloadId field is in the Download Data

Header of the message. In the case of a DII message, the downloadId field is the first field of the

message following the DSM-CC Message Header.) For a TSFS, the value of the downloadId field

in these messages matches the value of the carouselId field in the carouselNSAPAddress.

Download

Data Carousel :

Modules

and

Blocks

Object Carousel:

BIOP messages Obj-1 (Directory)

Module-1

Obj-3 (File)Obj-2 (File)

Block-1 Block-2 Block-3 Block-4 Block-5

Download DataBlock Headers

Message Headers and SubHeaders

DSM-CC

Sections
Section-2Section-1 Section-4Section-3 Section-5

Section Headers

Figure 7.1 Encapsulation and fragmentation of BIOP messages.

7.1 DSM-CC Message Header

Both the DII messages and the DSI messages use the DSM-CC Message Header, which is

defined in Section 2 of [DSMCC] and is reproduced in Section 7.2.3.1 of [A90]. The DSM-CC

Message Header has a transaction_id field, which is used in [A90] to both identify and version the

message for ATSC data carousels. In particular, transaction_id[15..1] (bits 1 through 15) serve as

an identifier of the message, and transaction_id[29..16] (bits 16 through 29) serve as a version

number of the message.

Any change in a module causes a change in the DII message that provides the delivery

parameters for the module. This change in the DII message causes a change in its transaction_id

value. Thus, by monitoring transaction_id[15..1] of a DII message, a receiver can detect whether

any of the modules referenced by the DII message have changed.

This ATSC TSFS Standard adopts exactly the same usage of the transactionId field for DSM-

CC data carousels containing a TSFS as that defined in [A90] for ATSC data carousels.

As described in Section 5.3, an IOR with a BIOPProfileBody references a DII message by means

of a Tap in the DSM::ConnBinder component with a Message Selector giving the transaction_id of the

DII message. Only the identification portion (bits 1 through 15) of the transaction_id field in the

DII message is significant in identifying the correct DII message; i.e., a Tap in an IOR shall be

ATSC Transport Stream File System Standard 25 February 2003

 37

considered to reference a DII message if bits 1 through 15 of the transactionId field in the Message

Selector of the Tap match bits 1 through 15 of the transactionId field of the DII message,

regardless of whether the other bits of the transactionId match. The other bits of the transaction Id

may not match simply because the version of the DII message may have changed since the IOR

was generated.

7.2 Transport of Service Gateway IOR

The IOR of the Service Gateway shall be broadcast by means of a DSI message. The syntax of

the DSI message is defined by [DSMCC] and is shown in Table 7.1.

Table 7.1 Syntax of a DSI Message

Syntax No. of Bits Format

DownloadServerInitiate() {

 DsmccMessageHeader()

 ServerId 160 bslbf

 CompatibilityDescriptor() {

 compatibilityDescriptorLength 16 uimsbf

 }

 privateData_length 16 uimsbf

 for (i=0; i<PrivateData_length; i++) {

 privateData_byte 8 uimsbf

 }

}

ServerId — This 160-bit field shall contain the carouselNSAPaddress of this TSFS. Table 5.1 in

Section 5.1 gives a detailed specification of the syntax and semantics of this field.

CompatibilityDescriptor — This 16-bit field shall be set to 0x0000, indicating that the compatibility

descriptor is not used in this message.

privateData_length — This 16-bit field shall specify the number of bytes in the PrivateData_bytes

field.

privateData_byte — This 8-bit field shall contain a byte of the BIOP ServiceGatewayInfo structure, as

specified by [DSMCC] and described for convenience in Table 7.2.

ATSC Transport Stream File System Standard 25 February 2003

 38

Table 7.2 Syntax of BIOP: ServiceGatewayInfo

Syntax No. of Bits Format

ServiceGatewayInfo() {

 IOP::IOR() variable bslbf

 downloadTaps_count 8 uimsbf

 for(k=0; k<downloadTaps_count; k++) {

 DSM::Tap() {

 tapId 16 uimsbf

 tapUse 16 uimsbf

 associationTag 16 uimsbf

 selector() variable bslbf

 }

 }

 serviceContextList_count 8 uimsbf

 for (j=0; j<serviceContextList_count; j++) {

 serviceContext() {

 context_id 32 uimsbf

 context_data_length 16 uimsbf

 for (i=0; i<context_data_length; i++) {

 context_data_byte 8 bslbf

 }

 }

 }

 userInfo_length 16 uimsbf

 for (i=0; i<userInfo_length; i++) {

 userInfo_ byte 8 bslbf

 }

}

IOP::IOR — This field shall contain the IOR of the Service Gateway object for this TSFS. It shall

contain a BIOPProfileBody, rather than a LiteOptionsProfileBody. See Table 5.2 for a specification of

the syntax and semantics for an IOR containing a BIOPProfileBody.

downloadTaps_count — This 8-bit field shall specify the number of Taps included in this

ServiceGatewayInfo structure. One or more Taps may be included, each referencing DII

messages and/or DDB messages for the modules containing objects of the TSFS, to facilitate

acquisition of the entire TSFS. It is not required that any Taps be included.

tapId — The value of this 16-bit field shall be set to 0xFFFF, indicating that the usage of this

field is reserved.

tapUse — As specified in Sections 11.2.6 and 11.3.3.3 of [DSMCC], this 16-bit field shall be set

to 0x0007 (DOWNLOAD_CTRL_DOWN_USE) for any Tap in the list that references a DII message

giving delivery parameters for modules containing objects of the TSFS, and it shall be set to

ATSC Transport Stream File System Standard 25 February 2003

 39

0x000A (DOWNLOAD_DATA_DOWN_USE) for any Tap in the list that references a program

element containing DDB messages delivering modules containing objects of the TSFS. Taps

with any other value of tapUse have no meaning in this standard.

associationTag — This 16-bit field identifies a Program Element listed in the Program Map

Section for the current virtual channel. The value of this field shall be identical to the

association_tag value of an association_tag_descriptor in the Program Map Section for the current

virtual channel.

