The Broadcast
Standards
Association

ATSC Standard:
ATSC 3.0 Interactive Content

A/344:2026-02
18 February 2026

|
ATSC / 1300 | Street, N.W., Suite 400E / Washington, D.C. 20005 USA / +1-202-872-9160

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

ATSC, the Broadcast Standards Association, is an international, non-profit organization
developing voluntary standards and recommended practices for broadcast television and
multimedia data distribution. ATSC member organizations represent the broadcast, professional
equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor
industries. ATSC also develops implementation strategies and supports educational activities on
ATSC standards. ATSC was formed in 1983 by the member organizations of the Joint Committee
on Inter-society Coordination (JCIC): the Consumer Technology Association (CTA), the Institute
of Electrical and Electronics Engineers (IEEE), the National Association of Broadcasters (NAB),
the Internet & Television Association (NCTA), and the Society of Motion Picture and Television
Engineers (SMPTE). For more information visit www.atsc.org.

© Copyright 2026 ATSC. All rights reserved.

Note: The user's attention is called to the possibility that compliance with this standard may
require use of an invention covered by patent rights. By publication of this standard, no position
is taken with respect to the validity of this claim or of any patent rights in connection therewith.
One or more patent holders have, however, filed a statement regarding the terms on which such
patent holder(s) may be willing to grant a license under these rights to individuals or entities

desiring to obtain such a license. Details may be obtained from the ATSC Secretary and the patent
holder.

Implementers with feedback, comments, or potential bug reports relating to this document may
contact ATSC at https://www.atsc.org/feedback/.

Revision History

Version Date
Candidate Standard approved 29 December 2016
A/344:2017 Standard approved 18 December 2018
Candidate Standard Revision approved 27 April 2018

See Section 9.1 for details of WebSocket API changes
CS update approved 24 January 2019
A/344:2019 Standard approved 2 May 2019
Amendment No. 1, Persistent IDs," approved 29 July 2019
Amendment No. 2, "JSON RPC Cancel Request API Addition," 16 December 2019

approved
Amendment No. 3, "Redistribution Use Case," approved 18 December 2019
Amendment No. 4, "RMP State," approved 19 December 2019
Amendment No. 5, "Capabilities," approved 23 December 2019
Amendment No. 6, "Remove JavaScript Sample Code," approved |24 December 2019
Amendment No. 7, "CacheRequest API", approved 25 December 2019
Amendment No. 8, "Signaling Data", approved 7 February 2020
Amendment No. 9, "Service Guide", approved 31 January 2020
Amendment No. 10, "DRM Error Codes," approved 3 February 2020
A/344:2020 published 7 February 2020

(a roll-up of Amendments No. 1 through 10 to A/344:2019 plus

editorial cleanup)
Corrigendum No. 1 approved 29 April 2020
Amendment No. 1 approved 12 October 2020

http://www.atsc.org/
https://www.atsc.org/feedback/

ATSC A/344:2026-02

ATSC 3.0 Interactive Content

18 February 2026

A/344:2021 Standard approved

23 March 2021

A/344:2021 Candidate Standard Revision
Updated CS approved by TG3/S38

14 June 2021
13 September 2021

A/344:2021 Revision approved

18 March 2022

A/344:2022-03 Published (references to ATSC documents
updated)

31 March 2022

A/344:2023-02 Revision approved

17 February 2023

A/344:2023-03 Published (references to ATSC documents
updated)

28 March 2023

updated)

A/344:2023-03 Candidate Standard Revision approved 25 April 2023
A/344:2024-02 Revision approved 13 February 2024
A/344:2024-04 Published (references to ATSC documents 3 April 2024
updated)
A/344:2024-04 Candidate Standard Revision approved 22 August 2024
A/344:2024-04 Revision approved 26 February 2025
A/344:2025-02 Candidate Standard Revision approved 8 May 2025
Update of CS revision approved by TG3/S38 13 July 2025
Update of CS revision approved by TG3/S38 17 December 2025
A/344:2025-07 Published (references to ATSC documents 17 July 2025

A/344:2025-07 Revision approved

18 February 2026

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table of Contents

R~ 0] = SRS 1
1.1 Introduction and Background 1

1.2 Organization 1

2. REFERENCES ...t oiiiiiciescie st set s sse s s e s e s e s s s se s ne s st e e ne e e e e e ene e e ne e e eneeaneenneesneensnnennnennnnnns 2
2.1 Normative References 2

2.2 Informative References 4

3. DEFINITION OF TERMSooiiieiciiiiteiceesseessseesseessse s s s e ssse s s s e s sse s s s essnesssnsessnssssnsessnsessnsessnsessnsessnnens 5
3.1 Compliance Notation 5
3.1.1 A/344-specific Terms 5

3.2 Treatment of Syntactic Elements 6
3.2.1 Reserved Elements 6

3.3 Acronyms and Abbreviations 6

3.4 Terms 8

N 0) YT SR 10
4.1 Application Runtime Environment 10

4.2 Receiver Media Player Display 11
4.2.1 Rendering Model 11

4.2.2 Closed Captioning 13

5. ATSC REFERENCE RECEIVER MODEL..........cccceeiiiitriieieeiseessseesseessessssessssee s ssesessesssnesssnssssssssses 14
5.1 Introduction 14

5.2 User Agent Definition 14
5.2.1 HTTP Protocols 14

5.2.2 XMLHttpRequest (XHR) 14

5.2.3 Cross-Origin Resource Sharing (CORS) 14

5.2.4 Mixed Content 15

5.2.5 Transparency 15

5.2.6 Full Screen 15

5.2.7 Visibility and Focus 15

5.3 Application Context Identifier, Base URI and Cache Path 15
5.3.1 Application Context Identifier 15

5.3.2 Origin Considerations 16

5.3.3 Base URI 16

6. BROADCASTER APPLICATION MANAGEMENTccococeiistmreeeseseessseessssnssssesssssssssssesssssssesssssssssesssnes 19
6.1 Introduction 19

6.2 Application Context Cache Management 20
6.2.1 Signaling Intent for File Caching 20

6.2.2 Application Context Cache Hierarchy Definition 22

6.2.3 Active Service Application Context Cache Priority 23

6.2.4 Cache Expiration Time 24

6.2.5 Advanced Emergency Alert Enhancement Content Considerations 24

6.3 Broadcaster Application Lifecycle 25

6.4 Broadcaster Application Events (Static / Dynamic) 27

6.5 Broadcaster Application Delivery 27

ATSC A/344:2026-02 ATSC 3.0 Interactive Content

18 February 2026

6.5.1
6.5.2
6.5.3

Broadcaster Application Packages
Broadcaster Application Package Changes
Content Caching Control via Filter Codes

6.6 Security Considerations

6.7 Companion Device Interactions

7. MEDIA PLAYER

7.1 Utilizing RMP

7.1.1
7.1.2
7.1.3
7.14

Broadcast or Hybrid Broadband and Broadcast Live Streaming
Broadband Media Streaming

Downloaded Media Content

Redistribution

7.2 Utilizing AMP

7.2.1
7.2.2
7.2.3
7.2.4

8. ATSC 3.0 WEBSOCKET INTERFACE

Broadcast or Hybrid Broadband and Broadcast Live Streaming
Broadband Media Streaming

Downloaded Media Content

AMP Utilizing the Pushed Media WebSocket Interface

8.1 Introduction

8.2 Interface Binding

8.2.1

WebSocket Servers

8.3 Data Binding

8.3.1
8.3.2
8.3.3

9. SUPPORTED METHODS

General JSON Property Considerations
Cancel Request Command
Error Handling

9.1 API Revision Control
9.2 Receiver Query APIs

9.2.1
9.2.2
9.2.3
9.24
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.2.10
9.2.11
9.2.12
9.2.13

Query Content Advisory Rating API

Query Closed Captions Enabled/Disabled API
Query Service ID API

Query Language Preferences API

Query Caption Display Preferences API
Query Audio Accessibility Preferences API
Query Receiver Web Server URI API

Query Alerting Signaling API

Query Service Guide URLs API

Query Signaling Data API

Query Dialog Enhancement Preferences API
Query Display Components API

Query Announcement Time Limit

9.3 Asynchronous Notifications of Changes

9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6

Integrated Subscribe / Unsubscribe API for Notifications
Content Advisory Rating Block Change Notification API
Service Change Notification API

Caption State Change Notification API

Language Preference Change Notification API

Caption Display Preferences Change Notification API

27
28
28
31
32

...................... 32

33
33
33
33
33
33
33
33
34
34

..................... 34

34
35
36
37

39
40
43

..................... 45

46
48
48
50
51
52
53
57
59
60
62
64
68
69
70
71
72
78
79
80
81
81

ATSC A/344:2026-02 ATSC 3.0 Interactive Content

18 February 2026

9.3.7 Audio Accessibility Preference Change Notification API
9.3.8 Alerting Change Notification API
9.3.9 Content Change Notification API
9.3.10 Service Guide Change Notification API
9.3.11 Signaling Data Change Notification API
9.3.12 Dialog Enhancement Preference Change Notification API
9.3.13 Dialog Enhancement Limit Change Notification API
9.3.14 REF Signal Change Notification API
9.4 Cache Request APIs
9.4.1 Cache Request API
9.4.2 Cache Request DASH API
9.5 Query Cache Usage API
9.6 Event Stream APIs
9.6.1 Event Stream Subscribe API
9.6.2 Event Stream Unsubscribe API
9.6.3 Event Stream Event API
9.7 Request Receiver Actions
9.7.1 Acquire Service API
9.7.2 Video Scaling and Positioning API
9.7.3 Set RMP URL API
9.74 Audio Volume API
9.7.5 Dialog Enhancement API
9.7.6 Launch Broadcaster Application API
9.777 Media Track Selection API for DASH
9.7.8 Graphics Display Regions API
9.7.9 Media Asset Selection API for MMT
9.8 Mark Unused API
9.9 Content Recovery APIs
9.9.1 Query Content Recovery State API
9.9.2 Query Display Override API
9.9.3 Query Recovered Component Info API
9.9.4 Content Recovery State Change Notification API
9.9.5 Display Override Change Notification API
9.9.6 Recovered Component Info Change Notification API
9.10 Filter Codes APIs
9.10.1 Set Filter Code Instances API
9.10.2 Clear Filter Code Instances API
9.11 Keys APIs
9.11.1 Keycode Consistency
9.11.2 Request Keys API
9.11.3 Relinquish Keys API
9.11.4 Request Keys Timeout
9.12 Query Device Info API
9.13 RMP Content Synchronization APIs
9.13.1 Query RMP Media Time API
9.13.2 Query RMP UTC Time API DEPRECATED
9.13.3 Query RMP Playback State API
9.13.4 Query RMP Playback Rate API

vi

82

84

86

87

89

90

91

92

93

93

97
101
102
103
105
107
109
109
110
113
120
122
124
126
127
129
130
132
132
134
135
137
138
139
140
140
141
143
144
144
146
147
148
154
155
157
158
159

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

9.13.5 RMP Media Time Change Notification API 160
9.13.6 RMP Playback State Change Notification API 163
9.13.7 RMP Playback Rate Change Notification API 164
9.13.8 RMP Media Asset Change Notification API 165
9.14 DRM APIs 166
9.14.1 DRM Notification API 166
9.14.2 DRM Operation API 167
9.15 XLink APIs 168
9.15.1 XLink Resolution Notification API 168
9.15.2 XLink Resolved API 170
9.16 Prepare for Service Change API 173
9.17 MMT AssetLink APIs 175
9.17.1 AssetLink Resolution Notification API 176
9.17.2 AssetLink Resolved API 177
ANNEX A : APPLICATION LIFECYCLE SEQUENCE DIAGRAM..........ccoooreraereereereeeeeenas 181
ANNEX B : JSON-RPC 2.0 SPECIFICATIONooiioeeeieeeeeeeseeeemesme e e se s e s e s e sme s e e e 185
1 Overview 185
2 Conventions 185
3 Compatibility 186
4 Request object 186
5 Response object 187
6 Batch 188
7 Examples 188
8 Extensions 191

Vi

ATSC A/344:2026-02 ATSC 3.0 Interactive Content

18 February 2026

Index of Figures and Tables

Figure 4.1 Rendering model for application enhancements using RMP. 12
Figure 5.1 ATSC 3.0 Reference Receiver Model Logical Components. 14
Figure 5.2 Application Context Identifier Conceptual Model. 18
Figure 6.1 Receiver Conceptual Architecture. 19
Figure 6.2 Example Application Context Cache Hierachy. 23
Figure 6.3 Filter Code Processing Flowchart. 29
Figure 8.1 Communication with ATSC 3.0 Receiver. 35
Figure 9.1 RMP audio volume. 120
Figure 9.2 Graphics Display Regions Layout and Numbers. 128
Figure 9.3 RMP Media Time Representation 155
Figure 9.4 Relationship of MMT signaling tables. 176
Table 4.1 Application Actions and APIs 11
Table 6.1 ATSC-Defined Extension to the metadataEnvelope. item Element 21
Table 8.1 WebSocket Server Functions and URLs 37
Table 8.2 Cancel Request Semantics 40
Table 8.3 Cancel Response Semantics 40
Table 8.4 Error Response Semantics 43
Table 8.5 JSON-RPC ATSC Error Codes 44
Table 9.1 API Applicability 46
Table 9.2 Query Content Advisory Rating Request Semantics 48
Table 9.3 Query Content Advisory Rating Response Semantics 49
Table 9.4 Query Closed Captions Enabled/Disabled Request Semantics 50
Table 9.5 Query Closed Captions Enabled/Disabled Response Semantics 50
Table 9.6 Query Service ID Request Semantics 51
Table 9.7 Query Service ID Response Semantics 51
Table 9.8 Query Language Preferences Request Semantics 52
Table 9.9 Query Language Preferences Response Semantics 52
Table 9.10 Query Caption Display Preferences Request Semantics 53
Table 9.11 Query Caption Display Preferences Response Semantics 54
Table 9.12 Caption Display Preferences CTA 708 Object Semantics 54
Table 9.13 Query Audio Accessibility Preferences Request Semantics 57
Table 9.14 Query Audio Accessibility Preferences Response Semantics 57
Table 9.15 Query Receiver Web Server URI Request Semantics 59
Table 9.16 Query Receiver Web Server URI Response Semantics 59
Table 9.17 Query Alerting Signaling Request Semantics 60
Table 9.18 Query Alerting Signaling Response Semantics 61
Table 9.19 Query Service Guide URLs Request Semantics 62
Table 9.20 Query Service Guide URLs Response Semantics 63
Table 9.21 Query Signaling Data Request Semantics 65
Table 9.22 Signaling Metadata Object Name Definitions 65
Table 9.23 Query Signaling Data Response Semantics 66
Table 9.24 Query Dialog Enhancement Preferences Request Semantics 68
Table 9.25 Query Dialog Enhancement Preferences Response Semantics 68

viii

ATSC A/344:2026-02 ATSC 3.0 Interactive Content

18 February 2026

Table 9.26 Query Display Component Request Semantics

Table 9.27 Query Display Component Response Semantics

Table 9.28 Query Time Limit Request Semantics

Table 9.29 Query Time Limit Response Semantics

Table 9.30 Asynchronous Notifications

Table 9.31 Subscription Parameter List

Table 9.32 Subscribe Request Semantics

Table 9.33 Subscribe Response Semantics

Table 9.34 Unsubscribe Request Semantics

Table 9.35 Unsubscribe Response Semantics

Table 9.36 Content Advisory Rating Block Change Notification Semantics
Table 9.37 Service Change Notification Semantics

Table 9.38 Caption State Change Notification Semantics

Table 9.39 Language Preference Change Notification Semantics
Table 9.40 Caption Display Preferences Change Notification Semantics
Table 9.41 Audio Accessibility Preference Change Notification Semantics
Table 9.42 Alerting Change Notification Semantics

Table 9.43 Content Change Notification Semantics

Table 9.44 Service Guide Change Notification Semantics

Table 9.45 Signaling Data Change Notification Semantics

Table 9.46 Dialog Enhancement Preference Change Notification Semantics
Table 9.47 Dialog Enhancement Limit Change Notification Semantics
Table 9.48 RF Signal Change Notification Semantics

Table 9.49 Cache Request Request Semantics

Table 9.50 Cache Request Response Semantics

Table 9.51 Cache Request DASH Request Semantics

Table 9.52 Cache Request DASH Response Semantics

Table 9.53 Query Cache Usage Request Semantics

Table 9.54 Query Cache Usage Response Semantics

Table 9.55 Event Stream Subscribe Request Semantics

Table 9.56 Event Stream Subscribe Response Semantics

Table 9.57 Event Stream Unsubscribe Request Semantics

Table 9.58 Event Stream Unsubscribe Response Semantics

Table 9.59 Event Stream Event Semantics

Table 9.60 Acquire Service Request Semantics

Table 9.61 Acquire Service Response Semantics

Table 9.62 Video Scaling and Positioning Request Semantics

Table 9.63 Video Scaling and Positioning Response Semantics

Table 9.64 Set RMP URL Request Semantics

Table 9.65 Set RMP URL Response Semantics

Table 9.66 Audio Volume Request Semantics

Table 9.67 Audio Volume Response Semantics

Table 9.68 Dialog Enhancement Request Semantics

Table 9.69 Dialog Enhancement Response Semantics

Table 9.70 Launch Broadcaster Application Request Semantics

Table 9.71 Launch Broadcaster Application Response Semantics

69
69
70
71
71
73
74
74
76
71
79
79
80
81
82
83
84
86
87
&9
90
91
92
94
95
97
99
101
102
103
104
105
106
107
109
110
111
112
115
116
121
121
122
123
125
125

ATSC A/344:2026-02 ATSC 3.0 Interactive Content

18 February 2026

Table 9.72 DASH Media Track Selection Request Semantics
Table 9.73 DASH Media Track Selection Response Semantics
Table 9.74 Graphics Display Regions Request Semantics

Table 9.75 Graphics Display Regions Response Semantics

Table 9.76 MMT Media Asset Selection Request Semantics

Table 9.77 MMT Media Asset Selection Response Semantics
Table 9.78 Mark Unused Request Semantics

Table 9.79 Mark Unused Response Semantics

Table 9.80 Query Content Recovery State Request Semantics
Table 9.81 Query Content Recovery State Response Semantics
Table 9.82 Query Display Override Request Semantics

Table 9.83 Query Display Override Response Semantics

Table 9.84 Query Recovered Component Info Request Semantics
Table 9.85 Query Recovered Component Info Response Semantics
Table 9.86 Content Recovery State Change Notification Semantics
Table 9.87 Display Override Change Notification Semantics

Table 9.88 Recovered Component Info Change Notification Semantics

Table 9.89 Set Filter Code Instances Request Semantics

Table 9.90 Set Filter Code Instances Response Semantics
Table 9.91 Clear Filter Code Instances Request Semantics
Table 9.92 Clear Filter Code Instances Response Semantics
Table 9.93 Request Keys Request Semantics

Table 9.94 Request Keys Response Semantics

Table 9.95 Relinquish Keys Request Semantics

Table 9.96 Relinquish Keys Response Semantics

Table 9.97 Request Key Timeout Notification Semantics
Table 9.98 Query Device Info Request Semantics

Table 9.99 Query Device Info Response Semantics

Table 9.100 Query RMP Media Time Request Semantics
Table 9.101 Query RMP Media Time Response Semantics
Table 9.102 Query RMP UTC Time Request Semantics

Table 9.103 Query RMP UTC Time Response Semantics
Table 9.104 Query RMP Playback State Request Semantics
Table 9.105 Query RMP Playback State Response Semantics
Table 9.106 Query RMP Playback Rate Request Semantics
Table 9.107 Query RMP Playback Rate Response Semantics
Table 9.108 RMP Media Time Change Notification Semantics
Table 9.109 sourceType Definition

Table 9.110 RMP Playback State Change Notification Semantics
Table 9.111 RMP Playback Rate Change Notification Semantics
Table 9.112 RMP Media Asset Change Notification Semantics
Table 9.113 DRM Notification Semantics

Table 9.114 DRM Operation Request Semantics

Table 9.115 DRM Operation Response Semantics

Table 9.116 XLink Resolution Notification Semantics

Table 9.117 XLink Resolved Request Semantics

126
126
128
129
129
129
130
130
132
132
134
135
136
136
137
138
139
140
140
142
142
145
145
146
147
148
149
149
155
155
157
157
158
158
159
160
161
162
164
164
165
166
167
168
169
170

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.118 XLink Resolved Response Semantics 171
Table 9.119 Prepare for Service Change Request Semantics 174
Table 9.120 Service Change Resource Tokens 174
Table 9.121 Prepare for Service Change Response Semantics 174
Table 9.122 AssetLink Resolution Notification Semantics 177
Table 9.123 AssetLink Resolved Request Semantics 178
Table 9.124 AssetLink Resolved Response Semantics 179

Xi

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

ATSC Standard:
ATSC 3.0 Interactive Content

1. SCOPE

This document describes the interactive content environment provided by an ATSC 3.0 Receiver.
This environment is comprised of a standard W3C User Agent with known characteristics, a
WebSocket interface for obtaining information from the Receiver and controlling various Receiver
functionality, and an HTTP interface for accessing files delivered over broadcast. This document
also specifies the life cycle of the interactive content when delivered over broadband or broadcast
or both.

ATSC 3.0 is a defining emission standard, while the W3C User Agent defines a standard
environment for executing interactive content. In order to create the appropriate user experience
that aligns with the ATSC 3.0 delivery mechanisms, it is considered useful to specify a reference
architecture of an ATSC 3.0 Receiver device, referred to in this document as the Reference
Receiver Model (RRM) or simply the Receiver, to define and/or verify the proper emission
specifications and to allow interactive content developers to target a known environment (see
Section 5).

A decomposition of the functions and interfaces in the Receiver enables the definition of proper
emission formats in order to verify that the distribution formats result in expected functionality to
fulfill the ATSC 3.0 system requirements.

By no means would such a reference Receiver imply a normative implementation, as it would
only provide an example implementation to verify the adequacy of the delivery specification. The
RRM is expected to decompose the ATSC 3.0 Receiver device into the relevant network interfaces,
device internal functions, interfaces to the Broadcaster Application and interfaces to the media
playout pipeline.

It should be noted that the phrase "expected to" is used to describe how an interface or method
is expected to work. It is anticipated that if the Receiver implements the interface or method, that
the resultant behavior is consistent with this specification. This allows interactive content
developers to implement to a well-defined application programming interface. Recommendations
for Receiver implementations can be found in CTA CEB32.8 [40].

1.1 Introduction and Background

This document describes the environment and interfaces that can be used by interactive content to
provide an enhanced viewer experience on a supporting ATSC 3.0 Receiver.

1.2 Organization
This document is organized as follows:
e Section 1 — The scope, introduction, and background of this specification
e Section 2 — Normative and informative references
e Section 3 — Compliance notation, definition of terms, and acronyms
e Section 4 — Overview of the interactive content environment from the system level
e Section 5 — Specification of the Reference Receiver Model
e Section 6 — Describes how the Broadcaster Application is managed
e Section 7 — Details of the various Media Players supported by this standard

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

e Section 8 — Overview of the WebSocket interface supported by the Receiver

e Section 9 — Supported methods of the WebSocket interface

e Annex A — An informative Application Lifecycle Sequence Diagram

e Annex B — A complete copy of the JSON-RPC 2.0 specification used by this standard

2. REFERENCES

All referenced documents are subject to revision. Users of this Standard are cautioned that newer
editions might or might not be compatible.

2.1 Normative References

The following documents, in whole or in part, as referenced in this document, contain specific

provisions that are to be followed strictly in order to implement a provision of this Standard.

[1] ATSC: "ATSC Standard: System Discovery and Signaling," Doc. A/321:2025-07, Advanced
Television Systems Committee, Washington, DC, 17 July 2025.

[2] ATSC: "ATSC Standard: Link Layer Protocol," Doc. A/330:2025-07, Advanced Television
Systems Committee, Washington, DC, 17 July 2025.

