

ATSC Standard: A/331:2025-06 Amendment No. 1, "Time"

A/331:2025-06 Amend. No.1 10 September 2025 ATSC, the Broadcast Standards Association, is an international, non-profit organization developing voluntary standards and recommended practices for broadcast television and multimedia data distribution. ATSC member organizations represent the broadcast, professional equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. ATSC also develops implementation strategies and supports educational activities on ATSC standards. ATSC was formed in 1983 by the member organizations of the Joint Committee on Inter-society Coordination (JCIC): the Consumer Technology Association (CTA), the Institute of Electrical and Electronics Engineers (IEEE), the National Association of Broadcasters (NAB), the Internet & Television Association (NCTA), and the Society of Motion Picture and Television Engineers (SMPTE). For more information visit www.atsc.org.

© Copyright 2025 ATSC. All rights reserved.

Note: The user's attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights. By publication of this standard, no position is taken with respect to the validity of this claim or of any patent rights in connection therewith. One or more patent holders have, however, filed a statement regarding the terms on which such patent holder(s) may be willing to grant a license under these rights to individuals or entities desiring to obtain such a license. Details may be obtained from the ATSC Secretary and the patent holder.

Implementers with feedback, comments, or potential bug reports relating to this document may contact ATSC at https://www.atsc.org/feedback/.

Revision History

Version	Date
Amendment approved	10 September 2025

ATSC Standard: A/331:2025-06 Amendment No. 1, "Time"

1. OVERVIEW

1.1 Definition

An Amendment is generated to document an enhancement, an addition or a deletion of functionality to previously agreed technical provisions in an existing ATSC document. Amendments shall be published as attachments to the original ATSC document. Distribution by ATSC of existing documents shall include any approved Amendments.

1.2 Scope

This document describes a set of changes to the treatment of "time" in A/300 and A/331.

1.3 Rationale for Changes

The changes described in this document are being proposed to alleviate any confusion between "GPS" (meaning the US GPS SATNAV system), whether providing time data or location data, and to clarify description of time generally.

This amendment is intended to satisfy NPP-075.

1.4 Compatibility Considerations

The changes described in this document are backward-compatible relative to the currently published version of the standard to which this Amendment pertains and any previously approved Amendments for that standard. The meaning of the text remains the same, but it's easier to understand.

2. LIST OF CHANGES

Change instructions are given below in *italics*. Unless otherwise noted, inserted text, tables, and drawings are shown in blue; deletions of existing text are shown in red strikeout. The text "[ref]" indicates that a cross reference to a cited referenced document should be inserted.

2.1 Change Instructions

Add the following items to Section. 3.4, "Terms":

- **SATNAV** A global or regional infrastructure comprising a constellation of satellites, ground control stations, and user receivers, designed to provide real-time positioning, navigation, and timing (PNT) data anywhere within the system's coverage area.
- GNSS Any satellite constellation that provides positioning, navigation, and timing services, such as Galileo (EU), GPS (USA), GLONASS (Russia), BeiDou (China), and NavIC (India).

Modify Section 6.3, "Service List Table (SLT)," as shown:

The SLT shall be represented as an XML document containing a **SLT** root element that conforms to the definitions in the XML schema that has namespace:

tag:atsc.org,2016:XMLSchemas/ATSC3/Delivery/SLT/1.0/

The definition of this schema is in an XML schema file, *SLT-1.0-2021120920250604.xsd*, accompanying this Standard, as described in Section 3.6 above. The XML schema xmlns short name should be "slt".

Modify Section 6.3.1, "SLT Syntax Description," as shown:

@drmSystemID	01	listOfanyURI	Specifies the DRM System ID(s) related to this service.
@configuration	01	token	Declares the Service Configuration.
CodecStrings	0 <mark>N</mark> 1		Container for MPD @cCodecs strings
@codecs Codecs	1N	•	A dDelimited lists of MPD @codecs strings per RFC6381 [30]
@kind	1	token	Type of codecs described
SimulcastTSID	01	unsignedShort	Identifier of an ATSC 1.0 broadcast stream carrying the same programming content.