selector() — The selector() structure is defined in Section 5.6.1 of [DSMCC] and shown in Table

12.8 of [A90]. When the value of tapUse is 0x0016 (BIOP_DELIVERY_PARA_USE), the selector()

shall be a MessageSelector, as defined in [DSMCC] and described in Table 5.5. This selector()

specifies which of the possibly multiple DII messages in the Program Element identified by

the Tap is being referenced by the Tap. When the value of tapUse is 0x0017

(BIOP_OBJECT_USE), the selector() shall consist solely of an 8-bit selector_length field, which

shall be set be 0x00 to indicate that the remainder of the selector() is empty.

serviceContextList_count — This 8-bit field shall be set to the number of Service Context elements

appearing in the Service Context List. Any Service Context elements have no meaning in this

standard.

context_id — This 32-bit field shall contain an identifier for the Service Context element.

context_data_length — This 16-bit field shall contain the length of the Service Context data.

context_data_byte — This 8-bit field shall contain a byte of he Service Context data.

userInfo_length — This 16-bit field shall specify the number of bytes carried in the user

information data field.

userInfo_byte — This 8-bit field shall contain a byte of the user information data carried by this

service gateway object. If present, the user information data have no meaning in this

standard.

7.3 Transport of Module Delivery Parameters

The Module delivery parameters for each Module carrying objects of the TSFS shall be

encapsulated in DII messages. The syntax of the DII message is defined by [DSMCC] and is

shown in Table 7.3.

Table 7.3 Syntax of a DII Message

Syntax No. of Bits Format

DownloadInfoIndication () {

 DsmccMessageHeader()

 downloadId 32 uimsbf

 blockSize 16 uimsbf

 windowSize 8 uimsbf

 ackPeriod 8 uimsbf

 TCDownloadWindow 32 uimsbf

 TCDownloadScenario 32 uimsbf

 CompatibilityDescriptor() {

ATSC Transport Stream File System Standard 25 February 2003

 40

 compatibilityDescriptorLength 16 uimsbf

 }

 numberOfModules 16 uimsbf

 For(I=0; I<numberOfModules; I++) {

 moduleId 16 uimsbf

 moduleSize 32 uimsbf

 moduleVersion 8 uimsbf

 ModuleInfo_length 8 uimsbf

 ModuleInfo {

 moduleTimeOut 32 uimsbf

 blockTimeOut 32 uimsbf

 minBlockTime 32 uimsbf

 numberTaps 8 uimsbf

 for (j=0; j<numberTaps; j++) {

 DSM::Tap() {

 tapId 16 uimsbf

 tapUse 16 uimsbf

 associationTag 16 uimsbf

 selector() variable bslbf

 }

 }

 userInfo_length 8 uimsbf

 for (j=0; j<userInfo_length; j++) {

 userInfo_byte 8 bslbf

 }

 }

 }

 privateData_length 16 uimsbf

 for (i=0; i<privateData_length; i++) {

 privateData_byte 8 bslbf

 }

}

DsmccMessageHeader() — This structure shall be the message header as specified in [DSMCC].

downloadId — This 32-bit field shall be set to the carouselId of this TSFS. All objects of a single

TSFS shall be carried in modules of the same download scenario. All DownloadDataBlock and

DownloadInfoIndication messages in the download scenario share the same value of downloadId.

blockSize — This 16-bit field shall be set to the length in bytes of the data in the blocks in each

module carried in the DownloadDataBlock messages referenced by this DII message, as specified

in [DSMCC]. Every block in each module except the last one shall have this same size. The

last block may be smaller.

ATSC Transport Stream File System Standard 25 February 2003

 41

windowSize — This 8-bit field shall be set to 0x00, as specified by [DSMCC].

ackPeriod — This 8-bit field shall be set to 0x00, as specified by [DSMCC].

TCDownloadWindow — This 8-bit field shall be set to 0x00, as specified by [DSMCC].

TCDownloadScenario — This 32-bit field shall be set to 0x000000, as specified by [DSMCC], to

indicate that this field is not used for object carousels.

compatibilityDescriptorLength — This 16-bit field shall be set to 0x00, indicating that the

compatibility descriptor is not used in this message.

numberOfModules — This 16-bit field shall contain the number of modules referenced by this DII

message, as specified in [DSMCC].

moduleId — This 16-bit field shall contain the identifier for this module, as specified in

[DSMCC].The moduleId shall be unique within the download scenario (i.e., within the set of

modules in the same virtual channel with the same value of downloadId).

moduleSize — This 32-bit field shall contain the total size in bytes of this module, as specified in

[DSMCC].

moduleVersion — This 8-bit field shall contain the version number of this module, as specified in

[DSMCC].

moduleInfo_length — This 8-bit field shall specify the number of bytes in the moduleInfo structure,

as specified in [DSMCC].

moduleTimeOut — This 32-bit field shall contain the timeout value in microseconds that may be

used to time out the acquisition of all blocks of the module. The value 0 shall mean that no

timeout value is specified.

blockTimeOut — This 32-bit field shall contain the timeout value in microseconds that may be

used to time out the next block of the module after a block has been acquired. The value 0

shall mean that no timeout value is specified.

minBlockTime —This 32-bit field shall contain the minimum time period that exists between the

delivery of two subsequent blocks of the module. The value 0 shall mean that no minimum

time period is specified.

numberTaps — This 8-bit field shall contain the number of Taps in the ModuleInfo structure. Any

Taps beyond the first one have no meaning in this standard.

tapId — The value of this 16-bit field shall be set to 0xFFFF, indicating that the usage of this

field is reserved.

tapUse — For the first Tap in the ModuleInfo structure, this 16-bit field shall be set to 0x0017

(BIOP_OBJECT_USE).

associationTag —The value of this field shall be identical to the association_tag value of an

association_tag_descriptor in a Program Map Section for the virtual channel containing this DII

message. For the first Tap in the ModuleInfo structure, the program element associated with

this descriptor shall be the program element carrying this module.

selector() — For the first Tap in the ModuleInfo structure, the selector() shall consist solely of an 8-bit

selector_length field, which shall be set be 0x00 to indicate that the remainder of the selector() is

empty.

userInfo_length — This 8-bit field shall specify the number of user information bytes immediately

following this field (not including this field).