[3] ATSC: "ATSC Standard: Signaling, Delivery, Synchronization, and Error Protection," Doc.
A/331:2025-07, Advanced Television Systems Committee, Washington, DC, 17 July 2025.

[4] ATSC: "ATSC Standard: Service Announcement," Doc. A/332:2025-07, Advanced
Television Systems Committee, Washington, DC, 17 July 2025.

[5] ATSC: "ATSC Standard: Content Recovery in Redistribution Scenarios," Doc. A/336:2025-
07, Advanced Television Systems Committee, Washington, DC, 17 July 2025.

[6] ATSC: "ATSC Standard: Application Event Delivery," Doc. A/337:2025-07, Advanced
Television Systems Committee, Washington, DC, 17 July 2025.

[7] ATSC: "ATSC Standard: Captions and Subtitles," Doc A/343:2025-07, Advanced Television
Systems Committee, Washington, DC, 17 July 2025.

[8] ATSC: "ATSC Standard: ATSC 3.0 Security and Service Protection," Doc. A/360:2025-07,
Advanced Television Systems Committee, Washington, DC, 17 July 2025.

[9] CTA: "CTA Specification: Web Application Video Ecosystem — Web Media API Snapshot",
Doc. CTA-5000-G, Consumer Technology Association, Arlington, VA, October 2024.

[10] CTA: "CTA Bulletin: Recommendations for User Overrides for Closed Caption Decoders",
Doc. CTA-CEB35, December 2019.

[11] IEEE: "Use of the International Systems of Units (SI): The Modern Metric System," Doc. SI
10, Institute of Electrical and Electronics Engineers, New York, NY.

[12] IETF: "Augmented BNF for Syntax Specifications: ABNF," Doc. RFC 5234, Internet
Engineering Task Force, January 2008.
https://tools.ietf.org/html/rfc5234

[13] IETF: "Hypertext Transfer Protocol (HTTP/1.1): Authentication," Doc. RFC 7235, Internet
Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7235

[14] IETF: "Hypertext Transfer Protocol (HTTP/1.1): Caching," Doc. RFC 7234, Internet
Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7234

https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7234

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

[15] IETF: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests," Doc. RFC 7232,
Internet Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7232

[16] IETF: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing," Doc. RFC
7230, Internet Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7230

[17] IETF: "Hypertext Transfer Protocol (HTTP/1.1): Range Requests," Doc. RFC 7233, Internet
Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7233

[18] IETF: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content," Doc. RFC 7231,
Internet Engineering Task Force, June 2014.
https://tools.ietf.org/html/rfc7231

[19] IETF Internet-Draft: "JSON Schema: A Media Type for Describing JSON Documents",
September 16, 2019. Work in Progress.
https://tools.ietf.org/html/draft-handrews-json-schema-02

[20] IETF: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies," RFC 2045, Internet Engineering Task Force, November 1996.
https://tools.ietf.org/html/rfc2045

[21] IETF: BCP 47, "Tags for Identifying Languages," Internet Engineering Task Force, Reston,
VA, September 2009.
https://tools.ietf.org/html/bcp47

[22] IETF: "The JavaScript Object Notation (JSON) Data Interchange Format," RFC 7159,
Internet Engineering Task Force, March 2014.
https://tools.ietf.org/html/rfc7159

[23] IETF: "The Web Origin Concept," RFC 6454, Internet Engineering Task Force, December
2011.
https://tools.ietf.org/html/rfc6454

[24] IETF: "The WebSocket Protocol," RFC 6455, Internet Engineering Task Force, December
2011.
https://tools.ietf.org/html/rfc6455

[25] IETF: "Uniform Resource Identifier (URI): Generic Syntax," RFC 3986, Internet
Engineering Task Force, January 2005.
https://tools.ietf.org/html/rfc3986

[26] IETF: "A Universally Unique IDentifier (UUID) URN Namespace," Doc. RFC 4122, Internet
Engineering Task Force, July 2005.
https://tools.ietf.org/html/rfc4122

[27] IETF: "The Basel6, Base32, and Base64 Data Encodings," RFC 4648, Internet Engineering
Task Force, October 2006.
https://tools.ietf.org/html/rfc4648

[28] IETF: "The "data" URL scheme," RFC 2397, Internet Engineering Task Force, August 1998.
https://tools.ietf.org/html/rfc2397

[29] ISO/IEC: ISO/IEC 23009-1:2014, "Information technology — Dynamic adaptive streaming
over HTTP (DASH) — Part 1: Media presentation description and segment formats,"
International Organization for Standardization, 15 May 2014.

https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/draft-handrews-json-schema-02
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/bcp47
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4648

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

[30] ISO/IEC: “Information technology — High efficiency coding and media delivery in
heterogeneous environments — Part 1: MPEG media transport (MMT),” Doc. ISO/IEC
23008-1:2017(E), International Organization for Standardization / International
Electrotechnical Commission, Geneva, Switzerland.

[31] W3C: "Encrypted Media Extensions,"” W3C Recommendation, World Wide Web
Consortium, 18 September 2017.
http://www.w3.org/TR/encrypted-media/

[32] W3C: "UI Events KeyboardEvent key Values," Section 3.18, Media Controller Keys, W3C
Candidate Recommendation, 1 June 2017, World Wide Web Consortium.
https://www.w3.org/TR/DOM-Level-3-Events-key/#keys-media-controller

[33] W3C: "Media Source Extensions," W3C Recommendation, World Wide Web Consortium,
17 November 2016.
https://www.w3.org/TR/media-source/

[34] W3C: "Mixed Content," W3C Candidate Recommendation, Worldwide Web Consortium, 2
August 2016. (work in process).
http://www.w3.org/TR/mixed-content/

[35] W3C: "XML Schema Part 2: Datatypes Second Edition," W3C Recommendation,
Worldwide Web Consortium, 28 October 2004.
https://www.w3.org/TR/xmlschema-2/

[36] WHATWG: "Living Standard", "Fetch Commit Snapshot", 30 November 2020:
https://fetch.spec.whatwg.org/commit-
snapshots/eda41525e3b462ce2035dd3cfc4abeclfc093cld/

For WHATWG living standards, while it is recommended that implementations support the
living standard, they must support the snapshot version of each WHATWG standard at the time of

the earliest commit in 2020.

2.2 Informative References

The following documents contain information that may be helpful in applying this Standard.

[37] ATSC: "ATSC Standard: Companion Device, " Doc. A/338:2025-07, Advanced Television
Systems Committee, 17 July 2025.

[38] ATSC: "ATSC Recommended Practice: Techniques for Signaling, Delivery and
Synchronization," Doc. A/351:2025-07, Advanced Television Systems Committee, 17 July
2025.

[39] ATSC: "ATSC Recommended Practice: Digital Rights Management (DRM)," Doc.
A/362:2025-07, Advanced Television Systems Committee, 17 July 2025.

[40] CTA: "Recommended Practice for ATSC Television Sets, Application Runtime Environment
(CTA-CEB32.8-C)," December 2024,
https://shop.cta.tech/collections/standards/products/recommended-practice-for-atsc-3-0-
television-sets-application-runtime-environment-cta-ceb32-8-c

[41] DASH-IF: "Guidelines for Implementation: DASH-IF Interoperability Point for ATSC 3.0,"
Version 1.1, DASH Industry Forum, 12 June 2018. https://dashif.org/docs/DASH-IF-IOP-
for-ATSC3-0-v1.1.pdf

[42] DASH-IF: "Implementation Guidelines: DASH events and timed metadata tracks timing and
processing model and client reference model," DASH Industry Forum.
https://dashif.org/docs/EventTimedMetadataProcessing-v1.0.2.pdf

http://www.w3.org/TR/encrypted-media/
https://www.w3.org/TR/DOM-Level-3-Events-key/#keys-media-controller
https://www.w3.org/TR/media-source/
http://www.w3.org/TR/mixed-content/
https://www.w3.org/TR/xmlschema-2/
https://fetch.spec.whatwg.org/commit-snapshots/eda41525e3b462ce2035dd3cfc4a6ec1fc093c1d/
https://fetch.spec.whatwg.org/commit-snapshots/eda41525e3b462ce2035dd3cfc4a6ec1fc093c1d/
https://shop.cta.tech/collections/standards/products/recommended-practice-for-atsc-3-0-television-sets-application-runtime-environment-cta-ceb32-8-c
https://shop.cta.tech/collections/standards/products/recommended-practice-for-atsc-3-0-television-sets-application-runtime-environment-cta-ceb32-8-c
https://dashif.org/docs/EventTimedMetadataProcessing-v1.0.2.pdf

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

[43] DASH-IF: "Protection System-Specific Identifiers," DASH Industry Forum.
https://dashif.org/identifiers/content_protection/

[44] TANA Registry: Uniform Resource Names (URN) Namespaces.
https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xml

[45] IEEE: IEEE Registration Authority.
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html

[46] JSON-RPC: "JSON-RPC 2.0 Specification," JSON-RPC Working Group.
http://www.jsonrpc.org/specification

[47] JSON Schema: "JSON Schema: A Media Type for Describing JSON Documents," Internet
Engineering Task Force, JSON-Schema Working Group, 17 September 2019.
http://json-schema.org/latest/json-schema-core.html (work in progress)

[48] W3C: "TTML Profiles for Internet Media Subtitles and Captions 1.0.1 (IMSC1)," W3C
Recommendation, Worldwide Web Consortium.
http://www.w3.org/TR/ttml-imsc1.0.1

[49] W3C: "XML Linking Language (XLink)," Recommendation Version 1.1, Worldwide Web
Consortium, 6 May 2010.
http://www.w3.org/TR/xlink11/

[50] WHATWG: "HTML Living Standard," Section 9.3 "Web sockets," Web Hypertext
Application Technology Working Group.
https://html.spec.whatwg.org/multipage/web-sockets.html

[51] J. Keiser, D. Lemire, "Validating UTF-8 In Less Than One Instruction Per Byte," Software:
Practice and Experience, Vol. 51, No. 5, October 2020.
https://arxiv.org/abs/2010.03090

[52] Android Media TV onSignalStrengthUpdated
https://developer.android.com/reference/android/media/tv/TvView.TvInputCallback#onSig
nalStrengthUpdated(java.lang.String,%?20int)

3. DEFINITION OF TERMS

With respect to definition of terms, abbreviations, and units, the practice of the Institute of
Electrical and Electronics Engineers (IEEE) as outlined in the Institute's published standards [11]
shall be used. Where an abbreviation is not covered by IEEE practice or industry practice differs
from IEEE practice, the abbreviation in question is described in Section 3.3 of this document.

3.1 Compliance Notation

This section defines compliance terms for use by this document:

shall — This word indicates specific provisions that are to be followed strictly (no deviation is
permitted).

shall not — This phrase indicates specific provisions that are absolutely prohibited.

should — This word indicates that a certain course of action is preferred but not necessarily
required.

should not — This phrase means a certain possibility or course of action is undesirable but not
prohibited.

3.1.1 A/344-specific Terms

The phrase "expected to" or the word "expected" are used to specify that the Receiver Reference
Model and Broadcaster Application are expected to behave in a particular manner. Similarly, "not

5

https://dashif.org/identifiers/content_protection/
https://www.iana.org/assignments/urn-namespaces/urn-namespaces.xml
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html
http://www.jsonrpc.org/specification
http://json-schema.org/latest/json-schema-core.html
http://www.w3.org/TR/ttml-imsc1.0.1
http://www.w3.org/TR/xlink11/
https://html.spec.whatwg.org/multipage/web-sockets.html
https://arxiv.org/abs/2010.03090
https://developer.android.com/reference/android/media/tv/TvView.TvInputCallback#onSignalStrengthUpdated(java.lang.String,%20int)
https://developer.android.com/reference/android/media/tv/TvView.TvInputCallback#onSignalStrengthUpdated(java.lang.String,%20int)

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

expected to" is used to specify that the Receiver or Broadcaster Application are not expected to
behave in the described manner. Many of these requirements are described as recommendations
in CTA CEB32.8-C [40]. Note that neither A/344 nor CEB32.8 specify normative requirements
for Receiver implementations. Furthermore, Broadcaster Application implementations are out-of-
scope for ATSC standards, so conformance language is inappropriate in those cases.

3.2 Treatment of Syntactic Elements

This document contains symbolic references to syntactic elements used in the audio, video, and
transport coding subsystems. These references are typographically distinguished by the use of a
different font (e.g., restricted), may contain the underscore character (e.g., sequence_end_code) and
may consist of character strings that are not English words (e.g., dynmg).

3.2.1 Reserved Elements

One or more reserved bits, symbols, fields, or ranges of values (i.e., elements) may be present in
this document. These are used primarily to enable adding new values to a syntactical structure
without altering its syntax or causing a problem with backwards compatibility, but they also can
be used for other reasons.

The ATSC default value for reserved bits is 'l'. There is no default value for other reserved
elements. Use of reserved elements except as defined in ATSC Standards or by an industry
standards setting body is not permitted. See individual element semantics for mandatory settings
and any additional use constraints. As currently reserved elements may be assigned values and
meanings in future versions of this Standard, receiving devices built to this version are expected
to ignore all values appearing in currently reserved elements to avoid possible future failure to
function as intended.

3.3 Acronyms and Abbreviations

The following acronyms and abbreviations are used within this document.
ABNF Augmented Backus-Naur Form

AEA Advanced Emergency Alert

AEAT Advanced Emergency Alert Table [3]

AMP Application Media Player

API Application Programming Interface
ATSC Advanced Television Systems Committee
A/V Audio / Video

BA Broadcaster Application

BCP Best Current Practice

CD Companion Device [37]

CDM Content Decryption Module
CORS Cross-Origin Resource Sharing
CSS Cascading Style Sheets

CTA Consumer Technology Association
DASH Dynamic Adaptive Streaming over HTTP [29]
dB Decibels

DOM Document Object Model
DRM Digital Rights Management

ATSC A/344:2026-02 ATSC 3.0 Interactive Content

18 February 2026

DWD
EFDT
EME
ESG
FDT
FLUTE
GIF
HDMI
HELD
HTMLS
HTTP
HTTPS
TANA
ID
IMSC1
IP
JPEG
JSON

Distribution Window Description [3]
Extended File Delivery Table

W3C Encrypted Media Extensions [31]
Electronic Service Guide [4]

File Delivery Table

File Delivery over Unidirectional Transport
Graphics Interchange Format

High Definition Multimedia Interface
HTML Entry pages Location Description [3]
HyperText Markup Language, Fifth Version
HyperText Transfer Protocol

HyperText Transfer Protocol Secure
Internet Assigned Numbers Authority
Identifier

Internet Media Subtitles and Captions 1.0 [48]
Internet Protocol

Joint Photographic Experts Group
JavaScript Object Notation [22]

JSON-RPC JSON Remote Procedure Call (Annex A)

LCT
LLS
MIME
MMT
MPD
MPEG
MPU
MSE
msec
NRT
OSN
PD
PNG
PTP
RDT
RFC
RMP
ROUTE

SHA1
SLS
SLT

Layered Coding Transport
Low-Level Signaling [3]
Multipurpose Internet Mail Extensions
MPEG Media Transport

Media Presentation Description [41]
Moving Pictures Experts Group
Media Processing Unit

W3C Media Source Extensions [33]
Milliseconds

Non-Real Time

On Screen message Notification [3]
Primary Device [37]

Portable Network Graphics
Precision Time Protocol

Recovery Data Table [5]

Request For Comment

Receiver Media Player

Real-Time Object Delivery over Unidirectional Transport [3]

Remote Procedure Call
Reference Receiver Model
Secure Hash Algorithm 1
Service-Level Signaling [3]
Service List Table [3]

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

S/MIME Secure/Multipurpose Internet Mail Extensions [8]
sRGB Standard Red Green Blue

STB Set-Top Box

TV Television

Ul User Interface

URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Universal Resource Name

UTC Universal Time Coordinated

UTF-8 Unicode Transformation Format — 8-bit

UuID Universally Unique Identifier

VDS Video Description Service

W3C Worldwide Web Consortium

WHATWG Web Hypertext Application Technology Working Group
WS WebSocket [50]

XHR XMLHttpRequest

XLink XML Linking Language

XML eXtensible Markup Language

3.4 Terms

The following terms are used within this document.

Application Context Cache — The Application Context Cache is a conceptual storage area where
information from the broadcast is collected for retrieval through the Receiver Web Server. This
document refers to the Application Context Cache as if it were implemented as actual storage
though this is for convenience only. An Application Context Cache corresponds to the
Application Context Identifier associated with each Broadcaster Application. Files delivered
over ROUTE contain attributes that determine the Application Context Cache with which they
are associated.

Application Context Identifier — An Application Context Identifier is a unique URI that
determines which resources are provided to an associated Broadcaster Application by the
Receiver. Resources may be associated with multiple Application Context Identifiers, but a
Broadcaster Application is only associated with a single Application Context Identifier. Details
of the Application Context Identifier syntax are specified in the HELD [3].

Base URI — As defined in RFC 3986 [25], the Base URI specifies the initial portion of a URL used
by the Broadcaster Application to access files within the Application Context Cache. The Base
URI is prepended to the relative URI path of a file to obtain the full URL of the file within the
Application Context Cache. The Base URI is uniquely generated by the Receiver based on the
Application Context Identifier defined for the Broadcaster Application.

Broadcaster Application — A Broadcaster Application is used herein to refer to the functionality
embodied in a collection of files comprised of an HTMLS5 document, known as the Entry Page
and other HTMLS5, CSS, JavaScript, image and multimedia resources referenced directly or
indirectly by that document, all provided by a broadcaster in an ATSC 3.0 service. The
Broadcaster Application refers to the client-side functionality of the broader Web Application
that provides the interactive service. The distinction is made because the broadcaster only

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

transmits the client-side documents and code. The server-side of this broader Web Application
is implemented by an ATSC 3.0 Receiver and has a standardized API for all applications. No
server-side application code can be supplied by the broadcaster. The broadcaster may provide
Web-based documents and code that work in conjunction with the Broadcaster Application
over broadband making the Broadcaster Application a true Web Application. The collection
of files making up the Broadcaster Application can be delivered over the web in a standard
way or can be delivered over broadcast as packages via the ROUTE protocol.

Entry Package — The Entry Package contains one or more files that comprise the functionality of
the Broadcaster Application. The Entry Package includes the Entry Page and perhaps
additional supporting files including JavaScript, CSS, image files and other content.

Entry Page — The Entry Page is the initial HTMLS5 document referenced by application signaling
that should be loaded first into the User Agent. The Entry Page is one of the files in the Entry
Package.

Event Stream — An Event Stream is a series of messages, either static, in DASH signaling, in
MMT signaling, or dynamic, contained in defined messages within media segments. The
events contained within the Event Stream can initiate interactive actions on the part of a
Broadcaster Application.

Filter Code — See the definition in A/331 [3]. The Filter Code defined on a file is compared with
Filter Code Instances set on an Application Context Cache to determine whether the file can
be stored in the cache or not.

Filter Code Instance — A Filter Code Instance provides a way for the Broadcaster Application to
control which NRT data is stored by the Receiver in its associated Application Context Cache.
A Filter Code Instance is a data structure associated with an Application Context Cache with
a Filter Code value and an associated expiration time. A Filter Code Instance persists along
with an Application Context Cache until its expiration time has been met. The Filter Code
Instance expiration can be explicitly set or defaults to the life span of the Broadcaster
Application, if not.

MMT Asset — An MMT Asset or Asset is a collection of one or more MPUs with the same Asset
ID which is provided in the 'mmpu' box [30].

MMT-Asset File — An MMT Asset file consists of a sequence of MMTP packets, each containing
headers and payloads that make up MPUs for different media components. Each component
(video, audio, closed captions, etc.) is encoded and packetized into binary data structures that
are then multiplexed together within the MMTP packets [30].

Receiver — The Receiver described in this document refers to an entity that implements the
functions of the Reference Receiver Model.

Receiver Web Server — The Receiver Web Server is a conceptual component of a Receiver that
provides a means for a User Agent to gain access to files delivered over ROUTE that
conceptually reside in the Application Context Cache.

Receiver WebSocket Server — The Receiver WebSocket Server provides a means for a User
Agent to gain access to information about the Receiver and control various features provided
by the Receiver.

Redistribution — A use case wherein an ATSC 3.0 service is delivered to a Receiver via a protocol
other than ATSC 3.0; e.g., HDMI.

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Reference Receiver Model — A conceptual receiver device that is capable of executing the APIs
and behavior specified in this document. This document specifies normative attributes of the
model, which are intended to inform actual receiver implementations.

reserved — Set aside for future use by a Standard.

User Agent — Software provided by the Receiver that retrieves and renders Web content. The User
Agent interprets HTMLS, CSS, and JavaScript, renders media, text, and graphics, and can
create user interaction dialogs.

Web Application — A Web Application is a client/server program accessed via the web using
URLs. The client-side software is executed by a User Agent.

4. OVERVIEW

4.1 Application Runtime Environment

This specification defines the details of an environment that is required for a Broadcaster
Application to run. In the broadcast environment, the files associated with a Broadcaster
Application are delivered in ROUTE packages that are unpacked into a conceptual cache area. The
pages and resources of a Broadcaster Application are then made available to the User Agent
associated with the Receiver. In the broadband environment, launching a Broadcaster Application
behaves in the same way as in a normal web environment with no specialized behavior or
intervention from the Receiver.

The Broadcaster Application executes inside a W3C-compliant User Agent accessing some of
the graphical elements of the Receiver to render the user interface or accessing some of the
resources or information provided by the Receiver. If a Broadcaster Application requires access to
resources such as information known to the Receiver, or if the Broadcaster Application requires
the Receiver to perform a specific action that is not defined by standard W3C User Agent APIs
that are widely implemented by browsers, then the Broadcaster Application sends a request to the
Receiver WebSocket Server utilizing the set of JSON-RPC messages defined in this specification.

The JSON-RPC messages defined in this specification provide the APIs that are required by
the Broadcaster Application to access the resources that are otherwise not reachable. These JSON-
RPC messages allow the Broadcaster Application to query information that is gathered or collected
in the Receiver, to receive notifications via broadcast signaling, and to request performing of
actions that are not otherwise available via the standard JavaScript APIs.

There are noteworthy differences between an HTMLS5 application deployed in a normal web
environment and one deployed in an ATSC 3.0 broadcast environment. In the ATSC 3.0 broadcast
environment, a Broadcaster Application can:

e Access resources from broadcast or broadband;

e Request Receivers to perform certain functions that are not otherwise available via the
JavaScript APIs, such as:

o Utilizing the media player provided by the Receiver (called the Receiver Media Player)
to:

= Stream media content via broadcast signaling delivery mechanism
= Stream media content (i.e., unicast) via broadband delivery mechanism

= Playback media content that has been downloaded via broadcast or broadband
delivery mechanisms

o Utilizing MSE and EME to play media content streamed over broadcast or broadband;

10

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

¢ Query information that is specific to the reception of TV services, for example, the status
of closed caption display and language references, and receive notifications of changes in
this information,;

e Receive notifications of "stream events" that are embedded in the media content or

signaling, when that media content is being played by the Receiver Media Player.

Another noteworthy difference between the two models is that in the normal web environment,
the viewer is in direct control of launching an HTMLS5 application by specifying the URL of a
desired website. In the ATSC 3.0 environment, although the user still initiates the action by
selecting a service, the actual application URL is not explicitly selected by the viewer and instead
is provided via broadcast signaling. In this case, it is the responsibility of the Receiver using its
User Agent to launch or terminate the Broadcaster Application referenced by a URL provided in
broadcast signaling.

The Broadcaster Application relies on a set of features that are provided via the User Agent.
Although it is beyond the scope of this specification to describe how the pages of a Broadcaster
Application are provided to the User Agent, it is recommended that standard web technologies
should be used to serve the pages.

Table 4.1 shows which type of API a broadcaster-provided application uses to access the
features provided by the Receiver.

