
ATSC A/337:2019 Application Event Delivery 30 April 2019

i

ATSC Standard:
Application Event Delivery

(A/337)

Doc. A/337:2019
30 April 2019

Advanced Television Systems Committee
1776 K Street, N.W.
Washington, D.C. 20006
202-872-9160

ATSC A/337:2019 Application Event Delivery 30 April 2019

ii

The Advanced Television Systems Committee, Inc., is an international, non-profit organization
developing voluntary standards and recommended practices for digital television. ATSC member
organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics,
computer, cable, satellite, and semiconductor industries. ATSC also develops digital television
implementation strategies and supports educational activities on ATSC standards. ATSC was
formed in 1983 by the member organizations of the Joint Committee on Inter-society Coordination
(JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic
Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable
Telecommunications Association (NCTA), and the Society of Motion Picture and Television
Engineers (SMPTE). For more information visit www.atsc.org.

Note: The user's attention is called to the possibility that compliance with this standard may
require use of an invention covered by patent rights. By publication of this standard, no position
is taken with respect to the validity of this claim or of any patent rights in connection therewith.
One or more patent holders have, however, filed a statement regarding the terms on which such
patent holder(s) may be willing to grant a license under these rights to individuals or entities
desiring to obtain such a license. Details may be obtained from the ATSC Secretary and the patent
holder.

Implementers with feedback, comments, or potential bug reports relating to this document may
contact ATSC at https://www.atsc.org/feedback/.

Revision History
Version Date
Candidate Standard approved 19 January 2017
 Update 1 to CS approved 19 April 2017
 Update 2 to CS approved 12 July 2017
 Update 3 to CS approved 31 October 2017
A/337:2018 Standard approved 2 January 2018
Candidate Standard Revision of A/337:2018 approved 21 November 2018
 Update to CS approved 20 February 2019
A/337:2019 Standard approved 30 April 2019
 Hyperlink in referend [4] corrected 5 March 2020

http://www.atsc.org/
https://www.atsc.org/feedback/

ATSC A/337:2019 Application Event Delivery 30 April 2019

iii

Table of Contents
1. INTRODUCTION ..1

1.1 Scope 1
1.2 Background 1

2. REFERENCES ...1
2.1 Normative References 1
2.2 Informative References 2

3. TERMS ...2
3.1 Compliance Notation 2
3.2 Treatment of Syntactic Elements 2

3.2.1 Reserved Elements 2
3.3 Acronyms and Abbreviations 3
3.4 XML Schema and Namespace 3

4. SYNCHRONIZATION OF APPLICATION ACTIONS ...4
4.1 Broadcast Delivery of Events 4

4.1.1 Broadcast Events for ROUTE/DASH-based Services 4
4.1.2 Broadcast Events for MMT-based Services 5

4.2 Broadband Delivery of Events 9
4.3 Watermark Delivery of Events 11
4.4 ATSC-Specific Event Streams 11

4.4.1 DASH-specific signaling Event Streams 11
4.4.2 Application-specific Event Streams 11
4.4.3 ATSC-specific signaling Event Streams 11

4.5 Event notification via WebSocket 11
4.5.1 Introduction 11
4.5.2 Dynamic Notification 12

ATSC A/337:2019 Application Event Delivery 30 April 2019

iv

Index of Figures and Tables
Figure 4.1 EventNotify subprotocol framing structure. 14

Table 4.1 Syntax of the AEI 6
Table 4.2 Syntax of an 'evti' Box 7
Table 4.3 Syntax of the inband_event_descriptor() 8
Table 4.4 Syntax of the 'emsg' Box Delivered over WebSocket or HTTP 10
Table 4.5 Syntax of the 'evti' Box Delivered over WebSocket or HTTP 10
Table 4.6 EventNotify Subprotocol Framing Elements 14

ATSC A/337:2019 Application Event Delivery 30 April 2019

1

ATSC Standard:
Application Event Delivery (A/337)

1. INTRODUCTION

1.1 Scope
This document specifies the delivery of events/actions for ATSC 3.0 applications and
synchronization of these application events/actions with underlying audio/video content. See also
A/331 [1] for details about application signaling and A/344 [11] for details about the application
runtime environment.

1.2 Background
This document specifies mechanisms for delivering activation notifications synchronized with a
time base, so that the actions of applications can be synchronized accordingly.

2. REFERENCES
All referenced documents are subject to revision. Users of this Standard are cautioned that newer
editions might or might not be compatible.

2.1 Normative References
The following documents, in whole or in part, as referenced in this document, contain specific
provisions that are to be followed strictly in order to implement a provision of this Standard.
[1] ATSC: “ATSC Standard: Signaling, Delivery, Synchronization and Error Protection,” Doc.

A/331:2017, Advanced Television Systems Committee, Washington, D.C., 6 December 2017.
[2] ATSC: “ATSC Standard: Service Announcement,” Doc. A/332:2017, Advanced Television

Systems Committee, Washington, D.C., 6 December 2017.
[3] ATSC: “ATSC Standard: Content Recovery in Redistribution Scenarios,” Doc. A/336:2017,

Advanced Television Systems Committee, Washington, D.C., 5 June 2017.
[4] DASH IF: “Guidelines for Implementation: DASH-IF Interoperability Points for ATSC 3.0,

Version 1.0,” DASH Interoperability Forum, January 31, 2017.
https://dashif.org/guidelines/.

[5] ISO/IEC: “Information technology – Dynamic adaptive streaming over HTTP (DASH) — Part
1: Media presentation description and segment formats,” Doc. ISO/IEC 23009-1:2014, 2nd
Edition, International Organization for Standardization/International Electrotechnical
Commission, Geneva Switzerland.