ATSC Transport Stream File System Standard 25 February 2003

 42

userinfo_byte — This 8-bit field shall contain one byte of the user information bytes in the

ModuleInfo structure. Any user information bytes present have no meaning in this standard.

privateData_length — This 16-bit field shall specify the number of private data bytes following

this field.

privateData_byte — This 8-bit field shall contain shall contain one byte of the private data carried

by this DII message. Any private data present have no meaning in this standard.

7.4 Semantics of TransactionId

This section defines the semantics of the transactionId field in the DSM-CC Message Header for

DSI and DII messages of a TSFS, which are the same as the semantics specified in [A90] for

ATSC data carousels.

The transactionId has a dual role, providing both identification and versioning mechanisms for

control messages; i.e. DownloadInfoIndication and DownloadServerInitiate messages. According to the

DSM-CC specification, the transactionId must uniquely identify a download control message

within a data carousel; however it must also be “incremented” whenever any field of the

message is modified. The term “incremented”, originally defined in the DSM-CC specification,

should be interpreted as “changed” within this specification.

The object carousel is carried on top of a data carousel, which in this standard means a DSI

message, a set of DII messages, and a set of DDB messages carrying the modules described in

the DII messages. The DII and DDB messages all have a common downloadId value. The DDB

messages may be carried in a different program element from the DSI and DII messages.

When a module is changed, the version number of the module needs to be changed. This

implies that the DownloadInfoIndication message that references the module needs to be also updated,

since it contains the module version number. Since the DownloadInfoIndication is updated, its

transactionId needs to be also changed. However, it would be highly undesirable to be forced on

account of this to change all the IORs in Directory bindings that reference the DII messages by

means of their transactionIds, since this would cause additional modules to be updated, which in

turn would require the transactionIds of additional DII messages to be updated, and so on. It is

desirable to avoid the need to update additional messages, and to limit the implications of

updating a module to the module itself and the DownloadInfoIndication message referencing the

module.

To address the above issues, the transactionId shall consist of four sub-fields, as specified in

[A90] and described in Table 7.4. This reflects the dual role of the transactionId (outlined above)

and the constraints imposed to reduce the effects of updating a module.

Table 7.4 TransactionId Sub-Fields

Subfield Bits Description

updateFlag 0 This field shall be toggled each time a control message is updated.

identification 1-15 For DSI messages, this field shall be set to 0x0000. For DII messages, it shall be set to a

non-zero value.

version 16-29 This field shall be changed each time a control message is updated.

originator 30-31 This field shall be set to ‘10’, indicating that the transactionId is set by the server.

ATSC Transport Stream File System Standard 25 February 2003

 43

The identification subfield shall be unique within the scope of all DII messages in the data

carousel. When the message changes, the updateFlag shall be toggled, and the version subfield shall

be changed (typically incremented modulo the size of the subfield, but this is not required).

Any change to a Module results in incrementing its moduleVersion • eld. This change is

reflected in the corresponding field in the description of the Module in the DownloadInfoIndication

message that gives its delivery parameters. Since a • eld in the DownloadInfoIndication message is

changed, the updateFlag and version subfields of its transactionId field are changed to indicate a new

version of the message. If the entire transactionId field were used to identify the message, then this

would require that every message referencing the transactionId would also have to be updated.

However, this massive propagation of updates is not needed, since the identification subfield of the

transactionId field is not affected by these updates.

When locating a message based on the transactionId value used for referencing the message,

only the identification part (bits 1…15) needs to be matched. Thus, the referencing messages

need not be updated every time a referenced control message is updated. The implications of

updating a module are limited to the module itself and the DownloadInfoIndication message

describing the module.

A receiver can find out if a particular module that it has retrieved earlier has changed, by

filtering the DownloadInfoIndication message that described that module and checking if it has been

changed.

7.5 Signaling of Transport Stream File Systems

A Transport Stream File System used by a data service application shall be signaled in the Data

Service Table (DST) of the data service by a Tap with associated parameters and structure as

described in Table 7.5. This Tap signals the location of the DSI message that carries information

about the Service Gateway of the TSFS, and optionally uses a URI in the selector structure to

restrict the referenced resource to a specified file or directory of the TSFS. The individual

program elements carrying all the DII and DDB messages of the TSFS shall not be signaled in

the DST. (No mechanism is provided in this standard to signal these program elements in the

DST. Note, however, that they may all be signaled in the DSI message for the TSFS.)

The protocol_encapsulation value 0x0F shall be used in the Data Service Table (DST) to signal

the TSFS (Object Carousel) encapsulation, extending Table 12.5 of [A90].

In the event that the data service uses a remote TSFS, either directly or by indirect reference

via a remote object reference from a local TSFS, the remote program element carrying the DSI

message for the remote TSFS shall be signaled in the Network Resources Table (NRT), and a

Tap in the DST shall reference this entry in the NRT. The same protocol encapsulation value

shall be used for such Taps.

The following Table is an excerpt of the Data Service Table defined in [A90], showing how

a Tap and its related fields need to be set up when protocol_encapsulation is equal to the value

signaling a TSFS.