Table 4.1 Application Actions and APIs

Action Requested by the Application API Used by the Application
Requesting to download a media file from broadband W3C APIs provided via the user-agent
Querying information related to user display and presentation Receiver WebSocket Server APls, described

preferences, including languages, accessibility options, and closed | in this specification in Section 9.2
caption settings

Requesting to stream downloaded media file from broadcast Via push or pull model, described in this
specification in Sections 9.2 and 9.6.2
Requesting to stream downloaded media file from broadband Via push or pull model, described in this
specification in Sections 9.2 and 9.6.2
Requesting the Receiver Media Player to play a broadband- Receiver WebSocket Server APls, described
delivered media stream in this specification in Section 9.7.3
Subscribing (or un-subscribing) to stream event notifications that are | Receiver WebSocket Server APls, described
sent over broadcast in this specification in Sections 9.6.1 and
9.6.2

Receiving stream event notifications that are sent over broadcast Receiver WebSocket Server APls, described
in this specification in Section 9.6.3

Querying the Receiver to learn the identity of the currently selected |Receiver WebSocket Server APls, described

broadcast service in this specification in Section 9.2.3
Receiving notice of changes to user display and presentation Receiver WebSocket Server APls, described

preferences in this specification in Section 9.3.6
Requesting the Receiver to select a new broadcast service Receiver WebSocket Server APls, described

in this specification in Section 9.7.1

4.2 Receiver Media Player Display
4.2.1 Rendering Model

The RMP presents its video output behind any visible output from the Broadcaster Application.
Figure 4.1 illustrates the relationship and the composition function performed in the Receiver.

11

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Figure 4.1 illustrates two examples. In the example on the left, the graphical output from the
Broadcaster Application is overlaid onto the full-screen video being rendered by the Receiver
Media Player. For the linear A/V service with application enhancement, the Broadcaster
Application may instruct the Receiver Media Player to scale the video, as it may wish to use more
area for graphics. A JSON-RPC message as described in Section 9.7.2 is used to instruct the RMP
to scale and position the video it renders. This scenario is illustrated in the example shown on the
right side of the figure. The Broadcaster Application is likely to define the appearance of the screen
surrounding the video inset. It can do that by defining the background in such a way that the
rectangular area where the RMP video is placed is specified as transparent.

. Capltof ‘
Composited _ 1
Display e i
/ = i
T i
: : ' ; ! ' ' 3
' ' | “div{left:25%:top:40%; width:50%; height:50%;
H ! mediafeature:width : \ ! background-color:transparent}”
' et P > : . ; ‘
1
Capitol |
Broadcaster App l > g
raphics i
Grap !
I E
“body{background-color:transparent;}” 3 ': i “body{background-color:transparent;}”
H i xP0os=25%, yPos=40%, scaleFactor=50%
(0%} 0%) ' ' (0%, 0%) , :
1 1 xPos : I [' xPos

Receiver Media
Player Video

yPos aspect-ral (100%, 100%) yPos (100%, 100%)

Figure 4.1 Rendering model for application enhancements using RMP.

A Broadcaster Application can expect that the User Agent graphics window, [0,0] to a full
100% in both axes, maps directly to the RMP logical video display window at its full dimensions.
Since most Receiver user interfaces may not conveniently enable scroll bar manipulation, the
Broadcaster Application should consider disabling scroll bars using standard W3C mechanisms in
most situations.

A Receiver may choose to render its own native application on top of the Broadcaster
Application due to some user interaction or other similar events. For example, this may happen
when the viewer chooses to configure the Receiver settings while a Broadcaster Application is
active.

When the Receiver presents its own native application, the Receiver, through standard W3C
notification methods, is expected to notify the Broadcaster Application that it no longer has the
focus. The Broadcaster Application may choose to either hide itself or maintain its current display.
This behavior is left up to design of each Broadcaster Application.

Additionally, the Receiver may choose to hide the launched Broadcaster Application to avoid
issues with scaling video and a full-scale Broadcaster Application. The behavior of whether the
Broadcaster Application is hidden or not is left up to the Receiver, but the Receiver is not expected

12

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

to terminate the Broadcaster Application, as long as the associated service remains selected and
application signaling has not selected another Broadcaster Application.

Regardless of whether the Broadcaster Application is hidden or behind a Receiver native
application, the Broadcaster Application is notified that it has lost its focus via standard W3C
notification methods.

4.2.2 Closed Captioning

Closed captioning is expected to be rendered on top of all video and Broadcaster Application
content.

In a worst-case scenario, the captions presented could be opaque, and they could cover a crucial
element of the Broadcaster Application, such as an exit button. Three APIs are provided to enable
the Broadcaster Application to mitigate being obscured by captions. These are:

¢ Query Display Components API (Section 9.2.12)

e Video Scaling and Positioning API (Section 9.7.2)

e Graphics Display Regions API (Section 9.7.8)

The Query Display Components API serves two functions. First, it can be used by the Receiver
to inform the Broadcaster Application of the capabilities of the Receiver regarding video and
caption scaling. For example, consider an L-bar layout scenario. If the Receiver supports video
and caption scaling, the captions are expected to exist only on top of the video, and the L-bar would
never be obscured. On the other hand, if video and caption scaling are not supported, the
Broadcaster Application might need to take measures to avoid being obscured by captions, when
present.

The second function of the Query Display Components API is that it can be used by the
Receiver to inform the Broadcaster Application of the current area that is being used for captions.
The Broadcaster Application can use this information to avoid the area of the display that is
occupied by captions. This function is intended for use just prior to the presentation of a call-to-
action prompt, when closed captions are enabled. (A call-to-action prompt can be presented by a
Broadcaster Application for a limited amount of time to inform the user of the presence of the
Broadcaster Application, without any action being taken by the user.) It is not intended for use
during normal, longer-term presentation of the Broadcaster Application, since the size and position
of the caption region could potentially cause display area conflicts or lead to disruptive changes to
the layout of the Broadcaster Application graphics.

The Video Scaling and Positioning API (Section 9.7.2) includes optional information in the
response about the minimum scale factor supported by the Receiver. A Receiver might set a
relatively large minimum scale factor when captions are present in order to ensure that the captions
are not scaled too small to be reasonably legible. If the API returns an error, the Broadcaster
Application can confirm that the scale factor and x and y positions are within range and attempt
the scaling again.

The Graphics Display Regions API can be used by the Broadcaster Application to inform the
Receiver of the areas of the display that include graphical content from the Broadcaster
Application. The Receiver can potentially make use of this information to reposition the captions,
s0 as not to obscure the Broadcaster Application graphics.

13

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

5. ATSC REFERENCE RECEIVER MODEL

5.1 Introduction

An ATSC 3.0 Reference Receiver Model may be composed of several logical components, which
are described in this section. In practice, several of the given logical components can be combined
into one component or one logical component can be divided into multiple components. Figure
5.1 shows the logical components of an ATSC 3.0 Reference Receiver Model. Although the
software stack shows a layering architecture, it does not necessarily mean one module must use
the layer below to access other modules in the system, with the exception of the Broadcaster
Applications, which are run in the User Agent implementation provided by the Receiver, which
complies with the APIs specified in this specification.

launch application utilizing receiver-specific APIs

—— resources downloaded by broadcast

ws Broadcaster-provided
applications
Receiver
WebSocket Server
ATSC 3.0 Receiver-
Provided Player
Receiver Media Playback Module

Figure 5.1 ATSC 3.0 Reference Receiver Model Logical Components.

Receiver
Web Server

MSE/EME

User Agent
L— Receiver Modules

Receiver Graphics Engine

5.2 User Agent Definition

Receivers are expected to implement an HTMLS User Agent that complies with all normative
requirements specified in the CTA Web Media API Snapshot (CTA-5000-G) [9]. In addition, the
features described in the following sections are expected to be supported.

5.2.1 HTTP Protocols

The User Agent is expected to implement the HTTP protocols specified in RFC 7230 through RFC
7235, references [13], [14], [15], [16], [17] and [18]. User Agents are expected to implement the
Web Origin Concept specification [23] and the HTTP State Management Mechanism specification
(Cookies) ([9] Section 4.2) as well.

5.2.2 XMLHttpRequest (XHR)

The User Agent is expected to support the xMLHttpRequest and related interfaces of the [XHR]
reference in [9]. In the case of an XHR request where the request URL identifies a broadcast
resource, the request is delivered to the Receiver Web Server, rather than to an Internet web server.
5.2.3 Cross-Origin Resource Sharing (CORS)

The User Agent is expected to support Cross-Origin Resource Sharing as defined in WHATWG
Fetch [36].

14

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

5.2.4 Mixed Content

The User Agent is expected to handle fetching of content over unencrypted or unauthenticated
connections in the context of an encrypted and authenticated document according to the W3C
Mixed Content specification [34] though Broadcaster Applications are encouraged to only
reference trusted content. References to files within the Application Context Cache (see Section
5.3 below) are considered to be "a priori authenticated" in the terminology of W3C Mixed Content.
Any resource accessed from the Application Context Cache is considered to have been accessed
within a secure context.

5.2.5 Transparency

The background of the User Agent's drawing window might be transparent by default.
Nevertheless, it is recommended that Broadcaster Applications explicitly specify the areas desired
to be opaque or transparent to maintain consistency across Receivers. Thus, for example, if any
element in the web page (such as a table cell) includes a CSS style attribute "background-color:
transparent”, and that area is not covered by another layer with an opaque element, then video
content presented by the Receiver Media Player (see Section 4.2) might be visible in that area.
Note that certain areas can be specified as transparent while others are opaque.

5.2.6 Full Screen

As stated in Section 4.2, the Receiver is expected to map the User Agent graphics window, [0,0]
to a full 100% in both axes directly to the RMP logical video display window at its full dimensions.
The "width" media feature of CSS MediaQueries [9] is expected to align with the width of the
RMP logical video display window. In most viewing conditions, the RMP logical video display
window is expected to fill the entire screen.

5.2.7 Visibility and Focus

The Receiver is expected to use the W3C Page Visibility Level 2 API as required by CTA-5000-
G [9] to inform the Broadcaster Application whether its display output is visible or not. The
Receiver may choose to obscure or mute the Broadcaster Application display output for a variety
of reasons including but not limited to display of Receiver preference dialogs, content blocking,
or other Receiver information. Similarly, the Receiver is expected to provide the W3C Focus
Events as required by CTA-5000-G [UlEvents] [9] as well as the standard DOM activeElement
property to allow the Broadcaster Application to determine if it can receive user input or not.

5.3 Application Context Identifier, Base URI and Cache Path
5.3.1 Application Context Identifier

Each file that is delivered via broadband has the usual absolute URL associated with it. Each file
that is delivered via broadcast has a relative URL reference associated with it, signaled in the
broadcast, and it also has one or more Application Context Identifiers associated with it, signaled
in the broadcast. As specified below, Receivers assign to each broadcast file a Base URI that
converts the relative URL reference to one or more absolute URLs, taking its Application Context
Identifier(s) into account.

An Application Context Identifier (appContext1d) is a unique URI that determines which
resources are provided to an associated executing Broadcaster Application by the Receiver. The
Application Context Identifier to be bound to the Broadcaster Application is signaled in the HELD
[6]. An Application Context Identifier may be associated with many Broadcaster Applications,
and the same Broadcaster Application may be associated with many Application Context
Identifiers. However, each executing Broadcaster Application is expected to be associated with a

15

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

single Application Context Identifier. Each Application Context Identifier forms a unique
conceptual environment in which the Receiver is expected to comingle resources for use by the
associated Broadcaster Applications. This unique conceptual environment is referred to herein as
the Application Context Cache. Thus, each Application Context Identifier uniquely identifies an
Application Context Cache.

The Broadcaster Application is expected to manage a local name space for setting cookies and
other local User Agent storage elements.

If the current Application Context Identifier remains the same, even though the Entry Page
may change, all of the associated resources are expected to continue to be available within the
Application Context Cache through the Receiver Web Server. Entry Page changes are signaled by
application signaling as described in Section 6.3.

If the Application Context Identifier changes, the Receiver may reuse the Application Context
Cache previously created for that Application Context Identifier or a new cache may be created.
The Receiver may elect to maintain any previous Application Context Cache, albeit unknown to
Broadcaster Applications with differing Application Context Identifiers, on the presumption that
these previous Application Context Caches may be needed soon. Alternatively, the Receiver can
free the resources associated with the previous Application Context Cache. If a file is not cached,
the Receiver Web Server may respond to the request by waiting for the next delivery of the file or
with an error code. File caching decisions are left entirely to the Receiver implementation;
however, attributes associated with Application Context Cache files are intended to provide
prioritization information to the Receiver caching mechanisms (see Section 6.2).

Note that an appContextId does not have to be resolvable on the Internet. The domain name
root portion of authority shall be registered and under the control of one of the signers of the
Broadcast Application (author or broadcaster/distributor).

Although the construction of an appContextId is required to be globally unique, Receivers
should treat it as an opaque string and tolerate any string syntax.

Examples of appcontext1d URIs include:

urn:uuid:f81ld4fae-7dec-11d0-a765-00a0c91lebbfo6
http://kids.pbs.org/appl
urn:tv:nbc.com

5.3.2 Origin Considerations

The origin of a web resource is defined in RFC 6454 [23]. While the technical description in RFC
6454 is convoluted to cover the multitude of edge cases, the resultant URIs should be familiar with
a "scheme" portion (e.g., "http") and an "authority", typically an IP address or hostname, and
perhaps a port number (e.g., 10.2.12.45:8080). The algorithm used by an ATSC 3.0 Receiver to
generate the portion of a URI that determines the origin of a broadcast file shallis expected to
conform to the restrictions specified below. Note that a resource from a broadband source has an
origin defined by the web server hosting the resource.

5.3.3 Base URI

The Base URI for the Application Context Cache is for broadcast resources, Broadcaster
Application resources, and broadband resources accessed through the Cache Request APIs of
Section 9.3.14 only. Broadband resource caching from HTMLS fetch() [36] is separate and subject
to the Receiver's Web Server User Agent caching policy.

16

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The Receiver is expected to implement an obfuscation function (e.g., SHAT) in the creation of
the Base URI in a manner that is statistically unique globally. The obfuscation function is expected
to combine appContextId with some device-specific information such that knowledge of the
obfuscation function alone would not be sufficient to allow a Broadcaster Application or external
entity to do any of the following:

e Recovering the appContextId from the Base URI

e C(Creating the same Base URI from an appContextId

e Using a Base URI from one Receiver to provide access to the same resources on another

Receiver

Broadcast resources can be shared in multiple caches using the ROUTE EFDT signaling. The
above construction allows either a broadcast- or broadband-delivered Broadcaster Application to
access the same local storage information over multiple services.

For example, in a multipart package:

Service 1 contains:
EFDT.FDT-Instance.File@Content-Location="packagel"
EFDT.FDT-Instance@afdt:appContextIdList="http://kids.pbs.org/appl"

Where there is a resource with a multipart boundary, "Content-Location:
folderl/filel.txt".

Service 2 contains:
EFDT.FDT-Instance.File@Content-Location="package2"
EFDT.FDT-Instance@afdt:appContextIdList="http://kids.pbs.org/app2"

Where there is a resource with a multipart boundary, "Content-Location:
folderl/file2.txt".

Service 3 contains:
EFDT.FDT-Instance.File@Content-Location="package3"

EFDT.FDT-Instance@afdt:appContextIdList="http://kids.pbs.org/appl
http://kids.pbs.org/app2"

Where there is a resource with a multipart boundary, "Content-Location:
folder2/file3.txt".

Then the cache for appl contains both folderl/filel.txt and folder2/file3.txt, and the
cache for app2 contains both folderl/file2.txt and folder2/file3.txt.

17

mailto:EFDT.FDT-Instance.File@Content-Location=%22package

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

User Agent

Broadcaster
Application
(EP")

Unique Path for

/ Application Context ID A
/
/
/ Receiver Web Server
/ . |
/ s N
/ a A
. Application Context

AN

Application Context
Cg:he C

Cache B
N

i
|
Application Context ‘
|

Figure 5.2 Application Context Identifier Conceptual Model.

Figure 5.2 provides a conceptual model of how Application Context Identifiers are related to
the Broadcaster Application and broadcast files. The diagram provides an example of how
resources (files and directories) are made available to a Broadcaster Application through the
Receiver Web Server using URIs unique to a given Application Context Identifier. In the figure,
the Broadcaster Application is shown operating in the User Agent having been launched using
Entry Page, EP!. At some point while EP! is active, application signaling could launch the Entry
Page designated as EP?. In this case, the Application Context Cache A and access to it would
remain constant with the User Agent loaded with EP?. The Receiver may or may not provide
access to the other Application Context Caches corresponding to different Application Context
Identifiers. Broadcaster Applications should restrict access to resources within their own
Application Context Cache as provided by the Receiver, or to the Internet if broadband is available.

Broadcaster Applications delivered on services spanning multiple broadcasts may have the
same Application Context Identifier allowing Receivers with extended caching capabilities to
maintain resources across tuning events. This allows broad flexibility in delivering resources on
multiple broadcasts for related Broadcaster Applications.

18

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

6. BROADCASTER APPLICATION MANAGEMENT

6.1 Introduction

A Broadcaster Application is a set of documents comprised of HTMLS, JavaScript, CSS, XML,
image and multimedia files that may be delivered separately or together within one or more
packages.

This section describes how a Broadcaster Application package is:
e Downloaded,

e Signaled,
e Launched, and
e Managed.

Additionally, it describes how a Broadcaster Application can access the resources made
available by the Receiver.

Figure 6.1 diagrams the relationships between various concepts within a generalized reference
Receiver architecture—whether distributed, i.e., the Receiver Web Server is in a separate physical
device from the User Agent, or not. It is not intended to define a particular Receiver
implementation but to show relationships between the various elements discussed in this section.

User Agent

Internet Content Broadcaster
Requests Application

Content A

Broadband Requests N
Download Launch URL

N\ From
Receiver Web Server Signaling

> Application
Context

Broadcast .
Receipt

Figure 6.1 Receiver Conceptual Architecture.

19

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The Broadcaster Application is launched after the Receiver receives application signaling
information (see Section 6.3 below) and then forwards the launch URL to the User Agent, which,
in turn, loads the Broadcaster Application Entry Page from the URL. Note that the URL may point
to an Internet server or to the Receiver Web Server depending on how it is formatted in the service
application signaling, specifically, the HTMLEntryPackage@bcastEntryPageurl or
HTMLEntryPackage@bbandentrypPageurl attributes of the HELD [6]. The specific mechanism of
communicating the Broadcaster Application entry URL to the User Agent is a Receiver
implementation detail. However, the entry URL has specific arguments that must be provided as
described in Section 8.2.

Once the main Broadcaster Application Entry Page has been loaded, it may begin requesting
content from various local or external URLs. This may be done through JavaScript or standard
HTMLS href requests in the W3C-compliant fashion. It is assumed that any content received over
broadcast via ROUTE file delivery is available through the Application Context Cache and
accessed using the Receiver Web Server. This specification makes no assertions as to how this is
done nor how any cache or storage is implemented. It does, however, describe how the Broadcaster
Application can access the resources using HTTP requests to the Receiver Web Server.

Note that the User Agent supports various local W3C storage mechanisms according to Section
5.2. The User Agent may also perform internal caching of content. The internal W3C-compatible
storage mechanisms implemented within the User Agent should not be confused with the
Application Context Cache shown separately in Figure 6.1. The Broadcaster Application can use
standard W3C interfaces to discover and use the various User Agent storage facilities.

6.2 Application Context Cache Management

6.2.1 Signaling Intent for File Caching

All files delivered over broadcast to the Application Context Cache are carried in multipart/signed
packages as described in A/331 [3] and required by Section 6.5.3 of this standard. From the
ROUTE standpoint, each package is an opaque file object so the subsequent File elements within
the FDT-Instance element of the EFDT describe only the multipart/signed package object.

A main header is defined within the multipart/signed package that describes various parameters
including the necessary boundary text that delineates files within the package. The file data resides
within these boundary-separated blocks which, in turn, include header elements, referred to herein
as a boundary header, prior to the individual file data, that can provide metadata specific to the file
within the package block.

To provide a manifest for files contained within the package, ametadataEnvelope, as defined
in A/331 Section 7.1.6, shall be included as the first object in the package. Content shall not be
embedded in the metadataEnvelope; the "referenced" mode shall be used.

Within the metadataEnvelope fragment, ametadataEnvelope.item element shall be present
corresponding to each file within the package. The metadataEnvelope.item attributes shall be
interpreted as follows:

e The required @metadataURT attribute shall provide the relative path of the file referenced
by this metadataEnvelope.item. The URI value shall match the relative path supplied in
the Content-Location parameter included as part of the boundary header for the
referenced file. This is expected to provide the relative path of the file within the
Application Context Cache. The EFDT.FDT-Instance.File@Content-Location values,

20

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

normally used to set the relative path for non-multipart resources, shall be ignored when
the resource is multipart.

e The @version attribute increments when a new version of the referenced file has been
provided in the package. The Receiver is expected to rely on the evalidFrom attribute
when detecting file version changes and can safely ignore the eversion attribute.

e The evalidrrom attribute shall be required and shall indicate when the referenced file was
last modified. A new version of a file shall be signaled by updating this time stamp within
the metadataEnvelope.item associated with the file. This value is expected to be
provided as the Last-Modified HTTP header parameter supplied when accessing the file
through the Receiver Web Server unless the boundary header contains an ATsc-HTTP-
Attributes parameter as described in Section 6.2.1.1 that overrides this default. This
value is expected to be used when calculating the age of the file.

e The date and time values supplied in the optional @validuntil attribute are expected to
be used to indicate when the file is no longer needed and can be released from the
Application Context Cache. The Broadcaster Application can read the expiration time of
the file using the Expires HTTP parameter supplied when accessing the file through the
Receiver Web Server unless the boundary header contains an ATSC-HTTP-Attributes
parameter as described in Section 6.2.1.1 that overrides this default.

e The required @contentType attribute shall provide the MIME type of the referenced file.
This attribute shall match the content-Type value defined as part of the boundary header
within the package, if provided. Note that the EFDT.FDT-Instance.File also contains a
Content-Type definition, but this should always be multipart/signed indicative of the
referenced package object. This value may be accessed through the content-Type HTTP
header parameter supplied when accessing the file through the Receiver Web Server.

This specification defines an additional attribute that extends the metadataEnvelope.item
specification defined in A/331 [3]. Table 6.1 provides an informative definition of the ATSC
extended attribute when included within a signed package destined for the Application Context
Cache. The normative semantics of the attribute are provided below the table.

Table 6.1 ATSC-Defined Extension to the metadataEnvelope.item Element

Attribute Name Cardinality Data Type Description

@contentLength |0..1 long Provides the length in bytes of the referenced file. This
value may be accessed through the Content-
Length HTTP attribute in a response to a User Agent
request.

@contentLength — The optional @contentLength attribute shall define the length in bytes of the
referenced file within the package. When defined, the length value shall be made available as
part of the Content-Length HTTP header element provided by the Receiver Web Server when
the referenced file is accessed.

6.2.1.1 Boundary Header HTTP Attribute Definition

A boundary header element, ATSC-HTTP-Attributes, may optionally be supplied in the boundary
header of a file within the multipart/signed package. This element provides a list of HTTP header
elements that are expected to be provided whenever the associated file is requested through the
Receiver Web Server. The syntax of this attribute shall be defined as follows:

21

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

attributes := "ATSC-HTTP-Attributes"":" parameter[";" parameter]*

where each parameter is an HTTP header field as described by RFC 7230 [16] except that the

colon, ":", used by the HTTP header field shall be replaced with an equals sign, "=", to comply
with constraints imposed by the multipart standard, RFC 2045 [20].

6.2.2 Application Context Cache Hierarchy Definition

All interactive content is carried in signed packages of files and transmitted via ROUTE (Section
6.5). All signed packages whose application signaling denotes a particular Application Context
Identifier are expected to be provided in a single hierarchy accessible to the Broadcast Application
with a unique Base URI. The Base URI concept and its semantics are described in Section 5.3.
The choice of whether a package or file is immediately stored to the Application Context Cache
on receipt within the ROUTE file stream or if the Receiver chooses to defer storage until the
particular broadcast data element is referenced is a Receiver implementation decision. However,
if the underlying Receiver Web Server cannot provide the requested content, an HTTP status code
within the 400-series Client Error or 500-series Server Error is returned indicating that some
error condition occurred [18]. Typically, this is either 404 Not Found, 408 Request Timeout Or
504 Gateway Timeout error; however, Broadcaster Applications should be constructed to deal
with any HTTP status code when referencing resources not contained within their Entry Package.