[6] ISO/IEC: “Information technology – Coding of audio-visual objects – Part 12: ISO base media
file format,” Doc. ISO/IEC 14496-12:2015, International Organization for
Standardization/International Electrotechnical Commission, Geneva Switzerland.

[7] ISO/IEC: “Information technology – High efficiency coding and media delivery in
heterogeneous environments – Part 1: MPEG media transport (MMT),” Doc.
ISO/IEC 23008-1:2017(E), International Organization for Standardization/ International
Electrotechnical Commission, Geneva Switzerland.

[8] IETF, RFC 6455, “The WebSocket Protocol,” Internet Engineering Task Force, December
2011. http://www.ietf.org/rfc/rfc6455.txt

https://dashif.org/guidelines/
http://www.ietf.org/rfc/rfc6455.txt

ATSC A/337:2019 Application Event Delivery 30 April 2019

2

[9] W3C: “XML Schema Part 2: Datatypes Second Edition” W3C Recommendation, Worldwide
Web Consortium, 28 October 2004. https://www.w3.org/TR/xmlschema-2/

[10] IETF, RFC 7231, “Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content,”,
Internet Engineering Task Force, June 2014. http://www.ietf.org/rfc/rfc7231.txt

2.2 Informative References
The following documents contain information that may be helpful in applying this Standard.
[11] ATSC: “ATSC Standard: Interactive Content,” Doc. A/344:2017,” Advanced Television

Systems Committee, Washington, D.C., 18 December 2017.
[12] IETF: RFC 6838 (BCP 13), “Media Type Specifications and Registration Procedures,”

Internet Engineering Task Force, Reston, VA, January 2013.
https://tools.ietf.org/html/rfc6838

[13] IETF: RFC 7303, “XML Media Types,” Internet Engineering Task Force, Reston, VA, July
2014. https://tools.ietf.org/html/rfc7303

3. TERMS
App – Application.
Application – A downloaded collection of interrelated documents intended to run in the

application environment specified in the A/344, “Interactive Content” [11] and perform one or
more functions, such as providing interactivity or targeted ad insertion. The documents of an
application can include (but are not limited to) HTML, JavaScript, CSS, XML and multimedia
files. An application can access other data that are not part of the application itself.

Event – Timed notification to receiver software or to an application indicating that some action is
to be taken

Event Stream – Stream of events.

3.1 Compliance Notation
This section defines compliance terms for use by this document:
shall – This word indicates specific provisions that are to be followed strictly (no deviation is

permitted).
shall not – This phrase indicates specific provisions that are absolutely prohibited.
should – This word indicates that a certain course of action is preferred but not necessarily

required.
should not – This phrase means a certain possibility or course of action is undesirable but not

prohibited.

3.2 Treatment of Syntactic Elements
This document contains symbolic references to syntactic elements used in the audio, video, and
transport coding subsystems. These references are typographically distinguished by the use of a
different font (e.g., restricted), may contain the underscore character (e.g., sequence_end_code)
and may consist of character strings that are not English words (e.g., dynrng).
3.2.1 Reserved Elements
One or more reserved bits, symbols, fields, or ranges of values (i.e., elements) may be present in
this document. These are used primarily to enable adding new values to a syntactical structure

https://www.w3.org/TR/xmlschema-2/
http://www.ietf.org/rfc/rfc7231.txt
https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc7303

ATSC A/337:2019 Application Event Delivery 30 April 2019

3

without altering its syntax or causing a problem with backwards compatibility, but they also can
be used for other reasons.

The ATSC default value for reserved bits is ‘1’. There is no default value for other reserved
elements. Use of reserved elements except as defined in ATSC Standards or by an industry
standards-setting body is not permitted. See individual element semantics for mandatory settings
and any additional use constraints. As currently-reserved elements may be assigned values and
meanings in future versions of this Standard, receiving devices built to this version are expected
to ignore all values appearing in currently-reserved elements to avoid possible future failure to
function as intended.

3.3 Acronyms and Abbreviations
The following acronyms and abbreviations are used within this document.
AEI – Application Event Information
EA – Emergency Alert
ESG – Electronic Service Guide
HELD – HTML Entry pages Location Description
LCT – Layered Coding Transport
MPD – Media Presentation Description
MPU – Media Processing Unit
SLT – Service List Table
TSI – Transport Session Identifier
URL – Uniform Resource Locator
XML – eXtensible Markup Language

3.4 XML Schema and Namespace
A number of new XML elements and attributes are defined and used in this Standard. These
elements and attributes provide signaling of application properties defined in this standard (see for
example Section 4.1.2 Application Event Information). These new XML elements and attributes
are defined with separate namespaces in schema documents that accompany this standard. The
namespaces used by various schemas are described in individual sections of the present document.
The sub-string part of namespaces between the right-most two “/” delimiters indicate major and
minor version of the schemas. The schemas defined in this present document shall have version
“1.0”, which indicates major version is 1 and minor version is 0.

The namespace designator, “xs:”, and many terms in the “Data Type” column of tables is a
shorthand for datatypes defined in W3C XML Schema [9] and shall be as defined there.

In order to provide flexibility for future changes in the schema, decoders of XML documents
with the namespaces defined in the present document should ignore any elements or attributes they
do not recognize, instead of treating them as errors.

All element groups and attribute groups are explicitly extensible with elements and attributes
respectively. Elements can only be extended from namespaces other than the target namespace.
Attributes can be extended from both the target namespace and other namespaces. If the XML
schema does not permit this for some element, that is an error in the schema.

XML schemas shall use processContents="strict" in order to reduce inadvertent typos in
instance documents.

XML instance documents shall use UTF-8 encoding.