ATSC Transport Stream File System Standard 25 February 2003

 44

Table 7.5 DST Tap Referencing a Transport Stream File System

Syntax No. of Bits Format

Tap_with_related_fields() {

 protocol_encapsulation 8 uimsbf

 action_type 7 uimsbf

 resource_location 1 bslbf

 Tap() {

 tap_id 16 uimsbf

 use 16 uimsbf

 association_tag 16 uimsbf

 selector() variable bslbf

 }

 tap_info_length 16 uimsbf

 for(k=0; k<N; k++) {

 descriptor() variable bslbf

}

protocol_encapulation —If the Tap() references a Transport Stream File System, this 8-bit field

shall have value 0x0F.

action_type — This 7-bit field shall be set as specified in [A90].

resource_location — This 1-bit field shall be set as specified in [A90].

tap_id — This 16-bit field is used to identify the resource, as specified in [A90].

use — This 16-bit field shall have value 0x0000, as specified in [A90].

association_tag — This 16-bit field shall uniquely specify either a program element in a Program

Map Table section for the MPEG-2 program containing the data service, or a DSM-CC

Resource Descriptor listed in the Network Resource Table, as specified in [A90]. If the Tap()

references a Transport Stream File System, the specified program element shall contain the

DownloadServerInitiate (DSI) message that points to the ServiceGateway for the referenced

Transport Stream File System.

selector() — If the Tap() references a TSFS, the selector() structure shall be a TSFS_selector(), as

described in Table 7.6.

tap_info_length — This 16-bit field shall be set as specified in [A90].

descriptor() — If present, this structure shall be a descriptor, as specified in [A90].

For a Tap() that references a TSFS, this ATSC TSFS Standard defines a selector structure of a

selector_type 0x109, extending Table 12.9 of [A90]. This selector structure provides the carouselId

of the TSFS (which is the carouselId in the carouselNSAPAddress that appears in the DSI message

pointing to the Service Gateway of the TSFS), the timeout interval for acquiring the DSI

message, and optionally a URI that specifies a file or directory of the TSFS (with the semantics

that the Tap() reference is limited to the specified file or directory). The specification of this

selector() appears in Table 7.6.

ATSC Transport Stream File System Standard 25 February 2003

 45

Table 7.6 TSFS Selector for Tap Referencing a TSFS

Syntax No. of Bits Format

TSFS_selector() {

 selector_length 8 uimsbf

 selector_type 16 uimsbf

 carouselId 32 uimsbf

 DSI_timeout 32 uimsbf

 if(selector_length > 10) {

 for (k = 0; k<selector_length-10; k++) {

 URI_byte 8 bslbf

 }

 }

}

selector_length — This 8-bit field shall specify the number of bytes in the selector following this

field (not including this field). Its value shall be 10 when the selector specifies only a

carouselId and a DSI timeout interval, and it shall be 10 + N when the selector specifies a

carouselId, a DSI timout interval, and a URI, where N is the number of bytes in the string

representing the URI.

selector_type — This field shall have value 0x109, indicating that the selector is a TSFS_selector().

carouselId — This 32-bit field shall specify the carouselId of the DownloadServerInitiate message that

contains the IOR of the ServiceGateway for the referenced Transport Stream File System.

DSI_timeout — This 32-bit field shall specify the timeout interval in microseconds for the

DownloadServerInitiate message that contains the IOR of the BIOP ServiceGateway object for the

referenced Transport Stream File System, or shall have value 0 to indicate that no timeout

interval is specified.

URI_byte — If selector_length is greater than 10, then this field shall contain a byte of a string

representing an absolute URI, as specified in [URI]. The URI shall be identical to the URI

associated with a file or a directory of the Transport Stream File System, as defined in

Section 5.6 of the ATSC TSFS Standard, with the semantics that only that file or the content

of that directory is referenced by this Tap. A process for resolving this URI to locate the

specified file or directory is described in Annex B Section 5.

Any program element containing any messages of a TSFS shall be labeled with stream_type

0x0B in the MPEG-2 Program Map Section and in the Service Location Descriptor of the Virtual

Channel Table.

7.6 Private Usage Collision Avoidance

If a Tap in a DST signals a TSFS in which any user private data structures appear (i.e., data

structures that are not defined by this standard, such as userInfo in the ServiceGatewayInfo structure

of the DSI message, or privateData in a DII message, or userInfo associated with a module in a DII

message), then an MPEG-2 defined Registration Descriptor (MRD) shall appear in the descriptor

loop associated with that Tap [MRD]. The MPEG-2 Registration Descriptor contains a 32 bit

format identifier field (administered by SMPTE) which is registered to the organization defining

ATSC Transport Stream File System Standard 25 February 2003

 46

the syntax of the user private data structures. The proper registration of a format identifier value

allows unique identification of the semantic meaning of the contents of the private fields to allow

collision avoidance. Only one MRD shall be allowed in a given Tap loop [COLLISION]. A DST

conveying an MRD in the Tap loop must be received before parsing of the user private fields can

begin.

ATSC Transport Stream File System Standard, Annex A 25 February 2003

 47

Annex A:

Carousel Design (Informative)

A DSM-CC Data Module may contain one or more TSFS objects, of any type (hence the need

for ObjectKey). The objects may be organized into the modules in many different ways, depending

on application needs.

For maximum efficiency of data access in certain types of applications, designers of a TSFS

should only compile two types of module:

• Directory module: contains at most one DSM::ServiceGateway object and one or more

DSM::Directory objects (i.e., cannot contain DSM::File objects).

• File module: contains one or more DSM::File objects (i.e., cannot contain any

DSM::ServiceGateway or DSM::Directory objects).

I.e., the BIOP service gateway and BIOP directory objects should be encapsulated in one or

several data carousel modules that are separate from the data modules conveying the BIOP file

objects. The data modules conveying the BIOP directory objects may be transmitted more often

to allow receivers to reconstruct the file hierarchy with minimum latency. To reduce latency

induced by parsing a data module payload without impacting coding efficiency too much, it is

possible to map any large BIOP file object to a single data module.

Efficiency may be further improved by placing all files belonging to a single application in a

single directory and in a single file module.

For other types of applications, it may be more efficient to have each module contain an

entire URI name space (i.e., all the objects with a common base-URI), consisting of a directory

one level below the Service Gateway together with all of its subdirectories and files, so that only

a single module needs to be acquired in order to access the entire URI name space. Many other

organizational structures are possible.