Similarly, the present document does not specify how frequently packages needed for the
Broadcaster Application are transmitted nor how frequently application signaling metadata is sent.
These decisions depend on several factors such as what time the Broadcaster Application
functionality is actually needed during content viewing, how quickly the Receiver needs to access
the Broadcaster Application after the service is selected, and the overall bandwidth needed to carry
Broadcaster Application resources, to list a few. These and other factors are likely different for
every Broadcaster Application depending on its overall purpose. The Application Signaling
standard, A/331 [3], requires broadcast packages to be available when the HELD signals the
Broadcaster Application. In addition, A/331 also defines a Distribution Window Description
fragment (DWD) that provides a mechanism to signal when packages will be available in the
broadcast at times other than when the Broadcast Application is signaled in the HELD.

The broadcaster shall be responsible for defining and managing any hierarchy below the
Application Context Cache root directory through use of the directory and path mechanisms
described in Section 6.2.1 above. Any hierarchy below the Application Context Cache Base URI
level is up to the broadcaster to define.

An example of how such a hierarchy could be defined is described below. Figure 6.2 shows an
example of such a hierarchy for BaseuRT B.

22

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Cache Root

BaseURI A BaseURI B BaseURI C

Major # 7 Major # 23

Major # 12

Minor # 1 Minor # 2 Minor # 3 Minor#4

Figure 6.2 Example Application Context Cache Hierachy.

As an example, presume that the broadcaster transmitted the ROUTE data such that the
Broadcaster Application files are placed within the "Minor #2" directory in the hierarchy shown
in Figure 6.2. Further, assume that the Broadcaster Application Entry Page is called "main.htm1".
To launch the Broadcaster Application, the application signaling in this example provides the
relative URIof "12/2/main.html" in the HTMLEntryPackage@bcastEntryPageur] attribute of the
HELD [6]. Note that the local path is a convention defined by the broadcaster—it could just as
easily have been called "red/green". The actual URL of the Broadcast Application would be:

<BaseURI>/12/2/main.html

Note that the Receiver-created <BaseURI> portion of the URL is highlighted as bold. The
Broadcaster Application would be able to reference any directory corresponding to its
AppContextID hierarchy as designated by the green boxes in Figure 6.2 under the "BaseURI B" box.

The Receiver provides the Base URI information associated with the current Application
Context Identifier to the Broadcaster Application through a Receiver WebSocket Server API (see
Section 9.2.7). Note that this Base URI is available through the normal W3C document object
model (DOM) if the Broadcaster Application is sourced from broadcast. In this case, the
Broadcaster Application can simply access content using relative URLs or constructing full URLs
using Document . location. The WebSocket API is most applicable for Broadcaster Applications
hosted from broadband allowing them to gain access to resources received over broadcast.

6.2.3 Active Service Application Context Cache Priority

Once the packaged resources, known as the Entry Package, of the Broadcaster Application (see
Section 6.3) have been acquired and placed in the Application Context Cache, the Broadcaster
Application can assume that the Entry Package resources, that is, those files delivered along with
the Broadcaster Application Entry Page in a single package, are expected to remain available as
long as the Broadcaster Application is loaded in the User Agent. If the Receiver cannot provide
the entire Entry Package to the Broadcaster Application reliably, the Broadcaster Application is
not expected to be launched. This allows broadcasters to determine the required files of their
Broadcaster Application and send them all as one package thereby guaranteeing that those files

23

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

are available if the Broadcaster Application has been launched. In addition, Receivers are expected
to make every effort to cache files delivered with a particular service for the Broadcaster
Application(s) associated with the current service Entry Package.

Note that the Receiver may have to release other portions of the cache that are not active to
accommodate files in the currently active hierarchy. Indeed, it may be necessary for the Receiver
to purge the entire cache to accommodate the present active service. Since the user actively
selected the current service, the Receiver assumes that the current service content preempts all
other content from the user perspective.

A Broadcaster Application may limit the amount of cache required by using the Filter Codes
mechanism. Filter Codes provide a way to differentiate application content allowing a Broadcaster
Application to indicate which packages it wishes to be placed in the Application Context Cache
and which packages it wishes to ignore. A set of WebSocket APIs is provided to allow the
Broadcaster Application to manage the Filter Codes (see Section 9.10).

A Broadcaster Application can mark content as unused to hint to a Receiver that the resources
are no longer needed. A WebSocket API is provided (see Section 9.8) that allows files or entire
directory hierarchies to be marked as unused. Subsequent access to resources that are marked as
unused is expected to result in an error. The HELD (A/331 [3]) also provides an attribute,
@clearAppContextCacheDate, associated with the Broadcaster Application that indicates that any
file in the Application Context Cache created before the specified date and time should be
removed. This enables older files present in an Application Context Cache to be marked as
obsolete.

6.2.4 Cache Expiration Time

The @validuntil attribute of a file, as defined in Section 6.2.1, shall indicate that the broadcaster
expects the file to remain in the Application Context Cache until the expiration time has been
reached regardless of whether the Broadcaster Application is currently loaded in the User Agent.
However, the storage requirements of the loaded Broadcaster Application take precedence over
the @validuntil attribute, so the Receiver may be forced to release files from other services prior
to their @validuntil time to provide storage to the current service. The Broadcaster Application
must be prepared to deal with the possibility that a resource may not be available. Receivers may
elect to leave the resource within the Application Context Cache or purge it whenever is convenient
after the @validuntil date and time has been passed, depending on other cache management
criteria.

Note that for resources that are part of the Entry Package, the Broadcaster Application can
assume that those files are available at startup and remain available if the Broadcaster Application
is running regardless of the @validuntil time as described in Section 6.2.3.

6.2.5 Advanced Emergency Alert Enhancement Content Considerations

The AEAT may reference AEA enhancement content through URLs. This content is delivered
either in the broadcast as a separate ROUTE stream, in which case the referencing URL will be
relative, or over broadband where a fully qualified URL will be provided.

In the broadcast case, the broadcaster is responsible for providing the Application Context Id
of any Broadcaster Applications that need to access the AEA enhancement content as part of the
EFDT fragment describing the signed package containing the AEA enhancement content. The
Receiver is expected to treat this content as it would normal ROUTE-delivered content by making
it available in the Application Context Caches corresponding to the listed Application Context IDs.
Note that since the AEA enhancement content is expected to occupy the same hierarchy as other

24

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

ROUTE-delivered data, the broadcaster must ensure that no conflicts occur when defining the
corresponding file hierarchies.

Similarly, any cache management performed by the Broadcaster Application should take the
life span of the AEA event into account when signaling @clearAppContextCacheDate or using the
Mark Unused API (see Section 9.8) to indicate the content is no longer needed. Any broadcast
NRT data associated with an AEA event is expected to have a @validuntil attribute defined to be
at least the duration of the AEA event.

6.3 Broadcaster Application Lifecycle

This section prescribes the Broadcaster Application life cycle. For syntax and semantics of the
HELD, see A/331[3] Section 7.1.8. See Annex A for an informative description of the Broadcaster
Application lifecycle. This lifecycle applies to all SLT.Service@serviceCategory values.

The term, "load" in its various forms, means the resources necessary for execution have been
brought into Receiver memory and execution is started or continued. There is no dependency on
serviceCategory.

The Broadcaster Application lifecycle is initially indicated by the presence or absence of a
valid HELD and the entries in it. When a Broadcaster Application is part of a service, the HELD
shall be present in all instances of the SLS for that service at least whenever the HELD is valid. A
HELD is "valid" if its syntax is conformant, and the current UTC time is not before @validFrom
(if present), and not after @validuntil (if present), for at least one entry in the HELD. In the case
of a HELD obtained using the content recovery methods described in ATSC A/336, the current
presentation time on the Recovery Media Timeline [5] is expected to be used instead of the current
UTC time for evaluating @validFrom and @validuntil.

Upon receipt of a HELD, the Receiver is expected to build a list of candidate Broadcaster
Applications as indicated by one or more entries in a HELD. The Receiver is expected to exclude
all entries which indicate a @validuntil in the past and exclude all entries which indicate a
@validrrom in the future. Similarly, the Receiver is expected to exclude all entries which indicate
@requiredcapabilities which are not satisfied by the Receiver’s capabilities. With this filtered
list, the Receiver is expected to identify a single HELD entry identifying the Broadcaster
Application to run:

e If the list has an entry with the same @appid and @appcontextId of the Broadcaster
Application that is currently loaded, then that entry is chosen, and the current Broadcaster
Application is allowed to continue execution (no "re-loading" is necessary).

e If the list has an entry that matches a user-selected @app1d and @appcContext1d, then that
entry is chosen and allowed to continue execution (no "re-loading" is necessary).

e Ifthe list has exactly one entry, or if exactly one entry is indicated as @default=True and
none of the preceding conditions apply, then that entry is the candidate to be loaded.

e Ifthis list of entries is empty, the Receiver is expected to unload the current Entry Page if
a Broadcaster Application is currently loaded.

e Ifthis list of entries has more than one candidate, and none of them are marked as default,
the behavior is undefined.

A Broadcaster Application is "loaded" when the Entry Package is completely available within
the Application Context Cache. For external broadband references where a full URL is provided,
the URL supplied in the HTMLEntryPackage@bbandentryurl attribute for the Broadcaster
Application section of the HELD is expected to be launched directly.

25

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

If a Broadcaster Application is currently loaded and a service change is initiated (either by the
Receiver or the Broadcaster Application), the Receiver may request specific resources to be
released by the Broadcaster Application prior to the Receiver beginning channel change processing
by using the Prepare for Service Change API (see Section 9.16).

If a Broadcaster Application is currently loaded, and the candidate entry has identical values
of @appcContextId and @app1d, then the currently loaded Broadcaster Application is the same as
the candidate entry, the running Broadcaster Application persists, and receives a Service Change
notification if it has requested one.

Similarly, if a Broadcaster Application is currently loaded, and the @validuntil property for
that Broadcaster Application has been reached, then the Receiver is expected to unload the current
Broadcaster Application and proceed as below.

If a Broadcaster Application is currently loaded, and the Broadcaster Application is different
from the candidate entry, then the Receiver is expected to unload the current Entry Page and load
the candidate entry Broadcaster Application’s Entry Page.

If there is no Broadcaster Application currently loaded, the Receiver is expected to load the
candidate entry Broadcaster Application’s Entry Page.

Note that logic within a given Entry Page may load and unload sub-pages as described in
above; such actions are Broadcaster Application-specific and are not governed by the HELD.

When the HELD is no longer present in the SLS or no longer valid, the Receiver is expected
to unload the current Entry Page.

When a Broadcaster Application is executing, if the user or Broadcaster Application requests
another service with a common @appcContextId and, if present, @appid then the Receiver is
expected to issue a Service Change Notification (see Section 9.3.3) event with
"requested"="true". In that case, the Broadcaster Application should promptly:

1) Cease all AMP activity and release all AMP-related resources, and

2) Ifthe Set RMP URL API (see 9.7.3) is actively using the RMP, issue a Set RMP URL API

request with "operation"="stopRmp",

3) Clear all broadcast program-specific information,

4) Reset video scaling and positioning (see 9.7.2), and

5) Begin requesting required resources from the Application Context Cache.

After the requested service has been acquired, when the requested service has a common
@appcontextId and, if present, @appId, then it is expected that the Receiver will issue a Service
Change Notification (see Section 9.3.3) with "requested" = "false" Or absent.

If the user or Broadcaster Application requests another service with different @appContextid
and, if present, @appId, no Service Change Notification event is fired, and the Broadcaster
Application is terminated.

In addition to managing Broadcaster Application changes across services, since the HELD is
capable of signaling multiple Broadcaster Applications, it is possible for a Broadcaster Application
to initiate a switch to a new Broadcaster Application on the same service by using the Launch
Broadcaster Application API (see Section 9.7.6). This can be in the same or different Application
Contexts.

If the new Broadcaster Application is valid and its resources are available, then the calling
Broadcaster Application is terminated and the new Broadcaster Application is loaded. The calling
Broadcaster Application should release notifications, subscriptions and all other resources before
calling the Launch Broadcaster Application API. If the appContext1d is different between the

26

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Broadcaster Applications, then the starting Broadcaster Application is not expected to have access
to the calling Broadcaster Application resources.

6.4 Broadcaster Application Events (Static / Dynamic)

Actions to be taken by Broadcaster Applications can be initiated by notifications delivered via
broadcast or broadband or, in a redistribution setting, via watermarks. A/337 [6] uses the term
"Events" for such notifications.

Broadcast delivery of events is defined in Section 4.1 of A/337 [6] including delivery for
ROUTE/DASH-based services and MMT-based services.

Broadband delivery of events is defined in Sections 4.2 and 4.5 of A/337 [6] including delivery
for ROUTE/DASH-based services and MMT-based services.

Both the broadcast and broadband delivery of events defined in A/337 [6] support batch (static)
and incremental (dynamic) delivery.

In a redistribution setting, events can be also delivered via video and audio watermarks as
described in Section 4.3 of A/337 [6].

Detailed specification of the WebSocket APIs used to register for and receive event stream
notifications is provided in Section 9.6.

6.5 Broadcaster Application Delivery

The file delivery mechanism of ROUTE, described in A/331 [3], provides a means for delivering
a collection of files either separately or as a package over the ATSC 3.0 broadcast. The ROUTE-
delivered files are made available to the User Agent via a Receiver Web Server as described in
Section 6.2. The same collection of files can be made available for broadband delivery by
publishing to a Receiver-accessible web server. Furthermore, the application signaling [6]
determines the source of the Broadcast Application Entry Page, and the location of any other files
and packages that are delivered by broadcast.

1) A relative Entry Page URI indicates that the source of the Broadcaster Application Entry

Page is broadcast ROUTE data.

2) An absolute Entry Page URL indicates that the Broadcaster Application Entry Page should

be sourced from broadband.

3) If any files or packages are delivered by broadcast, the application signaling identifies the

LCT channels that are used to deliver the files and/or packages.

Note that while the initial Entry Page may be sourced from either broadband or broadcast
according to the HTMLEntryPackge@bbandEntryPageur] or
HTMLEntryPackage@bcastEntrypPageur] attributes in the HELD, there is no constraint regarding
using either broadcast or broadband resources within the Broadcaster Application itself. Hybrid
delivery of Broadcaster Application files is allowed and expected.

6.5.1 Broadcaster Application Packages

The file components comprising the Broadcaster Application shall be delivered over broadcast
within one or more multi-part MIME packages using ROUTE or over broadband as individual
files using HTTPS. All files made available through the Receiver Web Server shall be delivered
to the Receiver as signed packages as described in A/331 [1].

It is not required that all resources used by a Broadcaster Application be delivered in a single
ROUTE package when delivered over broadcast. The broadcaster may choose to send a relatively
small Entry Page in a signed Entry Package which then performs a bootstrapping operation to

27

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

determine what other resources have been delivered or are accessible via the broadcast delivery
path and, in turn, which resources need to be obtained using broadband requests. Since the Entry
Package containing the Entry Page is expected to be received in its entirety before launching the
Broadcaster Application (per Section 6.2.3), the Broadcaster Application can forgo any checks for
basic resources and perhaps speed the initial startup time. It is conceivable that Broadcaster
Applications may have incremental features based on the availability of resources on the Receiver.
In other words, the Broadcaster Application may add features and functions as more resources are
available. Control for selecting specific signed packages to be made available is provided using
the Filter Codes API (see Section 9.10).

In addition, the Broadcaster Application may request resources and content from or perform
other activities with broadband web servers making the Broadcaster Application a true Web
Application in the traditional sense. A Broadcaster Application should be aware that all Receivers
may not contain sufficient storage for all the necessary resources and may not have a broadband
connection.

6.5.2 Broadcaster Application Package Changes

Broadcaster Application resource files and packages may be updated at any time. Mechanisms for
determining that a new file or package is being delivered are defined in FLUTE, which is the
underlying standard used by ROUTE [3]. The broadcaster may send an Event Stream notification
to let the Broadcaster Application know that something has been changed. The Broadcaster
Application determines how such changes should be addressed based on the Event Stream
notification.

6.5.3 Content Caching Control via Filter Codes

Filter Codes provide a way for the Broadcaster Application to control which NRT data is stored in
the associated Application Context Cache. The broadcast must include all NRT data for all possible
instances of the Broadcaster Application executing on a variety of Receivers; however, an
individual Broadcaster Application may only need certain NRT data depending on the service,
user, Receiver instance or some other constraint.

A Filter Code Instance is a value and optional expiration time associated with an Application
Context Cache. A Filter Code Instance persists along with an Application Context Cache until its
expiration time is exceeded or for the life span of the Broadcaster Application, if no expiration
time was specified. If the Receiver reclaims the resources of an Application Context Cache, any
associated, unexpired Filter Code Instances are also expected to be reclaimed. Once reclaimed,
neither the Application Context Cache nor the associated Filter Code Instances are expected to be
defined, regardless of any Filter Code Instance expiration time.

To control the NRT data storage using Filter Codes, it must be clear how a Receiver is expected
to process the incoming signaling and NRT data into the Application Context Cache so that the
broadcast and Broadcaster Application can be engineered in the most effective way. Figure 6.3
provides a flowchart diagram of the conceptual process a Receiver is expected to use to place
content into the Application Context Cache based on the NRT data and the Filter Code Instances.
Note that the Broadcaster Application running state is also depicted since its launch relies on the
receipt of a non-filtered NRT data package and Filter Code Instances may not exist until the
Broadcaster Application has defined them.

For the purposes of this discussion, it is assumed that the Broadcaster Application is intended
to execute from the local Application Context Cache and that all data is received via ROUTE
streams within the broadcast instead of from broadband sources. Note that while Filter Code

28

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

processing may still be used to filter selected NRT data from the broadcast stream, broadband
sources of both the Broadcast Application and needed data may obviate some of the decisions
shown in the flowchart diagram of Figure 6.3.

Tune to Channel

NRT File Processing -

Application Launch

?

Yes

App Context

No Cache Defined

Entry Package
Received
?

Define
App Context
Cache

NRT File

No Received

BA Launched via
Store File in Entry Page

App Context

@ Yes Cache

NRT Content
Ignored

App Context
Cache

BA Operating

Filter Code 1 Expiration Time

Filter Code 2 Expiration Time
Filter Code 3 BA Lifetime
? 7 [FilterCode4 [BALifetime | ~
Yes / " ~
Y Filter Code N
/ Instances

appContextld
Matches

—No

BA Defines
Filter Codes
via WS API

FDT-Instance[.File]
@filterCodes Defined,

Matching
Filter Code
Defined
?

“No

Figure 6.3 Filter Code Processing Flowchart.

The following description is based on the annotated steps in Figure 6.3 above.

The processing starts, (1), when the Receiver is tuned to a channel. As part of the initial
discovery process, Service Level Signaling (SLS) associated with the selected service may indicate
that one or more ROUTE sessions are available carrying NRT data. The presence of ROUTE NRT
data streams launches the NRT File Processing, (2), depicted at the left side of Figure 6.3. For
NRT content destined for an Application Context Cache, an Application Context Cache must be
defined before any content may be stored there (3). The Application Context Cache may already
be present if the Receiver has not reclaimed its resources, but this is dependent on many factors
including the time between channel selections and the amount of resources available. Note that
other NRT data may be received for other purposes but those use cases are beyond the scope of
this discussion.

29

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

As part of the SLS processing, the service signaling may include a HELD table [3] indicating
that a Broadcaster Application is associated with the selected service. When the HELD is received,
(4), it 1is processed to determine the Application Context ID defined by
HELD.HTMLEntryPackage@appContextId [3]. The Application Context Cache (6) is then allocated,
(5), where the associated NRT data can be stored. Again, the Application Context Cache may
already exist if a previous Broadcaster Application used the same Application Context Identifier
and the Receiver has not yet reclaimed the associated resources.

Similarly, Filter Code Instances may also be associated with the Application Context Cache if
they were set by a previous Broadcast Application instance with an expiration time that has not
yet occurred. These Filter Code Instances are represented in Figure 6.3 as "Filter Code 1" and
"Filter Code 2" with associated Expiration Times annotated with a (7). Filter Code Instances with
Filter Codes 3 and 4 in the diagram are described below.

The HELD table also causes the Application Launch process to start (8) via the
HELD.HTMLEntryPackage@bcastentrypPageurl [3]. The Receiver must then wait (9) for the Entry
Package to be received and the files made available in the Application Context Cache before
launching the Broadcaster Application. Note that if the Application Context Cache is still present
and contains the appropriate Entry Package, the Broadcaster Application could start immediately.

While the Receiver is waiting for the Entry Package to be available (9), the NRT File
Processing logic is waiting for a file to be received (10). Note that the process of receiving a file
is complicated and depends on signaling within the ROUTE stream. It is likely the case that each
portion of a file will be examined based on the tests shown in the diagram but for simplicity the
flowchart shows the processing at the file level.

When a file is received, it is first checked, (11), to see if it should be saved in the Application
Context Cache, as indicated by the presence of the matching appContextId in the FDT-
Instance@appContextIdList or FDT-Instance.File@appContextIdList [3]. If not, then it is
ignored, and the processing continues (12).

If an appcontextId does match, then the Receiver checks the file for the presence of Filter
Codes (13). Filter Codes are defined either overall for all files in the source flow in the FDT-
Instance@filtercodes list attribute or specifically for a file in the FDT-
Instance.File@filtercodes list attribute [3]. If after processing the Filter Code list attributes
there are no Filter Codes assigned to the file, then the file is stored (14) in the Application Context
Cache (6). Note that the File@filtercodes list preempts the FDTInstance@filtercodes list. If
any filter codes are defined on a file, then the processing moves to test whether any Filter Code
Instances have been set (15).

It is expected that the initial Entry Package will not have any filter codes defined in the ROUTE
signaling. This results in the Entry Package always being stored in the Application Context Cache
once received. The Application Launch process waits (8) for the Entry Package to be received and
then launches, (16), the Broadcaster Application using the
HELD.HTMLEntryPackage@bcasteEntrypPageurl [3].

The Broadcaster Application begins execution (17) eventually issuing the Set Filter Code
Instances API (Section 9.10.1) to define which NRT files it requires (18). In Figure 6.3, new Filter
Code Instances defined by the Broadcaster Application are shown (7). Filter Code Instances
containing "Filter Code 3" and "Filter Code 4" have an expiration labeled "BA Lifetime" indicating
that they are expected to expire when the Broadcaster Application terminates.

Once one or more Filter Code Instances are defined, (7), the check for a match between the
Filter Codes signaled on the NRT files and the Filter Code Instances may succeed (15) resulting

30

mailto:HELD.HTMLEntryPackage@appContextId
mailto:HELD.HTMLEntryPackage@bcastEntryPageUrl
mailto:FDT-Instance.File@appContextIdList
mailto:FDT-Instance.File@filterCodes
mailto:FDT-Instance.File@filterCodes
mailto:HELD.HTMLEntryPackage@bcastEntryPageUrl

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

in the corresponding file being saved (14) to the Application Context Cache (6). Specifically, the
test logic is as follows:
if FDT-Instance.File@filtercodes exists and the intersection of the Filter Code Instance
values and the FDT-Instance.File@filtercodes list is not empty, then save the file to the
Application Context Cache, otherwise,
if FDT-Instance@filtercodes exists and the intersection of the Filter Code Instance values
and the FDT-Instance@filtercodes list is not empty, then save the file to the Application
Context Cache, otherwise,
ignore the file.

Note that the FDT-Instance.File@filtercodes are checked first since A/331 requires that
they preempt any Filter Codes set on the overall FDT-Instance, namely, FDT-
Instance@filtercodes (see A/331 Section A.3.3.2.3 [3]). This means it is possible to remove
Filter Codes defined by FDT-Instance@filtercCodes from a specific file by providing an empty
FDT-Instance.File@filtercodes attribute.