ATSC A/337:2019 Application Event Delivery 30 April 2019

4

In the event of any discrepancy between the XML schema definitions implied by the tables
that appear in this document and those that appear in the XML schema definition files, those in the
XML schema definition files are authoritative and take precedence.

The XML schema document for the schemas defined in this document can be found at the
ATSC website.

4. SYNCHRONIZATION OF APPLICATION ACTIONS
Actions to be taken by applications can be initiated by notifications delivered via broadcast or
broadband or, in a redistribution setting, via watermarks. For the purposes of this document, the
term “Events” is used for such notifications.

Generically, Events are members of Event Streams. An Event Stream has the following
attributes:

• schemeIdUri – globally unique identifier of the type of the Event Stream
• value – identifier of the sub-type of the Event Stream, scoped by schemeIdUri
• timescale – time scale in units per seconds to be used for deriving timing information of

Events in the Event Stream
Each individual Event in an Event Stream has the following additional attributes and an

element:
• presentationTime – start time of the Event relative to the start of the Period that the Event

Stream is present
• duration – duration of the Event
• id – unique identifier of the Event within the Event Stream
• data (optional) – data that accompanies the Event, to be used by an application that

responds to the Event
The data types of these attributes and their precise semantics differ slightly in different

situations, but they all basically represent the same properties in all cases.
The specifier of an Event Stream selects the @schemeIdUri attribute and determines the

possible values of the @value attribute and their properties, including whether a data element is
included, and if so what its structure is.

4.1 Broadcast Delivery of Events
There are slight differences between the broadcast delivery of Events for ROUTE/DASH-based
services and MMT-based services, but there is also significant commonality.
4.1.1 Broadcast Events for ROUTE/DASH-based Services
When delivered via broadcast in a ROUTE/DASH-based system, Events may be delivered as
DASH Events, using either of the two mechanisms for Event delivery, of which background and
basic use cases are described in Section 5.6.3 of the DASH-IF IOP for ATSC 3.0 [4],:

• EventStream element(s) appearing in a Period element of the MPD
• Event(s) in 'emsg' box(es) appearing in the Segments of the Representation, with their

presence signaled by one or more InbandEventStream elements of the AdaptationSet or
Representation element in the MPD

These two delivery mechanisms may be mixed. A single Event Stream may include some
Events delivered via an EventStream element and others delivered via 'emsg' boxes.

ATSC A/337:2019 Application Event Delivery 30 April 2019

5

The EventStream element is especially well suited for “static” Events; i.e., Events for which
the timing is known well ahead of time. An EventStream element is basically a list of Event
elements. Each EventStream element has a @schemeIdUri attribute and a @value attribute to
identify the type of Events in the EventStream element, and a @timescale attribute to indicate the
reference time scale for the Event presentation times and durations. Each Event element in an
EventStream element has a @presentationTime attribute to indicate the start time of the Event
(relative to the start of the Period element), a @duration attribute to indicate the duration of the
Event, an @id attribute to identify the Event instance, and an optional data element to provide
information for carrying out the action initiated by the Event. The structure of the data element is
determined by the type of the Event. There can be multiple EventStream elements of different
types in a Period element.

The constraints and extensions of the existing DASH-specific Events are defined in Section
5.6.2 and 5.6.3 of the DASH-IF IOP for ATSC 3.0 [4].

An ATSC-specific @schemeIdUri attribute is defined in Section 4.4 of this document, along
with the usage of the accompanying @value attribute and the semantics of the Events.

Other @schemeIdUri attributes can be defined by application developers to meet the needs of
their applications.

An InbandEventStream element of a Representation indicates the presence of 'emsg' boxes
in the Segments of the Representation. The InbandEvent element has a @schemeIdUri attribute
and a @value attribute to indicate the type of the Events that can appear. Each 'emsg' box that
appears in a Segment of a Representation has fields schemeIdUri and value to indicate the Event
Stream, they belong to, and fields (a) timescale to indicate the reference time scale for the Event,
used for the presentation time and the duration, (b) presentation_time_delta to indicate the start
time of the Event relative to the earliest presentation time of any access unit in the Segment in
which the 'emsg' box appears, (c) event_duration to indicate the duration of the Event, (d) id to
identify the Event instance, and optionally (e) message_data if needed to carry out the action
initiated by the Event. Events delivered in 'emsg' boxes are especially well suited for “dynamic”
Events – i.e., Events for which the timing only becomes known at the last minute (such as an Event
initiating some action by an application when a team scores in a live sports program).
4.1.2 Broadcast Events for MMT-based Services
When delivered via broadcast in an MMT-based system, Events may be delivered in an XML
document called an Application Event Information (AEI) document. This document is especially
well suited for static Events.

The AEI shall be represented as an XML document containing a AEI root element that
conforms to the definitions in the XML schema that has namespace:

tag:atsc.org,2016:XMLSchemas/ATSC3/AppSignaling/AEI/1.0/

The XML schema xmlns short name should be "aei".
Table 4.1 below indicates the structure of the AEI. The normative XML schema for AEI shall

be as specified in the file, AEI-1.0-20171016.xsd.

ATSC A/337:2019 Application Event Delivery 30 April 2019

6

Table 4.1 Syntax of the AEI
Element Name Use Data Type Description
AEI Set of static event streams

@assetId 1 string Identifier of the MMT asset used for time reference
@mpuSeqNum 1 unsignedInt Identifier of the anchor MPU used for time reference
@timeStamp 1 unsignedLong The presentation time of the anchor MPU
EventStream 1..N Event Stream

@schemeIdUri 1 anyURI Identifier scheme of the event stream. The string may
use URN or URL syntax.

@value 0..1 string Identifier “value” attribute of the event stream
@timescale 0..1 unsignedInt Time scale to be used for events in the event stream
Event 1..N string Event envelope and string data for the event. The

content of the string depends on the event scheme
and value attributes.