ATSC Transport Stream File System Standard, Annex B 25 February 2003

 48

Annex B:

Object and File System Acquisition (Informative)

1. INTRODUCTION

An IOR (Interoperable Object Reference) is a structure containing necessary information for

locating a TSFS object. Two types of IORs are specified in this TSFS standard, one containing a

BIOPProfileBody that is used to reference objects in the same TSFS, and one containing a

LiteOptionsProfileBody that is used to reference objects in a remote TSFS (which may be in the same

virtual channel, a different virtual channel in the same transport stream, or a different virtual

channel in a different transport stream).

This annex describes how to acquire a local TSFS object given its IOR, how to acquire a

remote TSFS object given its IOR, how to acquire an entire TSFS given its Tap in the Data

Service Table, and finally how to acquire any object given its URI. Several of the figures in this

Annex were adapted from figures in [DVB-DB].

2. LOCAL OBJECT ACQUISITION

An IOR that refers to an object within the same TSFS (Object Carousel) contains a BIOP Profile

Body (with syntax as shown in Table 5.3) that contains the information necessary to locate the

BIOP messages that convey the object data and attributes. This BIOP Profile Body comprises an

ObjectLocation component and a ConnBinder component.

The ConnBinder component always includes one Tap that tells where to find the DII message

that conveys the module delivery parameters of the module containing the object. The tapUse

field of this Tap is set to BIOP_DELIVERY_PARA_USE (0x0016). The tapId field of this tap is not

used. The associationTag field of this Tap is an indirect reference to the program element

containing the DII message. The selector field of the Tap gives the transactionId of the DII

message and also the timeout interval for acquiring the DII message; i.e., the maximum interval

between transmissions of the message.

The ConnBinder component may also include a Tap that tells where to find the DDB messages

that convey the module containing the object. The tapUse field of this Tap is set to the value

BIOP_OBJECT_USE (0x0017). The tapId field is not used. The associationTag is an indirect reference

to the program element containing the DDB messages. The selector field of the Tap is empty.

This information is also contained in the DII message, but sometimes it is possible to use direct

information about the DDB messages in the ConnBinder to shortcut the acquisition process by not

waiting to acquire the DII message.

The reason for using an associationTag to identify a program element, rather than just giving its

PID, is that a PID may change during remultiplexing of Transport Streams, but an associationTag

remains associated with the same program element. The way this works is that an

association_tag_descriptor is attached to the program element’s entry in the Program Map Table

(PMT) section for the virtual channel, and the associationTag value in the Tap is to be matched

with the associationTag value in the descriptor to select the program element. Any remultiplexing

operation leaves this descriptor attached to the same program element entry in the PMT, so the

correct program element will be selected even after remultiplexing.

ATSC Transport Stream File System Standard, Annex B 25 February 2003

 49

The ObjectLocation component contains the three values carouselId, moduleId, and objectKey, where

the carouselId is identical to the downloadId value that appears in the both the DII and DDB

messages, the moduleId is a unique identifier of the module within the carousel, and the objectKey is

a unique identifier of the object within the module. Figure B1 illustrates the process of using the

information in the IOR to acquire the object.

A DII message is uniquely determined within a virtual channel by its downloadId and

transaction_id. Thus, the receiver can use the associationTag value in the BIOP_DELIVERY_PARA_USE

Tap of the ConnBinder component to identify the program element containing the DII message,

and then use the transaction_id in this Tap and the carouselId from the ObjectLocation component to

identify the DII message within the program element. It can then use the moduleId to identify the

entry in the DII message giving the delivery parameters for the DDB messages carrying the

desired module.

IOR

 BIOP Profile Body

 ObjectLocation

 CarouselId

 M oduleId

 ObjectKey

 ConnBinder

 Tap (1)

 transactionId

 Optional Tap (3)

DII

 transactionId

 CarouselId

 BlockSize

 M odule Loop

 M oduleId,

 Size, version

 TimeOuts

 Tap (2)

 M oduleId

 Size, V ersion,

DDB

 CarouselId

 M oduleId

 M odule

 Data

 Object Object Object

PM T

PM T

1) TapUse = BIOP_DELIVERY_PARA_USE, selector = {transactionId, timeout},

associationTag points via PMT to program element carrying DII message.

2) TapUse = BIOP_OBJECT_USE, selector = none,

associationTag points via PMT to program element carrying DDB messages.

3) Same as the Tap usage of (2).

Figure B1 Resolving an object from its IOR with BIOP profile body.

From this entry in the DII message the receiver can get a Tap identifying the program

element containing the DDB messages, and it can use the carouselId and moduleId to identify these

DDB messages within that program element. It also gets the block size (size of the payload of

ATSC Transport Stream File System Standard, Annex B 25 February 2003

 50

each DDB message), total module size, module version, and various timeout parameters. With

this information it can allocate buffers of appropriate size, make sure it has acquired all the

blocks of the module, and use the timeout intervals to detect errors in transmission.

Once the receiver has acquired the module containing the object, it can proceed to parse the

module from the top down looking for the correct object, identified by its objectKey. Efficient

parsing is implemented by starting at the top and inspecting the first 13 + N bytes of each BIOP

Object Message (N is the number of bytes taken by each objectKey field). If the objectKey is not the

desired value, the value of the message_size field in the Object Message is used to get the start

index of the next BIOP object message in the same data module. This is done until an objectKey in

the MessageSubHeader structure of a target BIOP Object Message is found that matches the desired

value.

A receiver may opt to follow a more aggressive acquisition of the data module when the IOR

of the object includes a ConnBinder component with tapUse value of BIOP_OBJECT_USE that allows

direct acquisition of the object. However, there are some pitfalls to this approach. In this

situation the receiver does not know the block size, any of the timeout values for the DDB

messages, or the total module size. Thus, it may have trouble allocating buffers appropriately, it

may end up waiting indefinitely in the event of transmission errors, or giving up prematurely

while waiting for the module, and it may not be able to determine conclusively when it has the

complete module. If it encounters a short block, it knows that must be the last block of the

module, but if by chance the last block is the same size as the others, the receiver cannot tell if it

has them all or not.

Figure B2 gives a more detailed view of the process of using the PMT to identify the

program element referenced by a Tap.