While the Broadcaster Application and NRT File Processing continue operating, new Filter
Codes can arrive with the NRT files, Filter Code Instances may expire, and the Broadcaster
Application can define new Filter Code Instances. The NRT File Processing loop continuously
operates on received files matching the current appContextid storing those files without Filter
Codes signaled as well as files with at least one Filter Code set that matches at least one Filter
Code Instance value. All other files are expected to be ignored.

Note that the Receiver is not expected to keep track of files in the Application Context Cache
that were stored based on Filter Codes. In other words, if the Broadcaster Application changes its
Filter Code Instances, the Receiver is not expected to purge files from the cache that would no
longer match the currently defined Filter Code Instances. If such files are no longer needed by the
Broadcaster Application, it may use the Mark Unused API (Section 9.8) to designate the files as
unnecessary.

6.6 Security Considerations

All Broadcaster Application files delivered over broadcast shall be delivered using the ROUTE
Signed Package mechanism described in A/331 Section A.3.3.5 [3] and A/360 Section 5.2 [8].
A/331 describes the encapsulation of Broadcaster Application files in MIME multipart packages
while A/360 describes the encapsulation of that MIME multipart package into an S/MIME wrapper
to secure the Broadcaster Application files. Files are deemed to be part of the Broadcaster
Application if they are accessible from the Application Context Cache through the Receiver Web
Server interface. For Receivers that support signing, it is expected that they only make content
from correctly signed packages available through the Receiver Web Server interface.

The Broadcaster Application files may be delivered over broadcast in as many signed packages
as desired — there is no restriction on dividing files among signed packages. In fact, it may be
typical that core functions of the Broadcaster Application are delivered in the Entry Package while
extended content and functionality are delivered in separate packages. In addition, the Filter Codes
mechanisms (see Section 9.10) can be used to select various packages as user preferences or other
selection criteria are discovered. Regardless of how files are partitioned into separate packages,
these packages must be signed per the requirement in the previous paragraph.

Broadcaster Application files delivered over broadband shall be secured using standard W3C
mechanisms. All connections to broadband servers shall use a secure connection as described in

31

mailto:FDT-Instance.File@filterCodes
mailto:FDT-Instance.File@filterCodes
mailto:FDT-Instance.File@filterCodes

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

A/360 Section 5.1 [8]. The content received over broadband using a secure connection shall be
considered trusted as if it had been received in a signed package over broadcast.

6.7 Companion Device Interactions

The ATSC 3.0 Companion Device standard (A/338 [37]) specifies how a separate device, known
as the Companion Device (CD), interacts with the Receiver, known as the Primary Device (PD) in
the A/338 standard. The A/338 standard extends the APIs defined in Sections 8 and 9 of the present
standard to provide CD Manager APIs that allow the Broadcaster Application to discover and
launch CD Applications operating on the Companion Device. These CD Manager APIs also
provide a mechanism for the Broadcaster Application to obtain WebSocket service end points that
allow application-to-application communication between the CD Applications and the Broadcaster
Application. The Broadcaster Application may support multiple connections by requesting
multiple end points. To use the CD Manager APIs, the Broadcaster Application can obtain the
WebSocket URL with the mechanism defined in Section 8.2.1.

Complete details of the Companion Device Interactions regarding the discovery and launch of
Companion Device applications, application-to-application WebSocket communication
mechanisms, and Receiver WebSocket APIs available to the CD Application can be found in the
ATSC 3.0 Companion Device standard (A/338 [37]).

7. MEDIA PLAYER

In the ATSC 3.0 Receiver environment, there are two software components that can play out media
content delivered via either broadcast, broadband, or redistribution. For the purposes of this
specification, these two logical components are referred to as Application Media Player (AMP)
and Receiver Media Player (RMP), and these are described further in this section. The AMP is
JavaScript code (e.g., DASH.js), which is part of an HTMLS5 Broadcaster Application, while the
RMP is a Receiver-specific implementation. The AMP uses the HTMLS5 <video> tag and MSE to
play out media content regardless of the content origination or delivery path. Details of the RMP
design and implementation are out of scope for this specification and any design descriptions
provided in this specification are only as informative reference. Whether AMP or RMP is used to
play out a media content, there are several use cases:
e Broadcast or Hybrid Broadband / Broadcast Live Streaming — The content segments
arrive either via broadband or broadcast.
¢ Broadband Media Streaming — Media content streaming over broadband (on-demand or
linear service).

e Downloaded Media Content — Media content downloaded over broadcast or broadband
ahead of time. Details of how media content is downloaded over broadband or broadcast
is described in Section 9.3.14 of this specification.

The type of media streams played depends on signaling in the MPD of live broadcast streams,

or specific Broadcaster Application logic.

The DASH Client specification [41] provides the expectations for behavior of such players and

is not further described here.

In redistribution scenarios, media content arrives using a method that does not employ ATSC

3.0 protocols (e.g., HDMI). Redistribution services are presented by an RMP.

32

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

7.1 Utilizing RMP

The RMP can be triggered to play out media content streamed over broadcast by Receiver logic or
by an explicit request from a Broadcaster Application. These distinctions are further described in
this section.

7.1.1 Broadcast or Hybrid Broadband and Broadcast Live Streaming

When tuned to a new service, the RMP determines whether to play out the media stream or whether
to wait for the Broadcaster Application to determine whether to play out the media stream. The
HTML Entry page Location Description (HELD) specified in A/331 [3] signals which media
player, AMP or RMP, is intended to play the media stream; however, Receiver logic can choose
to play out the media stream, regardless of what is signaled in HELD. The information in the MPD
for ROUTE/DASH or in the MP Table for MMT determines whether the media stream segments
are to be played out from broadcast or from a combination of broadband and broadcast.

7.1.2 Broadband Media Streaming

The RMP can play out a service delivered by broadband media streaming if the service signaling
indicates a broadband MPD URL, or if the Broadcaster Application requests that the RMP play
out the stream. For the purposes of this document, there is no distinction between play-out of live
broadband streaming vs. on-demand over broadband. The differentiation on how the MPD is
organized for these two use cases is described further in the DASH client specification [41].

7.1.3 Downloaded Media Content

Depending on the request from the Broadcaster Application, the RMP can play out downloaded
media content that was delivered via broadband or broadcast. The Broadcaster Application can
make such a request using the Set RMP URL WebSocket API as described in Section 9.7.3.

7.1.4 Redistribution

Interactive content can be supported in redistribution scenarios. The Receiver can obtain the ATSC
3.0 service from a redistribution source, present the service using an RMP, acquire the service and
application signaling as described in A/336 [5], and acquire the Broadcaster Application package
via broadband as described in Section 6.5.

7.2 Utilizing AMP
7.2.1 Broadcast or Hybrid Broadband and Broadcast Live Streaming

Although broadcast or hybrid live media streaming is typically played out by the RMP, it is
possible for the AMP to request playback of the content. A flag in the HELD indicates whether
the RMP can immediately play out the media content, or whether the service expects the AMP to
play out the live media streaming. The Receiver can ignore this signaled expectation, in which
case the RMP can immediately play out the live media streaming. There are several possible
methods by which an AMP can play out media as described in the following sections.

7.2.2 Broadband Media Streaming

There is no special consideration for playing media streams delivered over broadband other than
what is provided in the DASH client specification [41]. Other media types may be supported by a
Receiver as reported in the device capabilities provided by the Query Device Info API (see Section
9.12).

33

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

7.2.3 Downloaded Media Content

The AMP can play out downloaded media content from either broadcast, using NRT, or
broadband, using the Cache Request APIs (see Section 9.3.14). In either case, the resultant media
content is placed in the Application Context Cache. The Broadcaster Application may then use the
HTMLS <video> tag in conjunction with MSE or EME to initiate playout.

7.2.4 AMP Utilizing the Pushed Media WebSocket Interface

This mechanism allows the AMP to play content delivered through the broadcast. The Broadcaster
Application opens the binary WebSocket connections specified in Section 8.2.1. Opening these
WebSocket connections is an implicit request that the Receiver retrieve the Initialization and
Media Segments of the media content and pass them to the Broadcaster Application via these
connections. The Broadcaster Application then uses an HTMLS <video> tag in conjunction with
MSE or EME to pass the media content to the Receiver's decoders for decoding and presentation.
In the broadcast case, the media are retrieved from the broadcast via the ROUTE Client and pushed
to the AMP via the WebSocket server. In the broadband case, the media are retrieved from a remote
HTTP server via the HTTP Client and pushed to the AMP via the WebSocket server.

8. ATSC 3.0 WEBSOCKET INTERFACE

8.1 Introduction
A Broadcaster Application on the Receiver may wish to exchange information with the Receiver
platform to:
e Retrieve user settings
e Receive an event from the Receiver to the Broadcaster Application
o Notification of change in a user setting
o DASH-style or MPU-style Event Stream event (from broadcaster)
e Request Receiver actions
In order to support these functions, the Receiver includes a web server and exposes a set of
WebSocket Remote Procedure Call (RPC) calls. These RPC calls can be used to exchange
information between a Broadcaster Application running on the Receiver and the Receiver
platform. Figure 8.1 shows the interaction between these components.
In the case of a centralized Receiver architecture, the Receiver Web Server typically can be
accessed only from within the Receiver by Broadcaster Applications in the User Agent.

34

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Broadcaster's HTML application running in the user agent which is
part of the ATSC 3.0 Software Stack

)
Asynchronous Register event | Registered
request Request i events
]
]
]
i
i WebSocket
' Server-
Asynchronous i ..~ "Interfaces
Response e
= —
]
]

WebSocket Server running on the ATSC 3.0 Reciever

Proprietary
Interface

Secure ATSC 3.0 Receiver Software Stack

Figure 8.1 Communication with ATSC 3.0 Receiver.

One or more ATSC 3.0 WebSocket interfaces are exposed by the Receiver. All Receivers
support a WebSocket interface used for command and control. Some Receivers also support three
additional WebSocket interfaces, one each for video, audio, and caption binary data. The
Broadcaster Application or companion devices can connect to the command-and-control interface
to retrieve state and settings from the Receiver and perform actions, such as change channels.

8.2 Interface Binding

Since the APIs described here utilize a WebSocket interface, the Broadcaster Application can rely
on standard browser functionality to open the connection and no specific functionality needs to be
present in the Broadcaster Application.

In order to communicate with the WebSocket server provided by the Receiver, the Broadcaster
Application needs to know the URL of the WebSocket server. The WebSocket server location may
be different depending on the network topology (e.g., integrated vs. distributed architecture), or it
may be different depending on the Receiver implementation. To hide these differences from the
Broadcaster Application, the Broadcaster Application Entry Page URL is launched with a query
term parameter providing information regarding the location of the Receiver WebSocket Server.

When an Entry Page of a Broadcast Application is loaded on the User Agent, the URL is
expected to include a query term providing the Base URI of the ATSC 3.0 WebSocket Server
Interface supported by Receivers. Similarly, the Receiver is expected to report the current version
of the supported WebSocket APIs by providing another query term containing the release date of
this standard. An additional optional query term is callerIdQuery. This term is expected to be
present when the Broadcaster Application was started by another Broadcaster Application.

35

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Using the ABNF syntax as defined in RFC 5234 [12], the query component shall be as defined
below:

query = ((wsQuery "&" revQuery) / (revQuery "&" wsQuery)) [callerIdQuery]
wsQuery = "wsURL=" ws-url

revQuery = "rev=" yyyymmdd

callerIdQuery = "&callerId=" appld

The ws-url is the base WebSocket URI and shall be as defined in RFC 6455 [24]. The
yyyymmdd value shall contain the year (yyyy), month (mm) and day (dd) when the present standard
was released. For example, the first release of this standard was 18 December 2018. That value is
represented as '20181218'. The date used for any given release shall be taken from the
corresponding entry in the 'Date' column of the Revision History table at the beginning of this
document. The app1d shall be the HELD@app1d (see A/331 [3]) of the Broadcaster Application that
called the Launch Broadcaster Application API (see Section 9.7.6). Note that this provides only
one level of return.

The following shows an example of how such a query string is used to launch the Broadcaster
Application. In this example, if the Entry Page URL is:

http://localhost/xbc.org/x.y.z/home.html,

the WebSocket APIs are based on the revision of the standard as released on 20 July 2018 and the
Broadcaster Application was launched by the previous Broadcaster Application with
appId="pbs.org/kids/1", the Broadcaster Application is launched as follows:

http://localhost/xbc.org/x.y.z/home.html?wsURL=wss://localhost2:8000
&rev=20180720
&callerId=pbs.org/kids/1

The wsURL and rev query parameters are added to load an entry page URL of a broadcast-
delivered application. It is expected that a broadband web server would ignore a wsURL query
parameter in the URL of an HTTP request if it were to appear. The rev query term is applicable
to launching Broadcaster Applications from both broadcast and broadband.

8.2.1 WebSocket Servers

All Receivers are expected to support access to a WebSocket interface used for communication of
the APIs described in Section 9. Receivers which support push-mode delivery of binary media
data (video, audio, and captions) also support three additional WebSocket interfaces, one for each
type of media data. Receivers that support the A/338 Companion Device standard [37] also provide
an additional WebSocket interface that allows communication with the CD Manager within the
Receiver (see Section 6.7). Table 8.1 describes the five interfaces. In the table, the term "wspPath"
represents the value of the wsURL parameter discovered in the procedure above.

36

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 8.1 WebSocket Server Functions and URLs

WebSocket Interface Function URL Receiver Support
Command and Control WSPath/atscCmd Required
Video WSPath/atscvid Optional
Audio WSPath/atscAud Optional
Captions WSPath/atscCap Optional
Companion Device WSPath/atscCD Optional

If an optional WebSocket URL shown in Table 8.1 is not supported, the Receiver is expected
to respond with the HTTP status code "404 Not Found" when the Broadcaster Application
attempts to connect to the optional interface. Receipt of this status results in the failure of the
WebSocket connection to the particular WebSocket API.

In the push model, each MPEG DASH Media Segment file delivered via a
Video/Audio/Captions WebSocket interface is delivered in a binary frame of the WebSocket
protocol. The command-and-control interface uses text frame delivery.

8.2.1.1 Initializing Pushed Media WebSocket Connections

Upon establishment of any of the media WebSocket connections listed in Table 8.1 (atscvid,
atscAud, atscCap), it is expected that the first data sent by the Receiver over such a connection
is a text message (opcode 0x1, as defined in Section 5.2 of IETF RFC 6455 [24]) with the payload
"1s" followed by an Initialization Segment. After the Initialization Segment, the Receiver is
expected to send another text message with payload "1s_end" followed by Media Segments. If a
new Initialization Segment is received after establishment of the media-delivery WebSocket
connection, then the Receiver is expected to send a text message over the same WebSocket
connection with the payload "1s" immediately after the last Media Segment associated with the
previous Initialization Segment. Then the Receiver is expected to send the new Initialization
Segment followed by the text message with payload "1s_end" and then ensuing Media Segments.

8.2.1.2 Media WebSocket Connection Operation

When a Broadcaster Application requests a connection to a media WebSocket, the Receiver is
expected to begin sending the appropriate content once the connection is established. The data sent
by the Receiver over a media WebSocket connection is expected to be matched to the type of
media indicated by the WebSocket Interface Function as provided in Table 8.1. Therefore, video
compliant with formatting described in A/331 [3] is expected to be sent by the Receiver over the
WebSocket identified by the URL wspPath/atscvid. Similarly, audio compliant with formatting
described in A/331 [3] and captions compliant with formatting described in A/331 [3] is expected
to be sent over WSPath/atscaud and WSPath/atscCap WebSocket connections, respectively. For
media WebSocket connections that are currently open, content may not be sent at all times, for
example, if no captions are present at a given time.

8.3 Data Binding
Once the connection is established to the Receiver WebSocket command and control Server,
messages can be sent and received. However, since the WebSocket interface is just a plain

bidirectional interface with no structure other than message framing, a message format needs to be
defined.

37

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The WebSocket interface for command and control shall be the JSON-RPC 2.0 Specification
in Annex B, except that the WebSocket interface need not include the features described in Annex
B, Section 6 (batch mode operation). JSON-RPC provides RPC (remote procedure call) style
messaging, including unidirectional notifications and well-defined error handling using the
JavaScript Object Notation (JSON) data structure [22].

This section defines the basic formatting of messages, and the following section defines the
specific messages that are supported. This document describes message semantics while separate
schema files provide the normative syntax. The message syntax specified in the separate schema
files shall be as defined in the JSON Schema specification [19]. Additional supporting information
for JSON schemas may be found at [47].

Note that, once opened, the connection to the Receiver WebSocket command and control
Server is expected to remain open for the lifetime of the Broadcaster Application. Closing the
command-and-control WebSocket interface and reestablishing the connection is undefined and
may result in the loss of state, e.g., key timeouts may not be received from the Receiver, Receiver
resources may be re-allocated, etc.

In the event of any discrepancy between the JSON schema definitions implied by the tables
that appear in this document and those that appear in the JSON schema definition files, those in
the JSON schema definition files are authoritative and take precedence.

The terms in the "Data Type" column of the semantic API tables are a shorthand for datatypes
defined in the JSON Schema [19] and shall be as defined there. In order to provide flexibility for
future changes in the schema, decoders of JSON documents defined in the present document
should ignore any datatypes they do not recognize, instead of treating them as errors.

JSON schemas and messages shall be encoded stringified as UTF-8. The Receiver is expected
to parse the JSON message and route the method to the right handler for further processing. Several
types of data messages are defined for the command-and-control WebSocket interface:

e Request message — used to request information or initiate an action

e Synchronous response — a definitive answer to a request provided immediately

e Asynchronous response — a definitive answer to the request provided asynchronously

e Error response — a definitive error to the request provided

e Notification — unidirectional notification, no synchronous or asynchronous response is

expected

The other three WebSocket interfaces are used for delivery of binary data from the Receiver
to the Broadcaster Application.

The notation used to describe the flow of data in the examples in this specification is as follows:

--> data sent to Receiver
<-- data sent to Broadcaster Application

Note: The interface is bidirectional, so requests, responses and notifications can be
initiated by either the Receiver or the Broadcaster Application.

38

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Request/response example:

--> {"jsonrpc": "2.0",
"method": "exampleMethodl",
"params": 1,

"id": 1

Sl
"jsonrpc": "2.0",
"result": 1,
"id": 1

Notification example:

<= {
"jsonrpc": "2.0",
"method": "update",
"params": [1,2,3,4,5]
}

Note that the lack of an 'id' property indicates that no response is expected in the case of a
notification.
Error example:

"jsonrpc": "2.0",
"method": "faultyMethod",
"params": 1,
"id": 6
}
<-= {
"jsonrpc": "2.0",
"error": {"code": -32601, "message": "Method not found"},
"id": 6
}

8.3.1 General JSON Property Considerations

The Cancel Request Command described in the next subsection and the APIs defined in Section 9
use a JSON schema [19] to describe the acceptable syntax for the JSON objects used in request
and response methods. The JSON schemas are maintained in separate files, one for each schema.
Those schemas and the text describing the elements and properties specified within the schemas
are normative. Examples are informative and are intended to clarify the meaning and usage of the
API. Any differences in examples and normative schema are unintentional.

The schema for an API may specify that some properties are required. This means that the
property shall be present as a key in the JSON structure compliant with the schema. For simple
types, unless explicitly stated otherwise, a "nu11" value may be used for the required property if
the Receiver or Broadcaster Application does not have sufficient information to provide a value

39

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

for the required key. Semantically, a "nu11" value indicates that the implementation is aware that
the key is required but cannot supply meaningful data. For required object and array structures, if
no information is available, an empty structure shall be provided unless explicitly stated otherwise
or properties within those structures are required by the structure's schema.

8.3.2 Cancel Request Command

The Cancel Request Command may be used to terminate a selected number or all outstanding
JSON-RPC requests. The request message supplies a list of IDs corresponding to the request IDs.
The response message lists the requests that have been terminated. If no requests matching the
requested IDs can be found, an error response is provided. If a request is successfully canceled,
the Receiver is expected to issue a response to that request with an error code indicating that the
request was canceled. A cancel request is not expected to be used to cancel a previous cancel
request.

The Cancel Request Command semantics are as defined in Table 8.2 and the syntax shall be
as defined in the schema file cancel-request.json. Additional semantic definitions of
parameters follow the table.

Table 8.2 Cancel Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer
method 1 string "cancel"
params 0.1
requestiIDs 1 An array of one or more request IDs to be
canceled.
items 1..N integer

requestIDs — This list in the optional params object shall contain one or more IDs of outstanding
requests. If the params object and its child requestIDs list are not supplied, then all
outstanding requests are expected to be canceled.
The Cancel Response semantics are defined in Table 8.3 and the syntax shall be as defined in
the schema file cancel-response.json. Additional semantic definitions, if any, follow the table.

Table 8.3 Cancel Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
cancelList 1 An array of requests and their disposition in
response to the cancel request
items 1..N
requestibD 1 integer The request ID of a request that was requested to
be canceled
disposition 1 enum One of "CANCELED", "UNKNOWN?", or "FAILED"
description 0.1 string Information regarding the cancel operation
error oneOf X See Section 8.3.3

40

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/cancel-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/cancel-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The Receiver is expected to accumulate the canceled request IDs so that a single response can
be supplied. Note that each request receives a separate error response indicating that the request
was canceled.
cancelList — This required property shall provide a list of objects in response to the cancel

request. The list is expected to have the same number of objects as the number of request IDs

in the cancel command or the number of outstanding requests if no request IDs were supplied
requesting that all outstanding requests be canceled.
requestID — This required property shall contain one of the request IDs provided in the cancel
command or the request 1D of a canceled request if all requests were to be canceled.
disposition — This required property shall contain one of the following values:

caNCcELED — Indicates that the request corresponding to the object's requestID was
successfully canceled.

uNkNOWN — Indicates that the request corresponding to the object's requestID was not
found. The request was not canceled because the Receiver could not identify an
outstanding request corresponding to the given requestID, or because the request with
that ID value was completed before the cancel request was processed.

FATLED — Indicates that the request corresponding to the object's requestID could not be
canceled. In this case, the Receiver found the specified request but could not
successfully cancel the request.

description — This optional property shall contain a description of the cancel operation.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.

For example, the Broadcaster Application makes a query request with ID '12" and, due to a user
action removing the need for the query, the Broadcaster Application cancels the request with the
following command:

-—> {
"jsonrpc": "2.0",
"method": "cancel",
"params": {

"requestIDs": [12]

b
"id": 913

}

The Receiver might respond to the cancel request as follows:

41

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-- {
"jsonrpc": "2.0",
"result": {
"cancelList": [

{ "requestID": 12,
"disposition": "CANCELED",
"description": "Request canceled successfully" }

]
}y
"id": 913
}

The Receiver might also issue the following response to query request with ID 12:

Sl
"jsonrpc": "2.0",
"error": {"code": -20, "message": "Request Canceled" },
"id": 12

}

As a further example, the Broadcaster Application may wish to cancel all outstanding requests
of a function because the user has switched modes of operation. In this case, the Broadcaster
Application attempts to cancel the corresponding outstanding requests as follows:

——> {
"jsonrpc": "2.0",
"method": "cancel",
"params": {
"requestIDs": [42, 216, 922]

s
"id": 226

The Receiver might respond to the cancel request as follows:

<==
"jsonrpc": "2.0",
"result": {
"cancelList": [
{ "requestID": 42,
"disposition": "UNKNOWN",
"description": "Request is not currently pending" },
{ "requestID": 216,
"disposition": "CANCELED",
"description": "Request canceled successfully" 1},
{ "requestID": 922,
"disposition": "CANCELED",
"description": "Request canceled successfully" }
]
b
"id": 226
}

42

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The Receiver issues error responses to query requests with IDs 216 and 922. Note that the
UNKNOWN disposition for requestID 42 may not be an error since the request could have completed
just as the cancel command was issued.