Modify Section 6.3.1, below the table, as shown:

@codecs This list of one or more @codec strings shall identify the set of @codec strings which are present in an MPD for this Service. This list shall conform to RFC6381 [30]. Note that RFC6381 [30] requires that each @codec string begins with a registered "4CC" code (see RFC6381 [30], Sec. 3.3). A receiver might use this field to determine if it is capable of correctly decoding and presenting the content that is part of this Service.

Modify Section 6.3.2, "SLT Semantics," adding semantics for CodecStrings and Codecs as shown:

Note: Other configurations are under development; e.g. "hybrid."

codecStrings – This element shall contain one or more Codecs elements indicating what codecs and versions are in use in the Service. The list indicates all the codecs that are used and if a Receiver can decode one codec in each value of kind, that is sufficient to decode the Service. A receiver might use this field to determine if it is capable of correctly decoding and presenting the content that is part of this Service with the available codecs; and perhaps whether the Service should be listed in a guide.

codecs – This element describes the content kind and codec(s) and shall be a value from Table 6.[n].

Table 6.[n] Values for kind

kind	Meaning
video	The media signaled with the Codecs string are video media
audio	The media signaled with the Codecs string are audio media
captions	The media signaled with the Codecs string are captions media
other values	ATSC Reserved

Modify Section 6.3.2 in the semantics for OtherRf as shown:

@lat – This attribute shall indicate the latitude of the location of the transmitter, on RF frequency @otherBsidRf. @lat shall be in the range of -90.0 to 90.0 indicating degrees and fraction of a degree (not degrees, minutes, seconds) of the latitude or longitude of a transmitter location (respectfully). See "latitude-decimal-type" and "longitude decimal-type" in [74] for context.

Receivers might not utilize all precision supplied but are expected to utilize at least minutes of are (1/60 precision) the first three decimal places of the value. Note also that some regulatory agencies provide this data to the nearest tenth of a second. Note that coordinates (such as latitude, longitude and elevation) are generally calculated based in WGS-84 [75].

@long — This attribute shall indicate the longitude of the location of the transmitter, on RF frequency @otherBsidRf. @long shall be in the range of -180.0 to 180.0 indicating degrees and fraction of a degree (not degrees, minutes, seconds) of the latitude or longitude of a transmitter location (respectfully). Receivers might not utilize all precision supplied but are expected to utilize at least minutes of are (1/60 precision)the first three decimal places of the value. Note also that some regulatory agencies provide this data to the nearest tenth of a second. Note that coordinates (such as latitude, longitude and elevation) are generally calculated based in WGS-84 [68].

@elev – This attribute shall indicate the antenna radiation center in Height Above Mean Sea Level to the nearest meter of the transmitter emitting on RF frequency @otherBsidRf. Note that coordinates (such as latitude, longitude and elevation) are generally calculated based in WGS-84 [68].

and

@haat – This attribute, if present, shall indicate the Height Above Average Terrain, over the range from 3.2 km to 16 km from the transmitter, of the antenna radiation center to the nearest meter (this field may be a negative number), in the @heading direction. Note that these values (worldwide) can be obtained using the online calculator found at https://www.fcc.gov/media/radio/haat-calculator; for locations outside the U.S. the "GLOBE" database should be selected. Note that coordinates (such as latitude, longitude and elevation) are generally calculated based in WGS-84 [68].

Modify Section 6.5.2, "AEAT and AEA Semantics," in the semantics for Location@type as shown:

• If @type="polygon", then the Location shall define a geospatial space area consisting of a connected sequence of described by three or more GPS coordinate pairs verticies, expressed in latitude/longitude pairs that form a closed, non-self intersecting loop. Each coordinate pair shall be expressed in decimal degrees. Latitude shall be in the range of -90.0 to 90.0 indicating degrees and decimal fractions of a degree (not degrees, minutes, seconds) of the latitude of each vertex. Longitude shall be in the range of -180.0 to 180.0 indicating degrees and decimal fractions of a degree (not degrees, minutes, seconds) of the longitude of each vertex. Receivers might not utilize all precision supplied but are expected to utilize at least the first three decimal places of latitude and longitude. The value of Location shall conform to the syntax described in the following ABNF for "polygon-coordinates":

```
; !syntax("abnf")
; Polygon coordinates: requires 3 or more coordinate pairs, each separated by a space.
; Example: "45.7606,4.8351 40.7128,-74.0060 -34.9293,-58.3754"
polygon-coordinates = coordinate-pair 2*(" " coordinate-pair)

; Latitude and Longitude in decimal degrees format, separated by a comma
; Examples: 37.7749,-122.4194 or +37.7749,-122.4194
coordinate-pair = latitude "," longitude

; -90 through +90
```

```
= [ "-" / "+"] [DIGIT08] DIGIT ["." fraction] ; 0.fraction to 89.fraction
latitude
               / [ "-" / "+"] DIGIT9 DIGIT0 ; 90 exactly only
; -180 through +180
               = [ "-" / "+"] [DIGIT0] 1*2DIGIT ["." fraction] ; 0.fraction to 99.fraction
longitude
               / [ "-" / "+"] DIGIT1 DIGIT07 DIGIT ["." fraction] ; 100.fraction to
179.fraction
               / [ "-" / "+"] DIGIT1 DIGIT8 DIGIT0
                                                               ; 180 exactly
               = 1*DTGTT
fraction
DIGITO
              = %x30
                                ; 0
DIGIT1
              = %x31
                                ; 1
              = %x30-39
                                ; 0-9
DIGIT
                                ; 0-7
              = %x30-37
DIGITO7
DIGIT08
              = %x30-38
                                ; 0-8
              = %x38
DIGIT8
                                ; 8
              = %x39
                                ; 9
DIGIT9
```

• If @type="circle", then the Location shall define a circular area represented by a central point given as a latitude/longitude coordinate pair subject to the requirements above in "polygon", followed by a space character and a positive radius value in miles (indicated by a 'm' suffix) or kilometers (indicated by a required 'km' suffix). The value of Location shall conform to the syntax described in the following ABNF for "circle-coordinates":

```
; !syntax("abnf")
; Circle coordinates: requires one coordinate pair, a space, then a radius value.
; Examples: "45.7606,4.8351 10.5m", "17.856556,-77.047607 25km", "56.368,53.306 17.5m"
circle-coordinates = coordinate-pair " " radius
radius = radius-miles
        / radius-km
radius-miles = 1*DIGIT ["." fraction] "m"; miles and fraction (positive value) radius-km = 1*DIGIT ["." fraction] ["km"]; km and fraction (positive value) (default)
; Latitude and Longitude in decimal degrees format, separated by a comma
; Examples: 37.7749,-122.4194 or +37.7749,-122.4194
coordinate-pair = latitude "," longitude
; -90 through +90
                = [ "-" / "+"] [DIGIT08] DIGIT ["." fraction] ; 0.fraction to 89.fraction
latitude
                 / [ "-" / "+"] DIGIT9 DIGIT0 ; 90 exactly only
; -180 through +180
                = [ "-" / "+"] [DIGIT0] 1*2DIGIT ["." fraction] ; 0.fraction to 99.fraction
longitude
                / [ "-" / "+"] DIGIT1 DIGIT07 DIGIT ["." fraction] ; 100.fraction to
179 fraction
                / [ "-" / "+"] DIGIT1 DIGIT8 DIGIT0
                                                                      ; 180 exactly
                = 1*DIGIT
fraction
                                   ; 0
DIGIT0
                = %x30
DIGIT1
                = %x31
                                   ; 1
                                   ; 0-9
DIGIT
                = %x30-39
                                   ; 0-7
                = %x30-37
DIGITO7
DIGIT08
                = %x30-38
                                   ; 0-8
                = %x38
DTGTT8
                                   : 8
                = %x39
DIGIT9
                                   ; 9
```

Note: The ABNF above is available for download at the atsc-schemas.org repository: https://atsc-schemas.org/atsc3.0/a331/20250910/

Modify Section 8.1.1.3, "Synchronization and Time," as shown:

ROUTE/DASH requires accurate wall clock and stable time for synchronization of service components.

Network servers for both broadcast and broadband Components of a Service shall synchronize to a common wall clock (UTC) source. A SATNAV system (such as GPS) a GNSS or other source with similar accuracy and stability) is sufficient.

- End of Document -