Tap

 tapUse

 tapId

 AssociationTag

 Selector

 TransactionId

 Timeout

PM T

 E lementary Stream Loop

 PID

 2nd descriptor Loop

 associationTagDescr

 associationTag

 Use

 Selector

DII

 T ransactionId

 M odule Loop

 M oduleId

 M oduleSize

tapUse = BIOP_DELIVERY_PARA_USE.

Figure B2 Use of Tap for locating a program element.

ATSC Transport Stream File System Standard, Annex B 25 February 2003

 51

3. REMOTE OBJECT RESOLUTION

An IOR referencing an object from another broadcast Service Domain (another TSFS) contains a

Lite Options Profile Body (with syntax as shown in Table 5.4) that provides the information

necessary to locate the Service Gateway of the remote TSFS, plus the logical directory path in

that TSFS from the Service Gateway to the object itself. This information comes in the form of a

ServiceLocation component that provides a carouselNSAPaddress and a sequence of bindings

representing a path from the Service Gateway to the referenced object.

The NSAP address is a unique identifier for the Service Domain. This identifier includes

TransportStreamID, originalTSID, program_number, source_id, originalSourceId, and carouselId fields that

allow a receiver to locate the Service Gateway for the Service Domain. The originalTSID and

originalSourceId fields are the transportStreamID and source_id of the virtual channel in which the

remote TSFS was originally broadcast. The transportStreamID and source_id fields are the current

Transport Stream ID and source_id, to the extent that these are known to the server that generated

the IOR. (The resolution process would be much more straightforward if there was no possibility

that the remote transport stream may have been involved in a remultiplexing operation without

the knowledge of the server that generated the IOR.) The carouselId field gives the carouselId of the

TSFS, which is scoped by the virtual channel and therefore should not be affected by

remultiplexing operations.

As illustrated in Figure B3, a receiver goes through the following steps to locate a Service

Gateway from its NSAP address in the case when the transportStreamID and program_number in the

NSAP address are correct, either because there has been no remultiplexing of the target virtual

channel, or because the NSAP address has been corrected in some way to reflect the

remultiplexing:

1) In the receiver’s cached channel map locate the transport stream corresponding to the

transportStreamID in the NSAP address, tune to that transport stream, and acquire its PAT.

2) In the program loop of that PAT locate the entry for the MPEG-2 program corresponding

to the program_number in the NSAP address.

3) Using the PMT_PID field of that entry, acquire the PMT section for that program.

4) Upon acquiring that PMT section, double check that the program_number in that PMT

section matches the program_number being looked for.

5) Find the PID of the program element containing the DST by looking in the stream loop of

the PMT section for a program element with stream_type 0x95, and acquire the DST.

6) Find the Tap in the DST with encapsulation_protocol value 0x0F and carouselId value in its

selector field matching the carouselId value in the NSAP address.

7) Look at the association_tag value of this Tap and locate the stream entry in the PMT section

with an association_tag descriptor that has a matching association_tag value.

8) The PID for this entry identifies the program element that contains the DSI message for

the desired Service Domain.

9) Acquire from this program element the DSI message that has a carouselId matching the

carouselId of the NSAP address.

10) Use the Service Gateway IOR in this DSI message to acquire the Service Gateway

object, as described in Annex B.

ATSC Transport Stream File System Standard, Annex B 25 February 2003

 52

Figure B3 Finding service gateway from NSAP address (no

remultiplexing case).

One the Service Gateway is acquired, it is a simple matter to walk down the directory

hierarchy to the desired object, matching the next name in the desired path to a directory entry at

each step, picking up the corresponding IOR, and resolving it according to the process in Section

2 of this annex to get to the next object down the hierarchy.

If the “path” was in the form of a single URI, instead of a sequence of path terms, the process

is slightly more complex. This process is described in Section 5 of this annex.

The resolution process becomes more complex if the value of transportStreamID and possibly

source_id of the remote TSFS have changed because of a remultiplexing operation, and the server

that generated the IOR containing the NSAP Address was not aware of the change. In such a

situation the receiver will not be able to find a match for the transportStreamID in the channel map,

since transport streams should be unique at a regional level, and a remultiplexed transport stream

should never retain the transport stream of any of the original input streams.

If the source_id is in the range 0x1000 through 0xFFFF, then it is guaranteed to be unique at

the regional level, as specified in [PSIP], and there is no real problem. The receiver can match

the source_id in the carousel NSAP address with a source_id in its channel map, taken from VCT

tables, and this should give the correct virtual channel, regardless of the value of transport stream

PMT

ProgramNumber

Stream Loop

DST Stream

Stream_type 0x95

DST PID

TSFS Stream

Stream_type 0x0B

Association_tag

TSFS PID

DSI

Carousel NSAP Address

CarouselId

IOP::IOR

Taps

IOR

Lite Options Profile Body

ServiceLocation

Carousel NSAP Address

CarouselId

TransportStreamID

OriginalTSID

Program_number

Source_id

OriginalSourceId

Name (path)

PAT

TSID

Program Loop

Program_number

PMT_PID

1

5

6
9

8
7

Service

Gateway

2

3

4

10

DST

Application Loop

Application

Tap Loop

Tap

Proto_encap 0x0F

CarouselId

AssociationTag

ATSC Transport Stream File System Standard, Annex B 25 February 2003

 53

ID. This then gives the receiver the correct Transport Stream ID and correct MPEG-2 program

number. Figure B4 illustrates the process for acquiring the Service Gateway in this case.

Figure B4 Finding service gateway from NSAP address (remultiplexed

case).

If the source_id is not unique at the regional level, then the receiver really has no choice but to

scan in real time through all the virtual channels it can receive, acquire the Data Service Tables

for all of them that have a data service, look for Taps referencing a TSFS, check for a match of

the carouselId in such Taps against the carouselId in the carousel NSAP address, and acquire the

DSI message for any that match. If the originalTSID and originalSourceId in the serverId field of the

DSI message match those of the carousel NSAP address of the IOR being resolved, then the

correct TSFS has been found, and the directory walking process can continue as before.