As a further example, the Broadcaster Application wishes to shut down all operations and

terminate all outstanding requests. In this case, the Broadcaster Application attempts to cancel all
outstanding requests as follows:

"jsonrpc": "2.0",
"method": "cancel",
"id": 226

}

The Receiver might respond to the cancel request as follows:

<--{
"jsonrpc": "2.0",
"result": {
"cancelList": [
{ "requestID": 324,
"disposition": "CANCELED",
"description": "Request canceled successfully" 1},
{ "requestID": 167,
"disposition": "CANCELED",
"description": "Request canceled successfully" }
]
b
"id": 226
}

The Receiver also issues error responses to query requests with IDs 324 and 167. The
Broadcaster Application can assume that all outstanding requests have been canceled.

8.3.3 Error Handling

JSON-RPC 2.0 defines a set of reserved error codes. See the table in Annex B Section 5.1. The

semantics of the error structure are also defined in in Annex B Section 5.1 with the structure show
in Table 8.4.

Table 8.4 Error Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful request with structure

dependent on the API otherwise the error
structure is returned

error oneOf X See Annex B Section 5.1
code 1 integer The error code indicating what problem occurred.
message 1 string A concise message describing the error

data 0.1 An optional primitive or object that contains

additional information about the error

43

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

error — Provided instead of the "result" structure if an error occurs. See Annex B Section 5.1
Error object for a normative description of an error return. General JSON RPC error codes are
defined in Annex B. Specific error codes provided by individual API responses are detailed in
the response definition for each API. A summary of the ATSC-defined error codes from the
Receiver are listed in Table 8.5. The asterisk column indicates that the associated error code

may occur in an error response to any API request.

Table 8.5 JSON-RPC ATSC Error Codes

Code Message Meaning

-1 Unauthorized Request cannot be honored due to domain restrictions.

-2 Not enough resources No resources available to honor the request.

-3 System in standby System is in standby. Request cannot be honored.

-4 Content not found Requested content cannot be found. For example, invalid
URL.

-5 No broadband connection No broadband connection available to honor the request.

-6 Service not found The requested Service cannot be located.

-7 Service not authorized The requested Service was acquired but is not
authorized for viewing due to conditional access
restrictions.

-8 Video scaling/position failed The request to scale and/or position the video did not
succeed.

-9 XLink cannot be resolved The request to resolve an XLink has failed.

-10 Track cannot be selected The media track identified in the Media Track Selection
API cannot be found or selected.

-11 The indicated MPD cannot be In response to the Set RMP URL API, the MPD

accessed referenced in the URL provided cannot be accessed.

-12 The content cannot be played In response to the Set RMP URL API, the requested
content cannot be played.

-13 The requested MPD Anchor In response to the Set RMP URL API, the MPD Anchor

cannot be reached indicated cannot be reached (e.g., beyond the end of
the file).

-14 Unsupported or Unknown Content | The specified content protection system is not supported
Protection System by or unknown to the Receiver.

-15 lllegal URL Format The URL format specified in sourceURL or

targetURL of the request is illegal.

-16 lllegal URL Format The URL format specified in one or more URLs in the
requested list is illegal.

-17 Malformed DASH Period The format of the MPEG DASH fragment specified in the
Period is illegal.

-18 MPD not found The referenced MPD file cannot be found.

-19 The synchronization specified by In response to the Set RMP URL API with
rmpSyncTime cannot be rmpSyncTime, the synchronization indicated by
achieved rmpSyncTime cannot be achieved.

-20 Request Canceled The Broadcaster Application issued the cancel request

command (Section 8.3.1) with the ID corresponding to
this request.

44

ATSC A/344:2026-02

ATSC 3.0 Interactive Content

-21 Changing RMP playback from the | In response to the Set RMP URL API, the Receiver does
current source is not supported not support changing playback from the current source
to an alternate source (e.g., broadband or locally
cached content).

-22 dialogEnhancement failed The request to set or receive Dialog Enhancement data
failed.

-23 appld not found The requested Broadcaster Application appld was not in
the HELD.

-24 Not subscribed The Broadcaster Application was not subscribed to any
of the msgTypes requested for the unsubscribe
operation.

-25 Referenced BA not available The appId was found in the HELD but is not available
or is broadcast-only and has not yet been acquired

-26 Cannot access referenced The appId was found in the HELD and is broadband-

broadband BA only but is not available due to lack of network
connectivity

-27 No Receiver capability The Receiver does not support the required capabilities

-28 Unknown filter codes One or more of the supplied filter codes is currently
undefined

-29 Deprecated (Unknown DRM Deprecated, see Error Code -14.

system)

-30 Too late The request was not received in time to replace the
default content

-31 Unknown XLink The provided elementType and/or elementId were
not found

-32 Invalid element The provided MPD element is not valid

-33 Asset cannot be selected Asset cannot be selected. The media asset identified in
the MMT Media Asset Selection API cannot be found or
selected.

-34 MMT Asset not found The MMT Asset described by assetLink,
assetType and/or assetId not found.

-35 Replacement MMT Asset not valid | The MMT Asset content provided as replacement content
is not valid.

-36 Operation is not supported The operation requested in the Set RMP URL API
request is not supported.

-37 Out of memory The request has overflowed available memory.

-38 Resource limits exceeded Fulfilling the request would exceed available resources.

-100 EME TypeError See EME Section 6.5 [31]

-101 EME NotSupportedError See EME Section 6.5 [31]

-102 EME InvalidStateError See EME Section 6.5 [31]

-103 EME QuotaExceededError See EME Section 6.5 [31]

-200..-299 Reserved Reserved for A/338 Error Codes [37]

18 February 2026

9. SUPPORTED METHODS

This chapter describes the methods that are supported on the command-and-control WebSocket
Interface. These APIs are based on JSON-RPC 2.0 over WebSockets as described in Section 8.
See above chapters for more information on the interface and data binding. All methods are in a
reverse domain notation separated with a dot ".". All ATSC methods that are available over the

45

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

interface are prefixed with "org.atsc", leaving room for other methods to be defined for new
Receiver APIs in the future.
Schemas and examples for the APIs described in this section and the cancel API described
previously in Section 8.3.2 can be found at https://atsc-schemas.org/atsc3.0/a344/cs-20250508/
Note that the schemas found in the schema repository are authoritative. Syntax and examples
provided in this document are considered informative.

9.1 API Revision Control

To avoid issues with backwards compatibility, the present revision of the standard does not make
changes to the semantics of keys within an API but, instead, deprecates the entire API and creates
anew API to support the changed functionality. Further, no keys within an API have been deleted
and only new keys have been added. For some APIs, values for existing keys may have been added,
datatypes for key values may have changed where the types are compatible, and additional
enumeration values may have been defined. The Broadcaster Application and Receiver are
expected to gracefully ignore unknown keys and unknown values for existing keys, including
unknown enumeration values.

Table 9.1 lists the APIs and groups of APIs and indicates whether they are applicable to AMP
operation, RMP operation, or both. The Changes column of Table 9.1 provides a notice that the
associated API has changed in a revision of this standard. The following list provides the possible
entries for the Changes column and their meaning.

No Entry — The API has no modifications in this revision.

Added — A new API has been defined in this revision.

Deprecated — The associated API has been deprecated. An alternate API is referenced in the
Reference column. If an API has been deprecated, the Receiver may continue to support the
API, but the Broadcaster Application cannot rely on its availability in a future revision and
should migrate to the referenced API.

Description Changed — The text supporting the description of the API has changed. No
substantive changes have been made to the semantics or syntax of the API.

Extended — The API has been extended by adding new keys or values. Previous keys and values
remain as previously defined.

Table 9.1 API Applicability

WebSocket APIs Reference Applicability Changes

Cancel Request Command Section 8.3.1 Always Added in A/344:2020

Receiver Query APIs Section 9.2 Always Extended in A/344:2019

Query Content Advisory Rating APl |Section 9.2.1 Always Deprecated "rating" parameter in

A/344:2020

Query MPD URL API Use Section 9.2.10 RMP Deprecated in A/344:2020

Query Alerting URL API Section 9.2.8 Always Deprecated in A/344:2019

Query Alerting Signaling API Section 9.2.8 Always Added in A/344:2019

Query Service Guide URLs API Section 9.2.9 Always Added in A/344:2020

Query Signaling Data API Section 9.2.10 Always Added in A/344:2020

Query Dialog Enhancement Section 9.2.11 Always Added in A/344:2020
Preferences API

Content Advisory Rating Change Was Section 9.3.2 Always Deprecated in A/344:2020
Notification API

46

https://atsc-schemas.org/atsc3.0/a344/cs-20250508/

ATSC A/344:2026-02

ATSC 3.0 Interactive Content

18 February 2026

MPD Change Notification API Use Section 9.3.11 RMP Deprecated in A/344:2020
Alerting Change Notification API Section 9.3.8 Always Deprecated in A/344:20191
Alerting Change Notification API Section 9.3.8 Always Added in A/344:2019f
Service Guide Change Notification |Section 9.3.10 Always Added in A/344:2020
API
Signaling Data Change Notification |Section 9.3.11 Always Added in A/344:2020
API
Dialog Enhancement Preference Section 9.3.12 Always Added in A/344:2020
Change Notification API
Dialog Enhancement Limit Change |Section 9.3.13 Always Added in A/344:2020
Notification API
Cache Request APIs Section 9.3.14 Always
Query Cache Usage API Section 9.5 Always
Event Stream APls Section 9.6 RMP
Acquire Service API Section 9.7.1 Always
Video Scaling and Positioning API Section 9.7.2 RMP Extended in A/344:2019
XLink Resolution API Use Sections 9.3.1 RMP Deprecated in A/344:2019
and 9.15
Subscribe MPD Changes API Use Section 9.3.1.1 AMP Deprecated in A/344:2019
Unsubscribe MPD Changes API Use Section 0 AMP Deprecated in A/344:2019
Set RMP URL API Section 9.7.3 RMP Extended in A/344:2019 and
A/344:2020
Audio Volume API Section 9.7.4 RMP
Dialog Enhancement API Section 9.7.5 RMP Added in A/344:2020
Launch Broadcaster Application APl |Section 9.7.6 Always Added in A/344:2020
Integrated Subscribe API Section 9.3.1.1 Always Added in A/344:2019, Extended in
A/344:2020
Integrated Unsubscribe API Section 9.3.1.2 Always Added in A/344:2019, Extended in
A/344:2020
Subscribe Alerting Changes Use Section 9.3.1.1 Always Deprecated in A/344:2019
Unsubscribe Alerting Changes Use Section 9.3.1.2 Always Deprecated in A/344:2019
Subscribe Content Changes Use Section 9.3.1.1 Always Deprecated in A/344:2019
Unsubscribe Content Changes Use Section 9.3.1.2 Always Deprecated in A/344:2019
Subscribe RMP Media Time Change |Use Section 9.3.1.1 RMP Deprecated in A/344:2019
Notification
Unsubscribe RMP Media Time Use Section 9.3.1.2 RMP Deprecated in A/344:2019
Change Notification
Subscribe RMP Playback State Use Section 9.3.1.1 RMP Deprecated in A/344:2019
Change Notification
Unsubscribe RMP Playback State Use Section 9.3.1.2 RMP Deprecated in A/344:2019
Change Notification
Subscribe RMP Playback Rate Use Section 9.3.1.1 RMP Deprecated in A/344:2019
Change Notification
Unsubscribe RMP Playback Rate Use Section 9.3.1.2 RMP Deprecated in A/344:2019
Change Notification
Media Track Selection API Section 9.7.7 RMP
Mark Unused API Section 9.8 Always Description changed in A/344:2019
Content Recovery APIs Section 9.9 Always
Get Filter Code API Was Section 9.11.1 Always Deprecated in A/344:2020
Set Filter Code Instances API Section 9.10.1 Always Moved from Section 9.11.2, renamed
and clarified in A/344:2020

47

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Clear Filter Code Instances API Section 9.10.2 Always Added in A/344:2020
Keys APls Section 9.11 Always
Query Device Info API Section 9.12 Always Extended in A/344:2019 and
A/344:2020
RMP Content Synchronization APIs |Section 9.13 RMP
Query RMP Wall Clock API Section 9.13.2 RMP Deprecated in A/344:2022-03
Query RMP UTC Time API Section 9.13.2 RMP Added in A/344:2023-02
Deprecated
Digital Rights Management (DRM) | Section 9.13.8 Always Added in A/344:2019
APIs
XLink Management APIs Section 9.15 RMP Added in A/344:2019
Prep Service Change API Section 9.16 AMP, RMP |Added in A/344:2023-02

1 Note that the Alerting Change Notification API was substantially changed in A/344:2019
resulting in the previous API definition being deprecated with a new API defined with the same
name. Essentially, the API was modified to pass the alerting XML fragment(s) instead of a URL
reference to the alerting XML fragment(s).

9.2 Receiver Query APIs
The Receiver software stack exposes a set of WebSocket APIs to the Broadcaster Application to
retrieve user settings and information, as described in the following sections.

If these settings are not available from the Receiver, the Broadcaster Application may use
default values based on its own business policy and logic. A Broadcaster Application may choose
to provide its own settings user interface and store the collected settings as cookies on the Receiver.

The following APIs are defined to allow Broadcaster Applications to retrieve these settings
and information.

9.21 Query Content Advisory Rating API
The Broadcaster Application may wish to discover the current content advisory rating as signaled
in the content currently being rendered by the Receiver and whether that content is being blocked
or not. It is assumed that when content is blocked, the Broadcaster Application is not blocked and
continues to execute, although access to certain APIs may be restricted.

The Query Content Advisory Rating Request semantics are defined in Table 9.3 and the syntax
shall be as defined in the schema file org.atsc.query.ratinglevel-request. json.

Table 9.2 Query Content Advisory Rating Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.ratingLevel"

The Query Content Advisory Rating Response semantics are defined in Table 9.3 and the
syntax shall be as defined in the schema file org.atsc.query.ratinglevel-response.json.
Additional semantic definitions of parameters follow the table.

48

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.ratingLevel-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.ratingLevel-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.3 Query Content Advisory Rating Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
blocked 1 boolean Indicates, if "true", that the current content is
blocked from being displayed
contentRating 1 string The rating as found on the currently playing content
error oneOf X See Section 8.3.3

blocked — This required Boolean value shall indicate whether the Receiver is currently blocking
the content due to the content advisory rating of the service being higher than the content
advisory rating preference.

contentRating — This required string value shall provide the content advisory rating of the
content currently being rendered by the Receiver Media Player in string format, as defined in
A/331 [3], Section 7.3. Note that the content rating string shall contain all of the rating values
including from multiple rating regions if appropriate. To specify content advisory information
data for multiple rating regions, additional three-part strings (one for each region) shall be
concatenated to create one string consisting of multiple concatenated three-part strings. In this
case, the third part of each content advisory information string except the last shall be followed
by a comma (","). Thus, the last character of the entire content advisory ratings string is a right
curly brace ("}"). If there is no Content Rating, this property shall be present and set to an
empty string, i.€., "contentRating":"".
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be

returned:

e None — There are no errors specific to this API.

For example, consider the case that the content advisory rating setting is TV-PG-D-L for the
US Rating Region 1, and the current content advisory rating is TV-G. The Broadcaster Application
can make a request:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.query.ratingLevel",
"id": 37

}

The Receiver would respond with:

49

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"result": {
"blocked": false,
"contentRating": "1,'TV-G', {0 'TV-G'}"
}I
"id": 37

}

9.2.2 Query Closed Captions Enabled/Disabled API
The Broadcaster Application may wish to know whether the user has turned on closed captions.
The Broadcaster Application requests the closed caption setting from the Receiver via Receiver
WebSocket Server interface.

The Query Closed Captions Enabled/Disabled Request semantics are defined in Table 9.4 and
the syntax shall be as defined in the schema file org.atsc.query.cc-request.json.

Table 9.4 Query Closed Captions Enabled/Disabled Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.cc"

The Query Closed Captions Enabled/Disabled Response semantics are defined in Table 9.5
and the syntax shall be as defined in the schema file org.atsc.query.cc-response.json.
Additional semantic definitions of parameters follow the table.

Table 9.5 Query Closed Captions Enabled/Disabled Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful request otherwise the error
structure is returned

ccEnabTed 1 boolean Indicates whether closed captioning is enabled or

not.

error oneOf X See Section 8.3.3

ccEnabled — This required Boolean shall indicate true if closed captions are currently being

displayed and false otherwise.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be

returned:
e None — There are no errors specific to this API.

50

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.cc-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.cc-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

For example, if closed captions are currently enabled:

__> {
"jsonrpc": "2.0",
"method": "org.atsc.query.cc",
"id": 49

}

The Receiver would respond with:

Sl
"jsonrpc": "2.0",
"result": {"ccEnabled": true},
"id": 49

}

9.2.3 Query Service ID API
Since the same application may be used for multiple services within the same broadcast family,
the Broadcaster Application may wish to know the currently selected Service. This allows the
Broadcaster Application to adjust its user interface and provide additional features that might be
available on one service vs. another.

The Query Service ID Request semantics are defined in Table 9.6 and the syntax shall be as
defined in the schema file org.atsc.query.service-request.json.

Table 9.6 Query Service ID Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.service"

The Query Service ID Response semantics are defined in Table 9.7 and the syntax shall be as
defined in the schema file org.atsc.query.service-response.json. Additional semantic
definitions of parameters follow the table.

Table 9.7 Query Service ID Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful request otherwise the error
structure is returned

service 1 string (uri) Specifies the globalServiceID of the currently

selected service

error oneOf X See Section 8.3.3

service — This required property shall indicate the gTobalserviceID associated with the currently
selected service as given in the SLT in SLT.Service@globalserviceID. See A/331 [3] Section
6.3. Note that globalserviceID is required for "normal" service types that can be selected by
the user (e.g., @servicecategory 1 and 2) and must be present in the SLT. For service types

51

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.service-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.service-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

that do not require globalserviceID (e.g., DRM, ESG, NRT), the Receiver shall return a

"nu11" value consistent with the behavior described in Section 8.3.1.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.

For example, if the globalserviceip for the currently selected services is
"https://doi.org/10.5239/8A23-280B", and the Broadcaster Application issues a request to the
Receiver:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.query.service",
"id": 55

}

The Receiver would respond with:

<-- {
"jsonrpc": "2.0",
"result": {"service": "https://doi.org/10.5239/8A23-2B0B"},
REERENT

}

9.2.4 Query Language Preferences API

The Broadcaster Application may wish to know the language settings in the Receiver, including

the language selected for audio output, user interface displays, and subtitles/captions. The

Broadcaster Application may use the Query Language Preferences API to determine these settings.
The Query Language Preferences Request semantics are defined in Table 9.8 and the syntax

shall be as defined in the schema file org.atsc.query.languages-request.json.

Table 9.8 Query Language Preferences Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.languages"

The Query Language Preferences Response semantics are defined in Table 9.9 and the syntax
shall be as defined in the schema file org.atsc.query.languages-response.json. Additional
semantic definitions of parameters follow the table.

Table 9.9 Query Language Preferences Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf Returned on successful request otherwise the
X error structure is returned
preferreduIlLang 1 string Provides the preferred language of the Receiver
User Interfaces

52

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.languages-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.languages-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

preferredAudioLang 0..1 string Provides the preferred language for the audio
output
preferredCaptionSubtitleLang|0..1 string Provides the preferred language of the closed
captions or subtitles
error oneOf See Section 8.3.3
X

preferredUILang, preferredAudioLang, preferredCaptionSubtitleLang — Each of these
strings indicates the currently set language preference of the respective item, coded according
to BCP 47 [21]. At minimum, Receivers shall provide the current Ul language as the
preferredUILang.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.
For example, the Broadcaster Application makes a query:

__> {
"jsonrpc": "2.0",
"method": "org.atsc.query.languages",
"id": 95

}

Moreover, if the user lives in the U.S. but has set his or her language preference for audio
tracks and caption/subtitles to Spanish, the Receiver might respond:

<==
"jsonrpc": "2.0",
"result": {
"preferredAudioLang": "es",
"preferredUILang": "en",
"preferredCaptionSubtitleLang": "es"
}y
"id": 95
}

9.2.5 Query Caption Display Preferences API

The Broadcaster Application may wish to know the user's preferences for closed caption displays,
including font selection, color, opacity and size, background color and opacity, and other
characteristics. The Broadcaster Application may use the Query Caption Display Preferences API
to determine these settings.

The Query Caption Display Preferences Request semantics are defined in Table 9.10 and the
Synun(ShdlbeasdeﬁnedintheSChmnafﬂeorg.atsc.query.captionDisplay—request.json

Table 9.10 Query Caption Display Preferences Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.captionDisplay"

53

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.captionDisplay-request.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The Query Caption Display Preferences Response semantics are defined in Table 9.11 and the
syntax shall be as defined in the schema file org.atsc.query.captionDisplay-
response. json. Additional semantic definitions of parameters follow the table.

Table 9.11 Query Caption Display Preferences Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
cta708 0..1 object See semantic definition in Section 9.2.5.1
imscl 0.1 object See semantic definition in Section 9.2.5.2
error oneOf X See Section 8.3.3

One or more of the caption scheme objects defining the closed caption display preferences may
be included in the notification message. These objects are defined in the following subsections.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.
9.25.1 CTA 708 Semantics

The "cta708" object, if present, is expected to provide one or more of the closed caption display
preferences as described in Table 9.12.

Note: The use of "cta708" is for backwards syntactical compatibility. Although there is some
alignment with CTA 708 syntax, the syntax is not necessarily conformant to CTA 708.

Table 9.12 Caption Display Preferences CTA 708 Object Semantics

Property Name Use Data Type Short Description
cta708 0.1 object The object containing caption display preference

properties

charactercColor 0..1 string A string representing the color of the characters

characteropacity 0.1 number An integer or fixed-point number in the range 0 to 1
inclusive representing the opacity of the
characters

charactersSize 0.1 integer A percentage multiplier of the default font size

fontStyle 0.1 examples A string value indicating the preferred font style

backgroundcColor 0..1 string A string defining the color of the character
background

backgroundopacity 0..1 number An integer or fixed-point number in the range 0 to 1
inclusive representing the opacity of the character
background

characteredge 0.1 examples A string value indicating the preferred character
edge

characterEdgeColor 0..1 string A string specifying the color of the character edges,
if applicable

windowColor 0..1 string A string representing the color of the caption
window background

54

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.captionDisplay-response.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.captionDisplay-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

windowOpacity 0.1 number An integer or fixed-point number in the range 0 to 1
inclusive that represents the opacity of the
caption window

characterColor — This parameter corresponds to CEB35 [10], Section 7.3 "Pen Styles, character
foreground color", and shall be a string that shall represent the color of the characters. The
color value shall conform to the encoding for color as specified in the W3C recommendation

for CSS3 color [9] using the "#" 24-bit SRGB notation. For example, red is represented as
"#FF0000".

characterOpacity — This parameter corresponds to CEB35 [10], Section 7.4 "Background Color
and Opacity, character foreground opacity", and shall be an integer or fixed-point number in
the range 0 to 1 inclusive that shall represent the opacity of the characters. For example, a value
of .33 means 33% opaque, while a value of 0 means completely transparent.

characterSize — This parameter corresponds to CEB35 [10], Section 7.1 "Pen Size", and shall
be a percentage multiplier of the default font size where 100 has no change, 50 is 'z size and
200 is double the size. The syntax and semantics shall be consistent with IMSCI1 as defined in
A/343 [7].

fontstyle — This string corresponds to CEB35 [10], Section 7.2 "Font Styles", and shall indicate
the style of the preferred caption font. The eight possible choices shall correspond to the
CEB35 [10] numbered font styles in Section 7.2:
"Default" (undefined)
"MonospacedSerifs" — Monospaced with serifs (similar to Courier)
"ProportionalSerifs" — Proportionally spaced with serifs (similar to Times New Roman)
"MonospacedNoSerifs" — Monospaced without serifs (similar to Helvetica Monospaced)
"ProportionalNoSerifs" — Proportionally spaced without serifs (similar to Arial and Swiss)
"Casual" — Casual font type (similar to Dom and Impress)
"Cursive" — Cursive font type (similar to Coronet and Marigold)
"SmallCaps" — Small capitals (similar to Engravers Gothic)

backgroundColor — This parameter corresponds to CEB35 [10], Section 7.4 "Background Color
and Opacity, Background Color", and shall represent the color of the character background,
given in the same CSS-compatible format as characterColor.

backgroundopacity — This parameter corresponds to CEB35 [10], Section 7.4 "Background
Color and Opacity, Foreground Opacity", and shall be an integer or fixed-point number in the
range 0 to 1 inclusive that shall represent the opacity of the character background. A value of
1 shall mean 100% opaque; a value of 0 shall mean completely transparent.

characterEdge — This parameter corresponds to CEB35 [10], Section 7.5 "Character Edges, type
attributes", and shall indicate the preferred display format for character edges. The preferred
color of the edges (or outlines) of the characters shall be as given in characterEdgeColor.
Edge opacities shall have the same attribute as the character foreground opacities. The choices
are as specified in CEB35 [10], Section 7.5: "None", "Raised", "Depressed", "uniform",
"LeftbDropshadow", and "RightDropShadow".

characterEdgeColor — This parameter corresponds to CEB35 [10], Section 7.5 "Character
Edges, edge color", and shall represent the color of the character edges, if applicable, given in
the same format as characterColor.