@presentationTime 0..1 unsignedLong Presentation time of the event relative to the
presentation time of the first access unit in the anchor
MPU, which is indicated by @timestamp

@duration 0..1 unsignedLong Duration of this event.
@id 0..1 unsignedInt Identifier for this event.

The normative semantics of elements and attributes in AEI table shall be as follows:
AEI – This root element describes a set of static event streams and contains one or more

EventStream elements.
@assetId – This required attribute specifies identifier of the MMT asset whose MPU is used as

the anchor for time reference for events in the EventStream elements. The value of this shall
be equal to asset_id() value in ISO/ IEC 23008-1 [7].

@mpuSeqNum – This required attribute specifies sequence number of the anchor MPU in the MMT
asset identified by AEI@assetId used as anchor for time reference for events in the
EventStream elements.

@timestamp – This required attribute specifies the presentation time of the first access unit in the
anchor MPU indicated by AEI@mpuSeqNum within the asset indicated by AEI@assetId. The
format of ISO/ IEC 23008-1 [7] MPU_Timestamp_descriptor()’s mpu_presentation_time field shall be
used for this attribute.

EventStream – This element and its attributes shall describe information about an event stream.
@schemeIdUri – This required attribute specifies an identifier scheme for this event stream. This

string may use a URN or a URL syntax. Each AEI.EventStream element shall have a unique
value for this attribute.

@value – This optional attribute specifies the value of the event stream within the scope of
AEI.EventStream@schemeIdUri. When not present no default value is defined.

@timescale – This optional attribute specifies time scale in units per second to be used for events
in this event stream. When not present AEI.EventStream@timescale is inferred to be equal to
1. AEI.EventStream@timescale shall not be equal to 0.

Event – Each instance of this element and its attributes shall define information about an event in
the context of the parent event stream element. This element includes the data corresponding
to the event coded as a XML string.

@presentationTime – This optional attribute specifies presentation time of the event relative to
the presentation time of the first access unit in the anchor MPU indicated with sequence

ATSC A/337:2019 Application Event Delivery 30 April 2019

7

number specified by the parent AEI@mpuSeqNum within the asset indicated by asset ID specified
by AEI@assetId. The relative value of the presentation time in seconds is equal to
AEI.EventStream.Event@presentationTime divided by AEI.EventStream@timeScale.
When not present AEI.EventStream.Event@presentationTime is inferred to be equal to 0.

@duration – This optional attribute specifies presentation duration of the event. The presentation
duration in seconds is equal to AEI.EventStream.Event@duration divided by
AEI.EventStream@timeScale. When this attribute is not present no default value is inferred.

@id – This optional attribute specifies an identifier of this event within the scope of parent
AEI.EventStream@schemeIdUri and AEI.EventStream@value. When this attribute is not
present no default value is inferred.
When an AEI is delivered via broadcast, it shall be delivered as the payload of an

mmt_atsc3_message() as defined in the section of ATSC A/331, “Signaling, Delivery,
Synchronization and Error Protection” [1], that specifies the MMTP-Specific Signaling Message.

Events in an MMT-based service may also be carried in 'evti' boxes in MPUs. This method
is especially well suited for dynamic Events. Table 4.2 below indicates the structure of an 'evti'
box, using the usual form of specification for a box in an ISO BMFF file [6].

Definition of 'evti' box:
• Box Type: 'evti'
• Container: MPU
• Mandatory: No
• Quantity: Zero or more

Table 4.2 Syntax of an 'evti' Box
aligned(8) class EventInformationBox extends
 FullBox('evti', version = 0, flags = 0){
 string scheme_id_uri;
 string value;
 unsigned int(32) timescale;
 unsigned int(32) event_id;
 unsigned int(32) event_presentation_time_delta;
 unsigned int(32) event_duration;
 unsigned int(8) event_data[]; }
 }

The normative semantics of elements in 'evti' box shall be as follows:
scheme_id_uri – This field specifies an identifier scheme for this event. This string may use a

URN or a URL syntax. Multiple'evti' boxes with same scheme_id_uri may be present.
Value – This field specifies the value for this event within the scope of scheme_id_uri.
timescale – This field provides the time scale, in units per second to be used for this event.

timescale shall not be equal to 0.
event_id – This field specifies an identifier of this event within the scope of scheme_id_uri and

value. Events with the same value for scheme_id_uri, value, and event_id fields shall have
same value for timescale, event_presentation_time_delta, event_duration, and
event_data[].

event_presentation_time_delta – This field specifies presentation time of this event relative to
the presentation time of the first access unit in this MPU. The relative value of this

mailto:AEI.EventStream.Event@presentationTime
mailto:AEI.EventStream.Event@presentationTime

ATSC A/337:2019 Application Event Delivery 30 April 2019

8

presentation time in seconds is equal to event_presentation_time_delta divided by
timescale.

event_duration – This field specifies presentation duration of this event. The presentation
duration of this event in seconds is equal to event_duration divided by timeScale.

event_data – The remaining data till end of this 'evti' box specifies the data associated with this
event. This field may be empty. The format of this field is defined by the owner of the scheme
specified by scheme_id_uri.
One or more 'evti' boxes may appear at the beginning of the MPU, after the 'ftyp' box, but

before the 'moov' box, or they may appear immediately before any 'moof' box.
An inband_event_descriptor() indicates the presence of Events in the MPUs. The syntax of this

descriptor shall be as provided in Table 4.3. The semantics of the fields in inband_event_descriptor()
shall be as given immediately below the table.