4. TRANSPORT STREAM FILE SYSTEM ACQUISITION

Figure B5 illustrates the sequence for acquiring all the objects in a TSFS with a simple

hierarchical directory structure. The IOR of the Service Gateway object can be extracted from

the DSI message. Given the IOR for the Service Gateway, the Service Gateway object can be

parsed from the data module carrying it, as in Section 2 of this annex. From the binding structure

inside the Service Gateway object, the IORs for Directory object D
0
 and File object F

2
 can be

Service

Gateway

PMT

ProgramNumber

Stream Loop

DST Stream

Stream_type 0x95

DST PID

TSFS Stream

Stream_type 0x0B

Association_tag

TSFS PID

VCT

TSID

Channel Loop

TSFS channel

ProgramNumber

Source_id

DSI

Carousel NSAP Address

CarouselId

IOP::IOR

Taps

IOR

Lite Options Profile Body

ServiceLocation

Carousel NSAP Address

CarouselId

TransportStreamID

OriginalTSID

Program_number

Source_id

OriginalSourceId

Name (path)

PAT

TSID

Program Loop

Program_number

PMT_PID

1

2

3

5

6

4

9
8

7

10
11

DST

Application Loop

Application

Tap Loop

Tap

Proto_encap 0x0F

CarouselId

AssociationTag

ATSC Transport Stream File System Standard, Annex B 25 February 2003

 54

extracted. Given the IOR for F
2
, the file data for F

2
 can be acquired from the data module

carrying the F
2
 object, as in Section 2 of this annex. Given the IOR for D

0
, Directory object D

0

can be extracted, from which the IORs for F
0
 and F1 can be obtained. Similarly, given the IOR

for F
0
 and the IOR for F

1
, the file data for F

0
 and F

1
 can be acquired. Thus, the IORs for objects in

the directory structure are acquired in the following sequence: IOR-SG, IOR-D
0
, IOR-F

2
, IOR-F

0

and IOR-F
1
. Once an IOR of an object is obtained, the object can then be retrieved from the

stream.

 IORSG

OBJECT SG

IORF2 IORD0

Data of F2

IORF0

OBJECT D0

IORF1

Data of F1 Data of F0

F0

 SG

D 0

F1

F2

A simple directory structure

Figure B5 How to acquire objects in a simple directory structure.

If the directory structure is not a strict tree, but rather a more general acyclic graph, the

process is just a little more complex. Some bookkeeping is required to avoid acquiring the same

object more than once, and to keep track of the multiple URIs associated with some objects

(resulting from the multiple paths leading to them from the Service Gateway).

5. URI RESOLUTION

Figure B6 illustrates a TSFS directory structure involving two Transport Stream File Systems

(two Service Gateways), with a number of local directory links within each one and one remote

directory link between them. The binding name is shown next to each directory link, and the

resulting URIs associated with the files are shown below the files.

ATSC Transport Stream File System Standard, Annex B 25 February 2003

 55

Figure B6 URIs derived from TSFS directory structure.

The following algorithm can be used to resolve a “lid:” URI into a file, using the processes

given in Sections 2 and 3 of this annex for IOR resolution. It is assumed that the data service and

the Data Service Table application containing the file are known. If the Data Service Table

application is not known, the receiver must perform this algorithm for all applications in the

Data Service Table. If the data service is not known, the receiver must scan through all the

virtual channels it can receive, and perform this algorithm for every Data Service Table

application of every data service it encounters until is succeeds in finding the file. This is

considerably more difficult, in fact quite likely not feasible in practice.) It is assumed that there

is no caching service performed; i.e., there is no TSFS service information being kept in local

storage on the receiver.

Input: URI to be resolved:

1) Acquire the DST for the data service and check all the Taps of the relevant application

for protocol_encapsulation value 0x0F. This gives a list of all the candidate File Systems.

2) For each Tap in the list that has a URI in its selector, restricting the scope of the Tap,

check to see if the URI in the selector matches some leftmost substring of the input URI.

If not, discard that Tap. If so, put that Tap at the head of the list, since it is an especially

likely candidate.

3) For each Tap in the list, perform steps 4 through 7 below.

4) Use the association tag in the Tap to identify the program element that has the DSI

message containing the ServiceGatewayInfo for the TSFS. Check all DSI messages that

appear in that program element for one with a carouselId in the carouselNSAPaddress that

matches the carouselId in the Tap selector. This is the DSI message for the TSFS.

5) Extract the IOR of the Service Gateway object from this DSI message.

ServiceGateway A

File

Directory Directory

Directory DirectoryFile

File FileFile

http://a.b/c lid://d.e http://x.y/t

u/vf

j k r s

http://a.b/c

lid://d.e/f/j lid://d.e/f/k http://x.y/t/u/v/slid://d.e/q

http://x.y/t/u/v/r

q

ServiceGateway B

Directory File

FileFile

m

lid://g.h

n

lid://p.w/z

lid://g.h/m

http://x.y/t/w

lid://g.h/n

w

lid://p.w/z

ATSC Transport Stream File System Standard, Annex B 25 February 2003

 56

6) A very easy way to handle the recursive search down the directory tree is to utilize a list

in which each list item consists of a pair of components, an IOR and a character string

(where the character string consists of an unmatched portion of the input URI). The

initial list contains just one item, consisting of the Service Gateway IOR and the input

URI.

7) Go down the list in order. For each item in the list, which we will designate by this_item,

containing this_IOR and this_string, perform the following:

a) If the object referenced by this_IOR is a file object and this_string is an empty string, the

desired file has been found. The file can be acquired, and the algorithm can be

terminated.

b) If the object referenced by this_IOR is a file object and this_string is a non-empty string,

discard the item from the list.

c) If the object referenced by this_IOR is a directory object (or a Service Gateway object),

check each binding in the object to see if the binding name matches some left-most

substring of this_string. For each match that is found, create a new list item containing

the IOR associated with the binding and a new character string obtained by deleting

the matched left-most substring from this_string. Add each such new item to the end of

the list. Then discard this_item from the list.

d) If you come to the end of the list, so that there are no more items to process, then the

original URI has no matching file in this TSFS. Quit and go on to the next TSFS.