55

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

windowColor — This parameter corresponds to CEB35 [10], Section 8.1 "Window, color", and
represents the color of the caption window background, given in the same format as
characterColor.

windowOpacity — This parameter corresponds to CEB35 [10], Section 8.1 "Window, opacity",
and shall be an integer or fixed-point number in the range 0 to 1 inclusive that shall represent
the opacity of the caption window. A value of 1 shall mean 100% opaque; a value of 0 shall
mean completely transparent.

9.25.2 IMSC1 Extensions Semantics

The key/value pairs defined in this section provide a means to represent any IMSCI1 (as defined in
A/343 [7]) attribute preference within the "imscl" object, if present.

The key/value pairs for IMSC1 preferences shall take the form:

"<imscl key>": "<imcsl value>"

The syntax of the <imsc1 key> shall be as specified below using the Augmented Backus-Naur
Form (ABNF) grammar defined in RFC 5234 [12]:

<imscl key> = ("region " / "content ") + imscl attribute

imscl attribute — This part shall be the name of any IMSC1-defined attribute.
<imscl key> — The value data type range of values and their encodings shall be those supported
by IMSCI1 for the attribute named in imscl attribute.
The second part of <imscl key> shall indicate "region " when the <imscl value> applies
to regions, and "content_ " when it applies to content (text).
Valid examples of <imscl key> are "region backgroundColor" and
"content backgroundColor" indicating the background color of either a region or of content
(text), respectively.

9.2.5.3 Caption Display Preferences Query Example

The Broadcaster Application may make the following query to obtain the caption display
preferences:

"jsonrpc": "2.0",
"method": "org.atsc.query.captionDisplay",
"id": 932

The Receiver might respond:

56

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<--{
"jsonrpc": "2.0",
"result": {
"cta708": {
"characterColor": "#F00000",
"characterOpacity": 0.5,
"characterSize": 80,
"fontStyle": "MonospacedNoSerifs",
"backgroundColor": "#808080",
"backgroundOpacity": 0,
"characterEdge": "None",
"characterEdgeColor": "#000000",
"windowColor™: "#000000",
"windowOpacity": O
}y
"imscl": {
"region textAlign": "center",
"content fontWeight": "bold"
}
}y
"id": 932
}

9.2.6 Query Audio Accessibility Preferences API

The Broadcaster Application may wish to know the audio accessibility settings in the Receiver,
including whether the automatic rendering of the following is enabled: video description service,
audio/aural representation of emergency information and what are the corresponding language
preferences. The Broadcaster Application may use the Query Audio Accessibility Preferences API
to determine these settings.

The Query Audio Accessibility Preferences Request semantics are defined in Table 9.13 and
the syntax shall be as defined in the schema file org.atsc.query.audioAccessibilityPref-
request.json.

Table 9.13 Query Audio Accessibility Preferences Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.audioAccessibilityPref"

The Query Audio Accessibility Preferences Response semantics are defined in Table 9.14 and
the syntax shall be as defined in the schema file org.atsc.query.audioAccessibilityPref-
response. json. Additional semantic definitions of parameters follow the table.

Table 9.14 Query Audio Accessibility Preferences Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
videoDescriptionService|0..1

57

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.audioAccessibilityPref-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.audioAccessibilityPref-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.audioAccessibilityPref-response.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.audioAccessibilityPref-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

enabled 0..1 boolean Indicates whether or not a video description service
is enabled

Tanguage 0.1 string The preferred language of the video description
service

audioEIService 0..1

enabled 0..1 boolean Indicates whether or not emergency information
audio is enabled

Tanguage 0.1 string The preferred language of the emergency
information audio

error oneOf X See Section 8.3.3

result — If neither the video description service nor audio emergency information rendering is
enabled, the result structure shall contain no elements. In JSON, this is represented as
"result": {}.

videoDescriptionService.enabled, audioEIService.enabled — Each of these Boolean
values respectively shall indicate the current state of automatic rendering preference of video
description service (VDS), audio/aural representation of emergency information.

videoDescriptionService.language — A string that shall indicate the preferred language of
VDS rendering, coded according to BCP 47 [21].

audioEIService.language — A string that shall indicate the preferred language of audio/aural
representation of emergency information rendering, coded according to BCP 47 [21].

When a Receiver does not have a setting for videoDescriptionService.enabled,
videoDescriptionService.language, audioEIService.enabled,

audioETIService.language then it is expected that the response does not include the
corresponding property.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.

For example, the Broadcaster Application makes a query:

"jsonrpc": "2.0",
"method": "org.atsc.query.audioAccessibilityPref",
"id": 90

}

In addition, if the user has set his or her automatic rendering preference setting of video
description service to ON and the Receiver does not have the rest of the settings, then the Receiver
might respond:

58

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<--{
"jsonrpc": "2.0",
"result": {
"videoDescriptionService": {
"enabled": true
}
}I
"id": 90
}

9.2.7 Query Receiver Web Server URI API

The Broadcaster Application may wish to access the location of the Application Context Cache
provided by the Receiver. This conceptual cache provides access to resources delivered under the
auspices of the Application Context Identifier defined for the currently loaded Broadcaster
Application. These resources are made available through the Receiver Web Server using a Base
URI (see Section 5.3). This API provides access to that URI.

This API is useful in the situation where the Broadcaster Application was started from a
broadband server in which case it would be unaware of the Application Context Cache URI. A
Broadcaster Application executing from Application Context Cache can determine its server
location through standard W3C DOM parameters.

The Query Receiver Web Server URI Request semantics are defined in Table 9.15 and the
syntax shall be as defined in the schema file org.atsc.query.baseURI-request.json.

Table 9.15 Query Receiver Web Server URI Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.baseURI"

The Query Receiver Web Server URI Response semantics are defined in Table 9.16 and the
syntax shall be as defined in the schema file org.atsc.query.baseURI-response.json.
Additional semantic definitions of parameters follow the table.

Table 9.16 Query Receiver Web Server URI Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful request otherwise the error
structure is returned

baseURI 1 string (uri) Provides the URI of where the active Application

Context Cache may be accessed

error oneOf X See Section 8.3.3

baseURI — This return parameter shall contain the URI where the resources associated with the
Application Context Identifier may be accessed.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.

59

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.baseURI-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.baseURI-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

For example, the Broadcaster Application makes a query:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.query.baseURI",
"id": 90

}

The Receiver responds with the URI of the Receiver Web Server for the Application Context
Cache defined for the current Application Context Identifier:

<-= {
"jsonrpc": "2.0",
"result": {
"baseURI": "http://localhost:8080/contextA"
}l
"id": 90
}

The resulting URI can be prepended to relative references to resources to access those
resources on the Receiver.

9.2.8 Query Alerting Signaling API
The Broadcaster Application may wish to access the various alerting metadata structures signaled
in the current broadcast. The Query Alerting Signaling API returns a list of the specific alerting
metadata the Broadcaster Application has requested.

The Query Alerting Signaling Request semantics are defined in Table 9.17 and the syntax shall
be as defined in the schema file org.atsc.query.alerting-request . json. Additional semantic
definitions of parameters follow the table.

Table 9.17 Query Alerting Signaling Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.alerting"

alertingTypes 1 array of enum | A list of requested alerting types. An empty list
means all.

alertingTypes — An array of one or both of the alerting types as follows:

AEAT — Requests the most recent AEAT XML fragment, if any.

osN — Requests the most recent OSN XML fragment, if any.
An empty list is equivalent to supplying all values.

The Query Alerting Signaling Response semantics are defined in Table 9.18 and the syntax
shall be as defined in the schema file org.atsc.query.alerting-response.json. Additional
semantic definitions of parameters follow the table.

60

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.alerting-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.alerting-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.18 Query Alerting Signaling Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful request otherwise the error

structure is returned

alertList 1 array A list of alerting fragments based on the request.
The list may be empty if no alerting signaling
matching the requested types is active.

items 0..N
alertingType 1 enum "AEAT" or "OSN"
alertingFragment 1 string (xml) The XML fragment of the associated alerting type
receiveTime 0.1 string (date- If alertingType = "OSN", the date and time when
time) the fragment was received
filteredEventList 0..1 array Provides an array of AEA IDs that have been
filtered out by the Receiver
7tems|1..N|string

error oneOf X See Section 8.3.3

alertList — An array of alerting signaling fragments as specified in the request. The array may
be empty if none of the requested alerting signaling is active.

alertingType — This required parameter shall contain one of the alerting types, "AEAT" or "OSN".
The corresponding alertingFragment shall contain the data corresponding to the type of
alerting metadata fragment indicated.

alertingFragment — This required string shall contain the alerting XML fragment for the
associated alertingType. The AEAT XML and OSN XML fragments are extracted from their
respective LLS tables that are described in A/331 [3].

receiveTime — The date and time when the alerting fragment was received. This value shall be
provided when the object is "osn". (Note: The onscreenMessageNotification element
includes a KeepScreenClear@notificationburation attribute which is the duration of the
KeepScreenClear message starting from the time the OSN was received. Thus, the time the
OSN was received is necessary for the Broadcaster Application to fully utilize the OSN
information.) The date-time JSON data type shall be formatted as defined in the JSON Schema
specification [19].

filteredEventList — Provides a list of AEA events that have been filtered out by the Receiver.
The Receiver may elect to filter out an event for a variety of reasons based on user preferences,
location or some other criteria. If an AEA event has been filtered out, the corresponding
AEAT.AEA@aeaId shall appear in the filteredEventList property. If an AEA event has not been
filtered out, the corresponding AEAT . AEA@aea1d shall not appear in the list. An empty or absent
filteredeventList indicates that no events have been filtered out by the Receiver. This
property is only applicable when the alertingType is "AEAT". AEA events that have been
"filtered out" are those that have been handled or processed by the Receiver and need not be
processed by the Broadcaster Application.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be

returned:

e None — There are no errors specific to this API.

61

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

For example, the Broadcaster Application makes a query:

——> {
"jsonrpc": "2.0",
"method": "org.atsc.query.alerting",
"params": {
"alertingTypes": ["AEAT", "OSN"]
y
"id": 913
}

The Receiver might respond:

<--{
"jsonrpc": "2.0",
"result": {
"alertList": [
{ "alertingType": "AEAT",
"alertingFragment": "<AEAT>..</AEAT>" },
{ "alertingType": "OSN",
"alertingFragment™: "<OSN>..</OSN>",
"receiveTime": "2017-01-01T23:54:59.590z2" }
]
b
"id": 913
}

9.2.9 Query Service Guide URLs API
The Broadcaster Application may wish to access the various service guide data structures provided
in the current broadcast. The Query Service Guide URLs API returns a list of URLs the
Broadcaster Application can use to retrieve (for example, by XHR) the specific service guide data
structures provided in the broadcast.

The Query Service Guide URLs Request semantics are defined in Table 9.19 and the syntax
shall be as defined in the schema file org.atsc.query.serviceGuideUrls-request.json.
Additional semantic definitions of parameters follow the table.

Table 9.19 Query Service Guide URLs Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.serviceGuideUrls"

service 0.1 string (uri) Requests the service guide information pertinent to
the specified service

service — The optional service field as defined in the Query Service ID API in Section 9.2.3.
When omitted, all service guide fragments are returned for all services. When present, only
those fragments related to the provided service are returned.

The Query Service Guide URLs Response semantics are defined in Table 9.20 and the syntax
shall be as defined in the schema file org.atsc.query.serviceGuideUrls-response.json.

Additional semantic definitions of parameters follow the table.

62

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.serviceGuideUrls-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.serviceGuideUrls-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.20 Query Service Guide URLs Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
urlList 1 array Lists the set of service guide URLs based on the
requested service, if specified, or all service guide
URLs if not
items 0..N
sgType 1 enum "Service", "Schedule" or "Content"
squrl 1 string (url) The URL of the XML fragment of the associated
service guide type
service 1 string (uri) The URI of the service related to the service guide
type
content 0.1 string (uri) When the sgType = "Content", this parameter is
used to provide the unique ID of the content, if
available
error oneOf X See Section 8.3.3

urlList — Provides an array, perhaps empty, of the service guide URLs found in response to the
Service Guide URLs request.

sgType — One of the service guide XML fragment types. The corresponding sgurl can be used
to access the XML fragment corresponding to the type of service guide fragment indicated.
Note that there may be multiple fragments within the list of the same sgType. The sgType may
be used to quickly access fragments of interest.

sqgUurl — A fully-qualified URL that can be used by the Broadcaster Application, for example in an
XHR request, to retrieve the current broadcast service guide XML fragment for the associated
sgType. The service guide is delivered in XML fragments whose syntax shall be as defined in
A/332 [4]. This returns exactly one service guide fragment.

service — The required service field as defined in the Query Service ID API in Section 9.2.3.
Note: This is more commonly known as the globalserviceID field. For proper operation this
requires that globalserviceID be present in the SLT. See A/331 [3] Section 6.3 and A/351
[38] Section 5. This returns exactly one service guide fragment.

content — A fully-qualified URI, required when sgType="content", shall provide the
globalcontentID found in the content fragment that can be used by the Broadcaster
Application to uniquely identify a specific content item (of which there may be many) on a
service. The service guide is delivered in XML fragments whose syntax is defined in A/332
[4]. This returns exactly one service guide fragment. This field may be empty if the
globalcContentID is not present in the service guide content fragment.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be

returned:
e -4 — If there is no ESG service, and thus no fragments to return, the error shall be -4

"Content not found".

e -6 — Service not found. The requested service cannot be located.
For example, the Broadcaster Application makes a query:

63

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

"jsonrpc": "2.0",
"method": "org.atsc.query.serviceGuideUrls",
"id": 913

The Receiver might respond:

<--{
"jsonrpc": "2.0",
"result": {
"urlList": [
{ "sgType": "Service",
"sgUrl": "http://127.0.0.1:8080/wmbc.appctx/Service.xml",
"service": "https://doi.org/10.5239/8A23-2BOB" },
{ "sgType": "Schedule",
"sgUrl": "http://127.0.0.1:8080/wmbc.appctx/Schedule.xml",
"service": "https://doi.org/10.5239/8A23-2B0OB" },
{ "sgType": "Content",
"sgUrl": "http://127.0.0.1:8080/wmbc.appctx/Content.xml",
"service": "https://doi.org/10.5239/8A23-2B0OB",
"content": "urn:eidr:10.5240:7791-8534-2C23-9030-8610-5" }
]
b
"id": 913
}

Note that the URLs provided are examples only. The actual URLs used, including the file
names, are completely dependent on the Receiver implementation and how it chooses to make the
ESG files available through its HTTP server. The Broadcaster Application should make no
assumptions regarding the URL path and simply use it to access the fragment data directly.

The referenced service guide files, in this example, service.xml, Schedule.xml and
Content.xml, shall contain the Service, Schedule and Content XML fragments as described in
A/332 [4], respectively. The Receiver is expected to extract each XML fragment from the binary
SGDU structure before making it available to the Broadcaster Application.

To associate ESG files with Broadcaster Applications, the corresponding Application Context
Identifiers shall be provided in the Extended FDT (EFDT) element,
FDT-Instance@appContextIdList, defined when sending the ESG files in the LCT channel of the
ESG Service ROUTE session. Descriptions of the FDT extensions and the ESG Service can be
found in A/331 [3]. Application Context Identifiers need not be included in the EFDT if the ESG
data is not needed by the Broadcaster Application.

9.2.10 Query Signaling Data API

The Broadcaster Application may wish to access the various signaling metadata structures from
the current broadcast. In the case of Redistribution (in which broadcast signaling metadata is not
available), the Broadcaster Application may wish to access the signaling metadata structures that
were obtained by the Receiver via content recovery, which includes the Recovery Data Table
(RDT) as defined in A/336 [5], Table 5.30 and can include other metadata as enumerated in A/331
[3]. See Table 9.22 below. The Query Signaling Data API returns a list of signaling tables that the

64

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Broadcaster Application can use to extract details not otherwise available such as major and minor
channel numbers.

The Query Signaling Data Request semantics are defined in Table 9.21 and the syntax shall be
as defined in the schema file org.atsc.query.signaling-request.json. Additional semantic
definitions of parameters follow the table.

Table 9.21 Query Signaling Data Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer
method 1 string "org.atsc.query.signaling"
group 0.1 integer The group associated with any signaling returned.
nameList 1 array A list of the requested signaling objects
| items 0..N string or integer |See names definition below

group — This optional parameter specifies the signaling group (see [3] Section 5.5) of the metadata
objects requested. Requested metadata objects shall only be returned if they are part of the
signaling group specified. If no signaling group is specified, the Receiver may choose to send
all metadata objects discovered or only metadata objects in the same group as the HELD which
launched the Broadcaster Application making the request.

nameList — An array of signaling object names as described below in names. If empty, no metadata
objects are returned.

names — This field shall be set to a list of the values specified in the "names" column of Table
9.22. When the names field is empty, this request shall return no metadata objects. Some
metadata objects are transport dependent (ROUTE versus MMT) and might not be available
on a given Receiver. Note that LLS tables can be delivered via a SignedMultiTable. In the
Redistribution case, only the RDT and metadata objects downloaded with the RDT are
available to be returned.
The <other> name is a placeholder for any string or number. If the Broadcaster Application
provides a string or number that is unknown to the Receiver, the Receiver is expected to ignore
the request. If the string or number is known to the Receiver and the metadata object is present,
the Receiver is expected to return the metadata object.

Table 9.22 Signaling Metadata Object Name Definitions

Names Description Reference
ROUTE / DASH Signaling

USBD User Service Bundle Description [3] Section 7.1.3
STSID Service-based Transport Session Instance Description [3] Section 7.1.4
MPD DASH Media Presentation Description [3] Section 7.1.5
APD Associated Procedure Description [3] Section 7.1.7
MMT Signaling

usb User Service Description for MMTP [3] Section 7.2.1
PAT MMT Package Access Table [3] Section 7.2.3
MPT MMT Package Table [3] Section 7.2.3
MPIT MMT Media Presentation Information Table [3] Section 7.2.3

65

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.signaling-request.json

ATSC A/344:2026-02

ATSC 3.0 Interactive Content

18 February 2026

CRIT

MMT Clock Relation Information Table

[3] Section 7.2.3

DCIT

MMT Device Capabilities Information Table

[3] Section 7.2.3

MMT Message S

ignaling

AEI

MMT Application Event Information

[6] Section 4.1.2

VSPD Video Stream Properties Descriptor [3] Section 7.2.3.2
ASD ATSC Staggercast Descriptor [3] Section 7.2.3.3
IED Inband Event Descriptor [6] Section 4.1.2

CAD Caption Asset Descriptor [3] Section 7.2.3.5
ASPD Audio Stream Properties Descriptor [3] Section 7.2.3.4
SPD Security Properties Descriptor [3] Section 7.2.4.2

Event Signaling

EMSG

ROUTE/DASH Application Dynamic Event

[6] Section 4.2

EVTI

MMT Application Dynamic Event

[6] Section 4.1.2

Other Signaling

HELD

HTML Entry pages Location Description

[3] Section 7.1.8

DwD Distribution Window Description [3] Section 7.1.9
RSAT Regional Service Availability Table [3] Section 7.1.10
RDT Recovery Data Table [5] Section 5.4.1

Low-Level Signal

ing (LLS)

the "names" column.

1 Service List Table, LLS_table_id=1 [3] Section 6.3

2 Region Rating Table, LLS_table_id=2 [3] Annex F

3 SystemTime Table, LLS_table_id=3 [3] Section 6.2

4 Advance Emergency Information Table, LLS table_id=4 [3] Section 6.5

5 Onscreen Message Notifications, LLS_table_id=5 [3] Section 6.6
254 Signed Multitable, LLS_table_id=0xFE (254) [3] Section 6.7

6 CertificateData Table, LLS_table_id=6 [8] Section 5.2.2.2
<other> String or number associated with a metadata object not explicitly named in

The Query Signaling Data Response semantics are defined in Table 9.23 and the syntax shall
be as defined in the schema file org.atsc.query.signaling-response.json. Additional

semantic defin

itions of parameters follow the table.

Table 9.23 Query Signaling Data Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
objectList 1 array Lists the signaling tables based on the requested
names, if specified in the request, or all available
signaling tables if not.
items 0..N
name 1 string or integer |See names definition above
version 1 integer The version of the signaling element

66

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.signaling-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

group 0.1 integer Required for LLS tables. Provides the LLS group
ID.
table 1 string (XML or |The signaling table data
JSON or
Base64)
encoding 0..1 string The content encoding if not UTF-8
error oneOf X See Section 8.3.3

objectList — Provides an array, perhaps empty (i.e., the requested table does not exist in the
broadcast), of the signaling data found in response to the Signaling Data request.

name — See names above.

version — This is the version of the XML signaling document. For LLS, it shall be set to the value
of LLS table version. For Metadata Object Types and for the RDT, it shall be set to
metadataEnvelope@version.

group — For LLS tables, this is required and shall be the value of LLS group id. For Metadata
Object Types and for the RDT, this shall be omitted.

table — This string shall contain a single object of a type matching name, encoded in UTF-8. For
objects that are not encoded in UTF-8, they shall first be encoded as Base64 by the Receiver.
The XML and JSON documents shall be uncompressed. For both LLS and SLS documents,
only the XML document itself is returned. For an RDT, only the JSON document itself is
returned. Related packaging including signatures, binary LLS fields (e.g.,
group count minusl), MIME separators, etc. shall be removed.

encoding — This optional string shall contain a single token, "Base64" when the table has been
Base64 encoded. For objects that are UTF-8, this field is not needed as the default is UTF-8.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be

returned:
e None — There are no errors specific to this API.
For example, the application makes a query for the SLT and MPD as follows:

"jsonrpc": "2.0",
"method": "org.atsc.query.signaling",
"params": {
"nameList": [1, "MPD"]
}I
"id": 913
}

The Receiver might respond:

67

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"result": {
"objectList": [
{ "name": 1,
"version": 23,
"group": 1,
WiEeTllEl g WAL </SLT>" },
{ "name": "MPD",
"version": 65,
"table": "<MPD .. </MPD>" }
]
b
"id": 913

}

9.2.11 Query Dialog Enhancement Preferences API

The Broadcaster Application may wish to know the user preferences of the Dialog Enhancement

capabilities, including the state and amount of Dialog Enhancement processing. The Broadcaster

Application may use the Query Dialog Enhancement Preferences API to determine these settings.
The Query Dialog Enhancement Preferences Request semantics are defined in Table 9.24 and

the syntax shall be as defined in the schema file org.atsc.query.dialogEnhancementPref-

request.json.

Table 9.24 Query Dialog Enhancement Preferences Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.dialogEnhancementPref"

The Query Dialog Enhancement Preferences Response semantics are defined in Table 9.25
and the syntax shall be as defined in the schema file org.atsc.query.dialogEnhancementPref-
response. json. Additional semantic definitions of parameters follow the table.