Table 4.3 Syntax of the inband_event_descriptor()
Syntax Value No. of Bits Format
inband_event_descriptor() {
 descriptor_tag 16 uimsbf
 descriptor_length 16 uimsbf
 number_of_assets N1 8 uimsbf
 for (i=0;i<N1;i++) {
 asset_id_length N2 32 uimsbf
 for (j=0;j<N2;j++) {
 asset_id_byte 8 uimsbf
 }
 scheme_id_uri_length N3 8 uimsbf
 for (j=0;j<N3;j++) {
 scheme_id_uri_byte 8 uimsbf
 }
 event_value_length N4 8 uimsbf
 for (j=0;j<N4;j++) {
 event_value_bytes 8 uimsbf
 }
 }
}

descriptor_tag – This 16-bit unsigned integer shall have the value 0x0007, identifying this descriptor
as the inband_event_descriptor().

descriptor_length – This 16-bit unsigned integer shall specify the length (in bytes) immediately
following this field up to the end of this descriptor.

number_of_assets – An 8-bit unsigned integer field that shall specify the number of assets described
by this descriptor.

asset_id_length – This 32-bit unsigned integer field shall specify the length in bytes of the asset_id.
asset_id_byte – An 8-bit unsigned integer field that shall contain a byte of the asset id.
scheme_id_uri_length – This 8-bit unsigned integer field shall specify the length in bytes of

scheme_id_uri which identifies the scheme of the event stream.
scheme_id_uri_byte – An 8-bit unsigned integer field that shall contain a byte of scheme_id_uri.
event_value_length – This 8-bit unsigned integer field shall specify the length in bytes of the “value”

attribute of the event stream.

mailto:AEI.EventStream.Event@presentationTime

ATSC A/337:2019 Application Event Delivery 30 April 2019

9

event_value_byte – An 8-bit unsigned integer field that shall contain a byte of the “value” attribute
of the event stream.
When an inband_event_descriptor() is delivered via broadcast, it shall be delivered as the payload

of an mmt_atsc3_message() as defined in the section of ATSC A/331, “Signaling, Delivery,
Synchronization and Error Protection” [1], that specifies the MMTP-Specific Signaling Message.

4.2 Broadband Delivery of Events
Just as broadcast delivery supports batch delivery of Events in an MPD or AEI and incremental
delivery of Events in Representation Segments or MPUs, broadband delivery also supports batch
delivery and incremental delivery.

When Events for a service are delivered via broadband in batch mode (which is especially
suitable for static Events), they may be delivered in EventStream elements in an MPD which is
delivered via broadband using HTTP, for a ROUTE/DASH streaming service, or in an AEI which
is delivered via broadband using HTTP, for an MMTP/MPU streaming service. Such an AEI shall
have the same structure as defined in Section 4.1.2 above. When delivered via broadband, MPDs
and AEIs shall be available by an HTTP Request, using the base URL for this purpose which is
signaled in the SLT for the service (or a URL obtained from a watermark in a redistribution
scenario as described in [3]). If the Content-Type header is provided in the HTTP response, it shall
be application/octet-stream per [10].

The timing and location information for retrieving a scheduled update to an MPD or AEI via
broadband are provided by the validUntil and nextURL properties, respectively, in the metadata
envelope of the MPD or AEI. An unscheduled occurrence of the availability of an updated MPD
or AEI is signaled asynchronously via a dynamic event described in Section 4.4.

When Events for a service are delivered incrementally via broadband (which is especially
suitable for dynamic Events), they may be delivered as 'emsg' boxes in DASH Segments for
ROUTE-based services or as 'evti' boxes for MMTP-based services. The 'emsg' and 'evti'
boxes may be acquired via polling an HTTP server using the URL of a Signaling Server obtained
from the SLT [1], or they may be acquired via a WebSocket communications using the URL of a
Dynamic Event WebSocket Server obtained from the SLT [1]. The full protocol for acquiring
dynamic events from a WebSocket server is specified in Section 4.5.

For ROUTE/DASH-based services, the format of an Event delivered via HTTP or WebSocket
server shall employ the same 'emsg' box format described above together with information that
associates it with a specific MPD Period as specified in Table 4.4. The semantics of the fields of
this element shall as given immediately below the table.

ATSC A/337:2019 Application Event Delivery 30 April 2019

10

Table 4.4 Syntax of the 'emsg' Box Delivered over WebSocket or HTTP
Syntax No. of Bits Format
emsg_object() {
 mpd_id var uimsbf
 mpd_id_terminator 8 0x00
 period_id var uimsbf
 period_id_terminator 8 0x00
 segment_counter 32 uimsbf
 emsg var
}

mpd_id – The MPD@id attribute as defined in ISO/ IEC 23009-1 [5] of the MPD with which this
Event is associated, in UTF-8 encoding. Note that this element may be of length zero (not
present) if the MPD has no MPD@id attribute value assigned.

mpd_id_terminator – A null-terminator for the mpd_id field.
period_id – The MPD.Period@id attribute as defined in ISO/ IEC 23009-1 [5] of the MPD Period

with which this Event is associated, in UTF-8 encoding. Note that this field may be of length
zero (not present) if the MPD Period has no MPD.Period@id attribute value assigned.

period_id_terminator – A null-terminator for the period_id field.
segment_counter – An integer that identifies the segment of the MPD Period with which this Event

is associated. The value of segment_counter shall be equal to the number of segments that
precede the associated segment in the MPD Period identified by period_id. For example, if the
Event is associated with the third segment of the MPD Period identified by period_id, then
segment_counter will have the value 2.

emsg – An 'emsg' box as defined in ISO/ IEC 23009-1 [5] containing an Event. Note that the
presentation_time_delta of an Event specifies an offset relative to the start time of a
segment, so the values of mpd_id, period_id, and segment_counter may be necessary to determine
an unambiguous presentation time for the Event.
For MMTP/MPU-delivered services, the format of an Event delivered via HTTP or WebSocket

server shall employ the same 'evti' box format described above together with information that
associates them with specific MMT Asset MPUs as specified in [7]. The semantics of the fields of
this element shall be as given immediately below the table.