8) If you come to the end of the list of candidate File Systems without success, then the

original URI has no matching file in this data service.

Output: the requested file data:

If the receiver initially acquires and caches all the directory objects in its local store, all of these

steps except for the actual retrieval of the final object go very quickly. If the receiver initially

acquires and caches all the directory and file objects in its local store, it can work out the URI

associated with each object and set up a URI index to the objects, similar to the index that web

browsers use for their cache. Then the acquisition of any object can be achieved very quickly

from the local cache, without going through the steps above.

ATSC Transport Stream File System Standard, Annex C 25 February 2003

 57

Annex C:

TSFS Objectives (Informative)

1. OBJECTIVES FROM RFP

This standard was drafted in response to the objectives listed in Table C1. (See [RFP].) The

language in this table is taken verbatim from the Request for Proposals. As such, the use of

“shall” is simply the language that was chosen to indicate necessary features in proposals. It is

not to be interpreted as normative in the context of this standard.

An explanation of how these objectives are addressed in the standard can be found in Section

2 of this annex.

Table C1 TSFS Objectives

Conformance Requirements

The TSFS shall allow a Hierarchical name-space.

The TSFS shall preserve the reference hierarchical naming structure created by the content provider.

The TSFS shall allow files and directories to be carouseled, so that the user can browse the content at any time.

The TSFS shall allow selective downloading of data files to the receiver.

The TSFS shall not constrain the entire file hierarchy to be conveyed in a single Program Element or a single

Transport Stream.

The TSFS shall allow at least the following attributes: timestamp/versioning, file size.

The underlying protocol shall accommodate carriage of delivery parameters associated with each file or directory

of the TSFS.

The TSFS shall allow multiple directories to reference a single file (i.e., the delivery parameters would be same for

both files, but they are listed in 2 or more directories).

The TSFS shall allow file transmission in any arbitrary order with arbitrary frequency.

The TSFS shall support versioning of files.

The TSFS shall allow the conversion of relative file names to absolute file names.

The absolute path names shall be unique in space and time.

The TSFS shall be allowed to span multiple Virtual Channels.

The TSFS shall map the “lid:” URI syntax to the file system namespace. Furthermore, multiple lid:’s may refer to a

single file and the lid: name space can have multiple roots.

Every file shall have a content type label syntax as defined in RFC2046 (MIME)

2. ACHIEVEMENT OF OBJECTIVES

This standard was developed to satisfy the list of objectives presented in Section 1 of this annex.

These objectives are satisfied as follows:

2.1 Name Spaces

The TSFS decouples the URI namespace from the Object Carousel’s NameServer name space.

Designers of a TSFS can have a single directory one level below the Service Gateway to create a

single base-URI for the entire TSFS, thereby inducing an identity mapping between the two

ATSC Transport Stream File System Standard, Annex C 25 February 2003

 58

name spaces, or they can have multiple directories (or files) one level below the Service

Gateway, thereby providing multiple base-URIs for different parts of the file system.

Each TSFS object has two names: a 3-tuple Object Location (see Section 5.3) and a URI.

While the tuple name space, which satisfies objective 7, is anticipated to be useful for transport

decoders, the URI name space is anticipated to be useful for application environments. The two

name spaces and usage patterns are linked by a URI resolution mechanism, an example of which

is presented in Annex B.

This approach enables the decoupling of transport topologies from application name spaces,

virtually eliminating the ramifications of Object Carousel design constraints up-stream from the

emission station. Specifically, objectives 1, 2 are preserved by the use of base-URIs. Objective 8

is satisfied by allowing multiple directories to contain copies of the same IOR.

The use of base-URIs as names for directories or files immediately below the Service

Gateway and relative paths for all other directories or files was designed to meet objectives 11,

12, 14. The base-URI is used as the prefix converting relative path names to absolute URIs.

2.2 Selective Acquisition and Browsing

There is no need to acquire the entire TSFS when only a portion of the resources are needed,

effectively satisfying objectives 3, 4. For example, when only one directory is needed, it is only

necessary to acquire the files referenced by this directory. This is achieved by identifying the DII

messages pointing to the modules in which the desired files are present, and resolving as

specified in Annex B. When appropriate, the design of the physical transport of the TSFS in data

carousel modules can be chosen to make this type of selectivity especially convenient.

2.3 Carriage within Virtual Channels

The TSFS specification requires the entire TSFS to be delivered in a single virtual channel, but

puts no constraints on how many program elements of the virtual channel are used or how the

objects are distributed among modules, or how the DSI, DII and DDB messages delivering the

modules and control information are distributed among the program elements. However,

[DSMCC] requires (in Sections 7.5.4 and 9.2.5) that all DDB messages of a download scenario,

and therefore all modules carrying objects of a TSFS appear in a single program element, and

that no DDB messages of other download scenarios can appear in that program element. There is

no limit on the number of distinct TSFSs that can be delivered in a single virtual channel.

Moreover, it is possible for directory entries in a TSFS to represent “soft” links (short cuts) to

objects in other TSFSs, thereby effectively allowing a TSFS to span multiple virtual channels in

multiple transports. This satisfies objectives 5, 13.

2.4 Optimization Opportunities

Through the decoupling of logical name spaces from the physical transport organization, the

TSFS design satisfies objective 9, as well as objective 4, and thus presents numerous

optimization opportunities. Additional optimization opportunities exist with respect to intelligent

carouseling of modules.

ATSC Transport Stream File System Standard, Annex C 25 February 2003

 59

2.5 Meta-Data Extensibility

The use of ObjectInfo descriptors is intended to provide extensibility. While originally designed to

satisfy objectives 6, 10, 15 it enables other standards or proprietary extensions to encode generic

meta-data using the descriptor framework.