Table 4.5 Syntax of the 'evti' Box Delivered over WebSocket or HTTP
Syntax No. of Bits Value Format
evti_object() {
 asset_id_length 32 N uimsbf
 asset_id N*8 uimsbf
 mpu_sequence_number 32 uimsbf
 evti var
}

asset_id_length – The asset_id_length attribute as defined in ISO/ IEC 23008-1 [7].
asset_id – The asset_id attribute as defined in ISO/ IEC 23008-1 [7].
mpu_sequence_number – The mpu_sequence_number attribute as defined in ISO/ IEC 23008-1 [7].

ATSC A/337:2019 Application Event Delivery 30 April 2019

11

evti – An 'evti' box containing an Event as specified in section 4.1.2, where the
event_presentation_time_delta is relative to the earliest access unit presentation time of the
MPU referenced by asset_id and mpu_sequence_number.

4.3 Watermark Delivery of Events
In a redistribution setting, Events can be also acquired via watermarks. Events can be delivered in
a video watermark, or by an Event server after a flag in an audio watermark indicates that an Event
is available. These processes are described in the A/336 “Content Recovery in Redistribution
Scenarios” standard [3].

4.4 ATSC-Specific Event Streams
There are three types of Event Streams of interest in this standard which can be delivered via any
mechanism described in Section 4. There are slight differences between ROUTE/DASH-based
services and MMT-based services, but there is also significant commonality.
4.4.1 DASH-specific signaling Event Streams
The DASH-specific signaling Event Streams may be used for ROUTE/DASH-based Services or
for MMT-based Services which includes broadband-delivered DASH segments. More details are
described in Section 5.6 of the DASH-IF IOP for ATSC 3.0 [4].
4.4.2 Application-specific Event Streams
Application-specific Event Streams are defined by application developers. For ROUTE/DASH-
based Services, constraints are described in Section 5.6.2 of the DASH-IF IOP for ATSC 3.0 [4].
For MMT-based Services, AEI and/or 'evti' box can be used for Application-specific Event
Streams signaling. The only constraints are that the combination of
AEI.EventStream@schemeIdUri/AEI.EventStream@value attributes shall be globally unique,
such as by the use of an AEI.EventStream@schemeIdUri attribute controlled by the application
developer, and by proper management of the AEI.EventStream@value attribute. In order to get
access to these Events, applications register callback routines for them, and the callback routines
are called when such Events arrive.
4.4.3 ATSC-specific signaling Event Streams
ATSC-specific signaling Events are used to notify devices when unexpected updates to signaling
metadata objects become available. For ROUTE/DASH-based Services, constraints and
requirements are described in Section 5.6.2 and 5.6.3 of the DASH-IF IOP for ATSC 3.0 [4]. For
MMT-based Services, the AEI.EventStream@schemeIdUri attribute shall be of form
“tag:atsc.org,2016:event”, and the AEI.EventStream@value attribute shall be “stu”. If the
dynamic event is used, the event_data field of 'evti' box shall be a comma separated list of the
updated table name(s), where the allowed table names shall be the individual signaling metadata
object names listed in the table for the supported types of metadata objects in the section of A/331,
“Signaling, Delivery, Synchronization and Error Protection” [1], that describes how signaling
metadata objects can be used to make HTTP requests to the signaling server.

4.5 Event notification via WebSocket
4.5.1 Introduction
Various dynamic events could be delivered by broadband in addition to broadcast. Since new event
information may need to be communicated dynamically at any time, use of notification is
supported for broadband delivery of dynamic events.

ATSC A/337:2019 Application Event Delivery 30 April 2019

12

The following types of dynamic notification of events are supported over broadband.
• Notification about availability of an instance of event information for a service
• Notification about availability of an instance of event information for a service along with

the inclusion of signaling object data in the notification
4.5.2 Dynamic Notification
The following describes the steps taken for dynamic notification of event information over a
broadband connection.

1) Broadband server URL from where dynamic event notifications can be received is signaled
in the Broadcast Stream in the Service List Table (SLT) [1].

2) A WebSocket connection is established by the client with an event notification URL server
as per RFC 6455 [8] for receiving event notification (and optionally signaling object data
notification) messages. Signaling object data includes such data as present in the HELD
[1], MPD, or AEI.

A WebSocket subprotocol EventNotify as defined below shall be used for this.
The opening handshake for this between the client and the server is as shown below.
The HTTP upgrade request from client to server is as follows:

 GET /notifications HTTP/1.1
 Host: server.example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: ePhhsdhjdshuwrwrrwjQDS==
 Origin: http://server.com
 Sec-WebSocket-Protocol: EventNotify
 Sec-WebSocket-Version: 13
 NotificationType:

The successful response from server to client is as follows:

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: 6d67dfukfhwHGJHOwqQEE+kjfh=
 Sec-WebSocket-Protocol: EventNotify
 NotificationType: 1

4.5.2.1 NotificationType Extension for Sec-WebSocket-Extension Header Field
A Sec-WebSocket-Extensions header field extension termed NotificationType is defined. An
extension-para is defined for the NotificationType extension with valid values of 0 and 1, i.e.
ntval=(0|1). NotificationType extension can be used in Sec-WebSocket-Extension request
header and Sec-WebSocket-Extension response header. When used in Sec-WebSocket-Extension
request header NotificationType extension indicates if only event information availability
notification is requested (value of 0 for ntval extension-param) or event information availability
notification along with signaling object data is requested (value of 1 for ntval extension-param).
When used in Sec-WebSocket-Extensions response header NotificationType extension
indicates if only event information availability notification is sent in the notification response
(value of 0 for ntval extension-param) or event information availability notification along with
signaling object data is sent in the notification response (value of 1 for ntval extension-param).

http://server.com/

ATSC A/337:2019 Application Event Delivery 30 April 2019

13

• If the server supports sending an event information availability notification along with
signaling object data in the notification message and if the request from the client includes

Sec-WebSocket-Extensions: NotificationType; ntval=1

header then the server shall respond with a

Sec-WebSocket-Extensions: NotificationType; ntval=1

header in the response and shall send notification messages using the EventNotify
subprotocol described below with non-zero OBJECT_DATA length.

• If the server supports sending an event information availability notification along with
signaling object data in the notification message and if the request from the client includes

Sec-WebSocket-Extensions: NotificationType; ntval=0

header then the server shall respond with

Sec-WebSocket-Extensions: NotificationType; ntval=0

header in the response and shall send notification messages using EventNotify subprotocol
described below with zero OBJECT_DATA length and not including signaling object data
in the notification message.

• If the server does not support sending signaling object data along with the event
information availability notification in the notification message and if the request from the
client includes

Sec-WebSocket-Extensions: NotificationType; ntval=1

header then the server shall respond with

Sec-WebSocket-Extensions: NotificationType; ntval=0

header in the response and shall send notification messages using EventNotify subprotocol
described below with zero OBJECT_DATA length and not including signaling object data
in the notification message.

• If the server does not support sending signaling object data along with the event
information availability notification in the notification message and if the request from the
client includes

Sec-WebSocket-Extensions: NotificationType; ntval=0

header then the server shall respond with

Sec-WebSocket-Extensions: NotificationType; ntval=0

header in the response and shall send notification messages using EventNotify subprotocol
described below with zero OBJECT_DATA length and not including signaling object data
in the notification message.

ATSC A/337:2019 Application Event Delivery 30 April 2019

14

4.5.2.2 EventNotify Subprotocol
The EventNotify subprotocol framing structure is shown in Figure 4.1. Table 4.6 describes the
elements in the EventNotify framing structure along with their semantics. EventNotify protocol
shall use the WebSocket ”binary” format with Opcode %x2 for base framing (or %x0 for
continuation frame) for the messages.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| NOTIFY_ID | SERVICE_ID |
+-+
| AC | ET | EF |EE | DATA_LENGTH |
+-+
| EVENT_INFORMATION ... |
+-+
| OBJECT_LENGTH | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| OBJECT DATA |
| ... |
+-+

Figure 4.1 EventNotify subprotocol framing structure.

Table 4.6 EventNotify Subprotocol Framing Elements
Element No. of Bits Semantics
NOTIFY_ID 16 A notification identifier which uniquely identifies this event notification

connection.
NOTIFY_ID values in the range of 0xF000-0xFFFF are reserved for

action code value of 2 and 3.
SERVICE_ID 16 Service identifier for which the notification and the table data is

applicable. SERVICE_ID uniquely identifies the service. This shall
correspond to serviceId attribute value for a service in service list
table (SLT) as specified in [1].

AC (ACTION_CODE) 4 Defines the type of action. Following actions are defined.
0: Event notification from server to client.
1: Event notification PAUSE request from client to server events for the

service identified by SERVICE_ID for the notification connection
identified by NOTIFY_ID.

2: Event notification RESUME request from client to server events for
the service identified by SERVICE_ID for the notification connection
identified by NOTIFY_ID.

3: Request from client to server to receive current event information for
the service identified by SERVICE_ID field. The field NOTIFY_ID
provides identifier for this request.

4: Event information response from server to client for the request from
the client. The server shall use the same NOTIFY_ID field as the
request from the client.

5-15 : reserved.
ET 4 Indicates the type of event for which updated data is available. ET field

value is interpreted as follows:
0 indicates ATSC ROUTE/DASH event.
1 indicates ATSC MMT event.
2-15 are reserved.

EF 3 Defines format of OBJECT_DATA. Following formats are defined.
0: Binary format used for OBJECT_DATA.
1: XML format used for OBJECT_DATA.
2: JSON format used for OBJECT_DATA.

ATSC A/337:2019 Application Event Delivery 30 April 2019

15

3-7: reserved.
EE 2 Defines encoding for OBJECT_DATA. Following encodings are

defined.
0: No encoding.
1: GZIP encoding as per RFC 1952.
2-3: reserved.

DATA_LENGTH 17 Provides the length in bytes of EVENT_INFORMATION data that
follows. If the DATA_LEGNTH is zero then the
EVENT_INFORMATION is not included in the event notification.

DATA_LENGTH shall be zero when AC field has a value in the range
of 1 to 3, inclusive.

EVENT_INFORMATION DATA_LENGH Event information for the event.
When ET (EVENT_TYPE) is 0 the EVENT_INFORMATION content will

be same as content of 'emsg' box as specified in ISO/ IEC 23009-1
[5].

When ET (EVENT_TYPE) is 1 the EVENT_INFORMATION content will
be same as content of 'evti' box.

OBJECT_LENGTH 16 Provides the length in bytes of OBJECT_DATA field. If the
OBJECT_LENGTH is zero then the OBJECT_DATA is not included in
the notification.

OBJECT_LENGTH shall be zero when AC field has a value in the
range of 1 to 3, inclusive.

OBJECT_DATA OBJECT_LENGH Optional signaling object data corresponding to this event. The
OBJECT_DATA shall have the syntax based on value of other fields
in this event.

The signaling object data can be in bitstream (binary) or XML or JSON
format. Rules specified in the NotificationType header field regarding
inclusion of OBJECT_DATA element shall be followed.

1) When a new dynamic event needs to be notified, the server shall notify it to the client within
10 seconds over the established WebSocket connection using EventNotify subprotocol with
AC (ACTION_CODE) value of 0.

2) Pausing/ resuming receiving ATSC event notifications for a service:
The client receiving notifications can pause receiving notifications for particular service

identified by SERVICE_ID by sending AC (ACTION_CODE) value of 1 in the EventNotify
message to the server.

Upon receiving such a PAUSE message the server shall pause sending events to the client
on the notification stream identified by the NOTIFY_ID field in the client request for the type of
event identified by the ET field in the client request for the service identified by the SERVICE_ID
field in the client request.

The client that was previously receiving events which it has paused can resume receiving
notifications for a particular event type identified by ET for particular service identified by
SERVICE_ID by sending AC (ACTION_CODE) value of 2 in the EventNotify message to the server.

Upon receiving such a RESUME message the server shall resume sending events to the client
on the notification stream identified by the NOTIFY_ID field in the client request for the type of
event identified by the ET field in the client request for the service identified by the SERVICE_ID
field in the client request if the events were previously paused.

3) Request/ Response support for application/ event table retrieval for a service:
The client can send a request to receive the current table by sending AC (ACTION_CODE)

value of 3 for a particular event type identified by ET for a particular service identified by

ATSC A/337:2019 Application Event Delivery 30 April 2019

16

SERVICE_ID in the EventNotify message to the server. In this case the client will randomly
assign a NOTIFY_ID value in the range of 0xF000 to 0xFFFF to identify the request.

Upon receiving such a request message the server shall send the current event to the client
for the type of event identified by the ET field in the client request for the service identified by
the SERVICE_ID field in the client request with NOTIFY_ID field set to the value included in the
client request.

4) The WebSocket connection can be closed from either server or client at any time.

ATSC A/337:2019 Application Event Delivery, Annex A 30 April 2019

17

Annex A: Media Type Registrations

This Annex documents new media types registered by IANA at
https://www.iana.org/assignments/media-types/media-types.xhtml#application. Notice to editors:
any changes to this Annex are subject to review by IETF and IANA as described in IETF BCP 13
[12].

A.1 AEI
Type name:

application
Subtype name:

mmt-aei+xml
Required parameters:

None.
Optional parameters:

None.
Encoding considerations:

binary
Same as for application/xml, except constrained to UTF-8. See IETF 7303 [13], Section
9.1.

Security considerations:
This media type inherits the issues common to all XML media types - see RFC 7303 [13]
Section 10. This media format is used to describe broadcast and broadband services. This
format is highly susceptible to manipulation or spoofing for attacks desiring to mislead a
receiver about a session. Both integrity protection and source authentication is
recommended to prevent misleading of processors. This type does not employ executable
content, but since it is explicitly extensible then executable content could appear in an
extension. This media type does not provide any confidentiality protection and instead
relies on the transport protocol that carries it to provide such security, if needed.

Interoperability considerations:
The published specification describes processing semantics that dictate behavior that must
be followed when dealing with, among other things, unrecognized elements and attributes,
both in the document's namespace and in other namespaces.
Because this is extensible, conformant processors may expect (and enforce) that content
received is well-formed XML, but it cannot be guaranteed that the content is valid to a
particular DTD or Schema or that the processor will recognize all of the elements and
attributes in the document.

Published specification:
This media type registration is an integral part of ATSC A/337, "Application Signaling",
Annex A. The payload is defined in Section 4.1.2. This specification and XML schema for

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.iana.org%2Fassignments%2Fmedia-types%2Fmedia-types.xhtml%23application&data=02%7C01%7CLClaudy%40nab.org%7C0d292786cab74e303b6408d6b6af49b0%7C9e1dc664276a46108317b9c9fa01904d%7C1%7C0%7C636897261323118169&sdata=y1v2JOfJihIpnXiiIv0UnT557vj7L4PufZqVoGCESAs%3D&reserved=0

ATSC A/337:2019 Application Event Delivery, Annex A 30 April 2019

18

the content are available at www.atsc.org/standards (the schema(s) are provided in a zip
file).

Applications that use this media type:
ATSC 3.0 television and Internet encoders, decoders and other facility and consumer
equipment.

Additional information:
File extension(s):

.maei
Person & email address to contact for further information:

Editor, Advanced Television Systems Committee (jwhitaker@atsc.org)
Intended usage:

COMMON
Restrictions on usage:

None
Author:

ATSC.
Change controller:

ATSC.

End of Document

	1. Introduction
	1.1 Scope
	1.2 Background

	2. References
	2.1 Normative References
	2.2 Informative References

	3. Terms
	3.1 Compliance Notation
	3.2 Treatment of Syntactic Elements
	3.2.1 Reserved Elements

	3.3 Acronyms and Abbreviations
	3.4 XML Schema and Namespace

	4. Synchronization of Application Actions
	4.1 Broadcast Delivery of Events
	4.1.1 Broadcast Events for ROUTE/DASH-based Services
	4.1.2 Broadcast Events for MMT-based Services

	4.2 Broadband Delivery of Events
	4.3 Watermark Delivery of Events
	4.4 ATSC-Specific Event Streams
	4.4.1 DASH-specific signaling Event Streams
	4.4.2 Application-specific Event Streams
	4.4.3 ATSC-specific signaling Event Streams

	4.5 Event notification via WebSocket
	4.5.1 Introduction
	4.5.2 Dynamic Notification
	4.5.2.1 NotificationType Extension for Sec-WebSocket-Extension Header Field
	4.5.2.2 EventNotify Subprotocol
	Annex A : Media Type Registrations
	A.1 AEI