Table 9.25 Query Dialog Enhancement Preferences Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful request otherwise the error
structure is returned

dialogEnhancementPref |1 integer The user's dialog enhancement preference gain

value in dB

error oneOf X See Section 8.3.3

dialogEnhancementPref — The user's preference gain value in dB for the Dialog Enhancement
processing to be applied in the audio decoder.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.

68

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.dialogEnhancementPref-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.dialogEnhancementPref-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.dialogEnhancementPref-response.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.dialogEnhancementPref-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

For example, the Broadcaster Application makes a query:

__> {
"jsonrpc": "2.0",
"method": "org.atsc.query.dialogEnhancementPref",
"id": 92

}

If the user suffers from slight hearing impairment and has enabled the dialog enhancement in
the preferences menu, the Receiver might respond with:

<-= {
"jsonrpc": "2.0",
"result": {
"dialogEnhancementPref": 6
}I
"id": 92
}

9.2.12 Query Display Components API
The Broadcaster Application might request the Receiver settings for the position and size of the
current caption display region and the video window and if the Receiver supports the scaling of
either closed captioning or the video window. The Broadcaster Application may use the Query
Display Components API to determine these settings.

The Query Display Components Request semantics are defined in Table 9.26 and the syntax
shall be as defined in the schema file org.atsc.query.displayComponents-request.json.

Table 9.26 Query Display Component Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.displayComponents"

The Query Display Components Response semantics are defined in Table 9.27 and the syntax
shall be as defined in schema file org.atsc.query.displayComponents-response.json.

Table 9.27 Query Display Component Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

result oneOf Returned on successful request otherwise the

X error structure is returned
videowindowScalingSupported|1 boolean Indicates, if "true”, that scaling of the video
window is supported

captionScalingSupported 1 boolean Indicates, if "true", that scaling of the closed

captioning relative to the scaling of the video
widow is supported

69

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.displayComponents-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.displayComponents-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

activeCaptionRegions 1 array A list of caption regions that are actively being
rendered. The list may be empty if no closed
captioning is being displayed

items 0..N

captionRegionOriginx 1 integer Provides the current origin x-axis coordinate of
the caption display region in terms of number of
pixels from the upper-left corner of the screen

captionRegionOriginy 1 integer Provides the current origin y-axis coordinate of
the caption display region in terms of number of
pixels from the upper-left corner of the screen

captionRegionExtentX 1 integer Provides the width of the current caption display
region in number of pixels
captionRegionExtentY 1 integer Provides the height of the current caption display
region in number of pixels
error oneOf See Section 8.3.3
X

videoWindowScalingSupported — See videoWindowScalingSupported above.
captionScalingSupported — See captionScalingSupported above.
activeCaptionRegions — See€ activeCaptionRegions above.
captionRegionOriginX — See captionRegionOriginX above.
captionRegionOriginY — See captionRegionOriginy above.
captionRegionExtentX — See captionRegionExtentX above.
captionRegionExtentY — See captionRegionExtentY above.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.

The activeCaptionRegions reported by the Receiver are not intended to represent a snapshot
of the precise area of the captions at a given moment. The Receiver can report the largest possible
regions based on the current font size and position, as well as the maximum expected number of
characters and rows. This helps to avoid a display conflict situation that could otherwise occur as
the caption text changes. When captions are disabled, the number of activeCaptionRegions
should be zero.

9.2.13 Query Announcement Time Limit

The Broadcaster Application might request to know the Receiver setting for a limit to the amount
of time that it may present a "call-to-action" to the viewer to announce its presence and provide
the viewer an opportunity to engage. The Broadcaster Application may use the Query
Announcement Time Limit API to determine these settings.

The Query Announcement Time Limit Request semantics are defined in Table 9.28 and the
syntax shall be as defined in the schema file org.atsc.query.announcementTimeLimit-
request.json.

Table 9.28 Query Time Limit Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.announcementTimeLimit"

70

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.announcementTimeLimit-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.announcementTimeLimit-request.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The Query Announcement Time Limit Response semantics are defined in Table 9.29 and the
syntax shall be as defined in schema file org.atsc.query.announcementTimeLimit-
response.json.

Table 9.29 Query Time Limit Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

result oneOf X Returned on successful request otherwise the error

structure is returned

announcementTimeLimit

—_

integer Provides a current setting for a time value in
seconds that limits the amount of time a call-to-
action may be presented on screen to the viewer
so that a Broadcaster Application may announce
itself.

error oneOf X See Section 8.3.3

announcmentTimeLimit — This required integer indicates a time in number of seconds that limits
the time graphics from a Broadcaster Application may be presented on screen before a viewer
has made a selection to enable the display of Broadcaster Application graphics. This
announcement time limit might have been set by the Receiver as a default or a viewer by user
selection. An announcementTimeLimit set to 0 shall indicate that there is not an
announcement time limit available to communicate to the Broadcaster Application. Any non-
zero announcementTimeLimit value shall be greater than or equal to 3.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.

9.3 Asynchronous Notifications of Changes

The types of notifications that the Receiver is expected to provide to the Broadcaster Application
through the APIs defined in this section are as specified in Table 9.30. All use the method
org.atsc.notify and include a parameter called "msgType" to indicate the type of notification.

Table 9.30 Asynchronous Notifications

msgType Event Description Reference

ratingBlock Content Advisory Rating Block Change — a notification |Section 0
that is provided whenever the user changes the
content advisory rating settings in the Receiver such
that the current content being decoded goes from
blocked to unblocked or unblocked to blocked.

serviceChange Service Change — a notification that is provided if a Section 9.3.3
different service is acquired due to user action, and
the new service signals the URL of the same
application.

captionState Caption State — a notification that is provided whenever | Section 9.3.4
the user changes the state of closed caption display
(either off to on, or on to off).

langPref Language Preference — a notification that is provided |Section 9.3.5
whenever the user changes the preferred language.

71

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.announcementTimeLimit-response.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.announcementTimeLimit-response.json

ATSC A/344:2026-02

ATSC 3.0 Interactive Content

18 February 2026

been placed in the Application Context Cache and
may be accessed by the Broadcaster Application.

msgType Event Description Reference
captionDisplayPrefs Closed Caption display properties preferences. Section 9.3.6
audioAccessibilityPref Audio Accessibilities preferences. Section 9.3.7
alertingChange Alerting Change — a notification that a new version of | Section 9.3.8

either the AEAT or OSN messages has been

received or if alert filtering preferences have been

changed resulting in events becoming unfiltered.
contentChange Content Change — a notification that new content has | Section 9.3.9

serviceGuideChange

Service Guide Change — a notification that is provided
when new ESG fragments have been received.

Section 9.3.10

signalingData

Signaling Data Change — a notification that some new
signaling data has been received.

Section 9.3.11

dialogEnhancementPrefChange

Dialog Enhancement Preference Change — a
notification that is provided whenever the user
changes the state or amount of dialog enhancement
processing in the user's preferences.

Section 9.3.12

dialogEnhancementLimitChange

Dialog Enhancement Limit Change — a notification that
is provided whenever the incoming audio stream
signals a changed limit for dialog enhancement
processing.

Section 9.3.13

rfSignalChange

RF Signal Change — a notification that is provided
whenever some aspect of the received RF signal
changes.

Section 9.3.14

contentRecoveryStateChange

Content Recovery State Change — a notification that is
provided whenever use of audio watermark, video
watermark, audio fingerprint, and/or video fingerprint
for content recovery changes.

Section 9.9.4

displayOverrideChange

Display Override Change — a notification that is
provided if the display override state or the state of
blocked application access to certain resources
changes.

Section 9.9.5

recoveredComponentInfoChange

Recovered Component Info Change — a notification
that is provided if a component of the service being
received by the Receiver changes at the upstream.

Section 9.9.6

rmpMediaTimeChange

RMP Media Time Change — a notification that is
provided periodically during playback.

Section 9.13.5

rmpPlaybackStateChange

RMP Playback State Change — a notification that is
provided if the playback state changes.

Section 9.13.3

rmpPlaybackRateChange

RMP Playback Rate Change — a notification that is
provided if playback speed changes.

Section 9.13.7

the RMP encounters a period with an XLink attribute.

DRM DRM Notification — a notification that provides Section 9.14.1
messages from the content protection system to the
Broadcaster Application.

xlinkResolution XLink Resolution — a notification that is provided when |Section 9.15.1

assetLinkResolution

Asset Link Resolution — a notification that is provided
when the RMP encounters a target Asset available
for replacement.

Section 9.17.1

9.3.1

Integrated Subscribe / Unsubscribe API for Notifications

The various types of notifications that the Receiver may provide, except for the Event Stream
Notifications defined in Section 9.6, are specified in the remaining subsections of Section 9.2.12.
The Broadcaster Application may wish to receive specific notifications. When a Broadcaster

72

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Application starts, no notifications are subscribed, and the Receiver is not expected to send any
notifications. The Broadcaster Application may use the subscription API to begin receiving the
desired notifications. The Receiver is expected to send subscribed notifications until the
Broadcaster Application requests the Integrated Unsubscribe API. In addition, once the
Broadcaster Application has been terminated, the Receiver is expected to automatically
unsubscribe all the subscribed notifications that were requested by the Broadcaster Application.

Two APIs are needed to support this function:

e Integrated Subscribe API

e Integrated Unsubscribe API
Table 9.31 describes the list of msgTypes to subscribe to each of the notifications. The
msgType column list is identical to the enum parameter of the subscribe and unsubscribe APIs.

Note that the event stream notification and its associated subscription methods are specified in
Section 9.6. This separate interface allows parameters to be specified to filter various event streams.

Table 9.31 Subscription Parameter List

Notification APls Reference msgType

All Notification APIs - All

Rating Block Change Notification API 9.3.2 ratingBlock

Service Change Notification API 9.3.3 serviceChange

Caption State Change Notification API 9.34 captionState

Language Preference Change Notification API 9.3.5 languagePreft

Caption Display Preferences Change Notification API 9.3.6 captionDisplayPrefs

Audio Accessibility Preference Change Notification API 9.3.7 audioAccessibilityPref

Alerting Change Notification API 9.3.8 alertingChange

Content Change Notification API 9.3.9 contentChange

Service Guide Change Notification API 9.3.10 serviceGuideChange

Signaling Data Change Notification API 9.3.11 signalingData

Dialog Enhancement Preference Change Notification API 9.3.12 dialogEnhancementPrefChange
Dialog Enhancement Limit Change Notification API 9.3.13 dialogEnhancementLimitChange
RF Signal Change Notification API 9.3.14 rfSignalChange

Content Recovery State Change Notification API 994 contentRecoveryStateChange
Display Override Change Notification API 9.9.5 displayOverrideChange
Recovered Component Info Change Notification API 9.9.6 recoveredComponentinfoChange
RMP Media Time Change Notification API 9.13.5 rmpMediaTimeChange

RMP Playback State Change Notification API 9.13.6 rmpPlaybackStateChange

RMP Playback Rate Change Notification API 9.13.7 rmpPlaybackRateChange

RMP Media Asset Change Notification API 9.13.8 rmpMediaAssetChange

DRM Notification API 9.14.1 DRM

XLink Resolution Notification API 9.15.1 xlinkResolution

AssetLink Resolution Notification API 9.17 1 assetLinkResolution

"Note that the name of the Language Preference Change Notification API "msgType" defined in
Section 9.3.5 is "iangPref". This has been intentionally maintained to avoid backward-
compatibility issues.

73

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

9.3.1.1 Integrated Subscribe API

The Subscribe Request semantics are defined in Table 9.32 and the syntax shall be as defined in
the schema file org.atsc.subscribe-request.json. Additional semantic definitions of
parameters follow the table.

Table 9.32 Subscribe Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer
method 1 string "org.atsc.subscribe"
msgType 1 array A list of the notifications to which the Broadcaster
Application is requesting to subscribe
items 0..N examples One of the msgTypes from Table 9.31 "msgType"
Column
signalingbatalList 0..1 array A list of the requested signaling objects if the
"signalingData" msgtType is requested
|It6’/775 0..N string or integer |See names definition in Section 9.2.10

msgType — An array of notification msgTypes from the "msgType" column in Table 9.31 for which
the Broadcaster Application is requesting to subscribe. If empty, this request performs no
operation. The subscribe request never unsubscribes any notification subscription (see Section
9.3.1.2, Integrated Unsubscribe API). Use the "All" enum value to subscribe to all
notifications.

signalingbataList — An array of signaling object names as described in the names description
in Section 9.2.10. This field is only applicable if the "signalingbata" msgType is included in
the msgType list. If empty, no metadata objects are returned.
The Subscribe Response semantics are defined in Table 9.33 and the syntax shall be as defined

in the schema file org.atsc.subscribe-response.json. Additional semantic definitions of

parameters follow the table.

Table 9.33 Subscribe Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful request otherwise the error
structure is returned

msgType 1 array Lists the notifications to which the Broadcaster
Application is subscribed
items 0..N examples One of the msgTypes from Table 9.31 "msgType"

Column

error oneOf X See Section 8.3.3

msgType — An array of notification msgTypes from the "msgType" column in Table 9.31 for which
the Broadcaster Application is subscribed. Note that not all requested notifications may be
included in the response list. For example, if the Receiver does not support subscription to one
or more of the requested notifications, these will not be included in the list of msgTypes
subscribed.

74

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.subscribe-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.subscribe-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned. Note there is no error for duplicate subscribe requests.

e None — There are no errors specific to this API.

For example, the Broadcaster Application wants to subscribe to the "alertingChange",
"ratingBlock" and "contentChange" notifications:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.subscribe",
"params": {
"msgType": ["alertingChange", "ratingBlock", "contentChange"]
b
"id": 51
}

Upon success, the Receiver would respond:

<== |
"jsonrpc": "2.0",
"result": {
"msgType": ["alertingChange", "ratingBlock", "contentChange"]
},
"id": 51
}

If the Broadcaster Application wants to subscribe to all notifications:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.subscribe",
"params": {
"msgType": ["AlLl"]
b
"id": 51
}

If the Receiver supports all functionality except content recovery, it may respond:

<== |
"jsonrpc": "2.0",
"result": {

"msgType": ["ratingBlock", "serviceChange", "captionState",
"languagePref", "captionDisplayPrefs", "audioAccessibilityPref",
"alertingChange", "contentChange", "rmpMediaTimeChange",
"rmpPlaybackStateChange", "rmpPlaybackRateChange", "DRM", "xlinkResolution"]

},
"id": 51

If the Broadcaster Application is already subscribed to "ratingBlock" and "contentChange"
notifications and wants to also subscribe to the "alertingChange" notification:

75

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

—_> {
"jsonrpc": "2.0",
"method": "org.atsc.subscribe",
"params": {
"msgType": ["alertingChange"]
}I
"id": 51
}

Upon success, the Receiver would respond:

< |
"jsonrpc": "2.0",
"result": {
"msgType": ["alertingChange", "ratingBlock", "contentChange"]
}I
"id": 51
}

9.3.1.2 Integrated Unsubscribe API

The Unsubscribe Request semantics are defined in Table 9.34 and the syntax shall be as defined
in the schema file org.atsc.unsubscribe-request.json. Additional semantic definitions of
parameters follow the table.

Table 9.34 Unsubscribe Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.unsubscribe"

msgType 1 array A list of the notifications from which the
Broadcaster Application is requesting to
unsubscribe

items 0..N examples One of the msgTypes from Table 9.31 "msgType"

Column

msgType — An array of notification msgTypes from the "msgType" column in Table 9.31 for which
the Broadcaster Application is requesting to unsubscribe from. If empty, this request performs
no operation. The unsubscribe request never subscribes to any notification subscription (see
9.3.1.1, Integrated Subscribe API). Use the "AIl" enum value to unsubscribe from all
notifications.
The Unsubscribe Response semantics are defined in Table 9.35 and the syntax shall be as
defined in the schema file org.atsc.unsubscribe-response.json. Additional semantic
definitions of parameters follow the table.

76

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.unsubscribe-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.unsubscribe-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.35 Unsubscribe Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
msgType 1 array Lists the notifications from which the Broadcaster
Application is unsubscribed
items 0..N examples One of the msgTypes from Table 9.31 "msgType"
Column
error oneOf X See Section 8.3.3

msgType — An array of notification msgTypes from the "msgType" column in Table 9.31 from
which the Broadcaster Application is unsubscribed.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e -24: The Broadcaster Application was not subscribed to any of the msgTypes requested for

the unsubscribe operation.

Note that unsubscribing from "AIl" notifications is expected to unsubscribe from any
notification listed in Table 9.31. An error is expected to only occur if there are currently no
outstanding subscriptions for any of the notifications.

For example, the Broadcaster Application wants to unsubscribe from all notifications:

"jsonrpc": "2.0",
"method": "org.atsc.unsubscribe",
"params": {
"msgType": ["ALll"]
}I
"id": 52

Upon success, the Receiver would respond with the list of msgTypes from which the
Broadcaster Application successfully unsubscribed:

<= {
"jsonrpc": "2.0",
"result": {

"msgType": ["alertingChange", "contentChange",
"contentRecoveryStateChange", "displayOverrideChange",
"recoveredComponentInfoChange", "rmpMediaTimeChange",
"rmpPlaybackStateChange", "rmpPlaybackRateChange"]

}y
"id": 52

If the Broadcaster = Application is subscribed to four notifications
("recoveredComponentInfoChange", "rmpMediaTimeChange", "rmpPlaybackStateChangeu

77

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

and "rmpPlaybackRateChange") and wants to unsubscribe from three of them
("rmpMediaTimeChange", "rmpPlaybackStateChange", and "rmpPlaybackRateChange"):

—_—> {
"jsonrpc": "2.0",
"method": "org.atsc.unsubscribe",
"params": {
"msgType": ["rmpMediaTimeChange", "rmpPlaybackStateChange",

"rmpPlaybackRateChange"]

s
"id": 52

Upon success, the Receiver would respond with the list of msgTypes from which the
Broadcaster Application successfully unsubscribed:

<== {
"jsonrpc": "2.0",
"result": {
"msgType": ["rmpMediaTimeChange", "rmpPlaybackStateChange",
"rmpPlaybackRateChange"]

by
"id": 52

}

9.3.2 Content Advisory Rating Block Change Notification API

The Content Advisory Rating Block Change Notification is expected to be issued by the Receiver
to the currently executing Broadcaster Application if there is a change to the content advisory
rating blocking of the currently displayed service, either from unblocked to blocked or vice versa.

When the service is blocked, the Broadcaster Application may have restricted access to APIs,
for example, the display. When the service is unblocked, the Broadcaster Application is expected
to resume normal operations.

In addition to the blocked status, the Receiver might also provide the content advisory rating
of the currently displayed service to allow the Broadcaster Application to determine why and
perhaps inform the user why the content has been blocked. Note that this notification is not
expected to be issued if there is no change to the blocked status even when the content advisory
rating may change.

Note that Content Advisory Ratings, downloadable rating region table(s) and parental control
may be addressed by law or regulation.

The Content Advisory Rating Block Change Notification semantics are defined in Table 9.36
and the syntax shall be as defined in the schema file org.atsc.notify-ratingBlock.json.
Additional semantic definitions of parameters follow the table.

78

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-ratingBlock.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.36 Content Advisory Rating Block Change Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "ratingBlock"

blocked 1 boolean Indicates whether content is blocked or not

contentRating 0..1 string The new value of the content advisory rating
provided by the current service signaling

blocked — A required Boolean value shall represent the state of blocking after the state changes.
This could be a result of user action (e.g., a change to the parental control settings) or a change
to the ratings of the current content.

contentRating — An optional string containing the content advisory rating of the currently
displayed service as provided in the service signaling. The contentRating string shall
conform to the encoding specified in A/331 [3], Section 7.3. Note that the content rating string
is expected to contain all of the rating values including from multiple rating regions if
appropriate. To specify content advisory information data for multiple rating regions,
additional three-part strings (one for each region) shall be concatenated to create one string
consisting of multiple concatenated three-part strings. In this case, the third part of each content
advisory information string except the last shall be followed by a comma (","). Thus, the last
character of the entire content advisory ratings string is a right curly brace ("}"). The referenced
encoding from A/331 is that used by ROUTE DASH. MMT encodes ratings according to
A/332 [4].
An example in which the state of content blocking has gone from unblocked to blocked:

<==
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "ratingBlock",
"blocked": true,
"contentRating": "1, 'TV-PG-L', {0 '"TV-PG'}{1 'L'}"

}

9.3.3 Service Change Notification API
The Service Change Notification is expected to be issued by the Receiver to the currently executing
Broadcaster Application under conditions described in Application Lifecycle, Section 6.3.

The Service Change Notification semantics are defined in Table 9.37 and the syntax shall be
as defined in the schema file org.atsc.notify-serviceChange.json. Additional semantic
definitions of parameters follow the table.

Table 9.37 Service Change Notification Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"
msgType 1 enum "serviceChange"

79

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-serviceChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

service 1 string (uri) Provides the globalServicelID of the newly
acquired service

requested 0.1 boolean Indicates that a new service is being requested
by the user or Broadcaster Application

service — The required service property shall provide the globalserviceID associated with the
newly acquired service as specified in the Query Service ID response API (See Section 9.2.3).
Note that the Receiver is not expected to notify the Broadcaster Application for service types
that do not require globalserviceID to be defined, such as DRM, ESG, and NRT services.

requested — The optional requested property, when set to "true", indicates that the service is
in the process of being requested and is not yet acquired. When requested is set to "false" or
is absent, a new service has been acquired (and implicitly indicates that the Broadcaster
Application has a common @appId and @appContextId on the new service).
In the following example, the user has caused a service change to a service with a

globalservicelD "https://doi.org/10.5239/8A23-2B0B":

<==
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "serviceChange",
"service": "https://doi.org/10.5239/8A23-2B0B"

}

9.3.4 Caption State Change Notification API
The Caption State Change Notification is expected to be issued by the Receiver to the currently
executing Broadcaster Application when the state of the caption display has changed.

The Caption State Change Notification semantics are defined in Table 9.38 and the syntax shall
be as defined in the schema file org.atsc.notify-captionState.json. Additional semantic
definitions of parameters follow the table.

Table 9.38 Caption State Change Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "captionState"

captionDisplay 1 boolean Indicates whether closed captioning is being
displayed or not

captionDisplay — A required Boolean value representing the new state of closed caption display.
A "true" value indicates captions are being displayed while a "false" value indicates they
are not.
For example, the Receiver notifies the Broadcaster Application that caption display has been
turned on:

80

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-captionState.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {

"msgType": "captionState",
"captionDisplay": true

}

9.3.5 Language Preference Change Notification API

The Language Preference Change Notification is expected to be issued by the Receiver to the
currently executing Broadcaster Application if the user changes the preferred language applicable
to either audio, user interfaces, subtitles/captions, or overall. Only the preferences that have
changed are expected to be provided in this notification.

The Language Preference Change Notification semantics are defined in Table 9.39 and the
syntax shall be as defined in the schema file org.atsc.notify-langPref.json. Additional
semantic definitions of parameters follow the table.

Table 9.39 Language Preference Change Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "langPref"

preferreduILang 0..1 string Provides the new preferred language of the
Receiver User Interfaces

preferredAudiolLang 0..1 string Provides the new preferred language for the
audio output

preferredCaptionSubtitleLang|0..1 string Provides the new preferred language of the
closed captions or subtitles

preferredUILang, preferredAudiolang, preferredCaptionSubtitlelLang — Each of these
optional strings shall conform to the semantics described in the Query Language Preferences
response API (see Section 9.2.4).

For example, if the user has changed the preferred language of the captions to French as spoken
in Canada:

<-={
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "langPref",
"preferredCaptionSubtitleLang": "fr-CA"}

}

9.3.6 Caption Display Preferences Change Notification API

The Caption Display Preferences Change Notification is expected to be issued by the Receiver to
the currently executing Broadcaster Application if there are changes in preferences for display of
closed captioning.

81

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-langPref.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The Caption Display Preferences Change Notification semantics are defined in Table 9.40 and
the syntax shall be as defined in the schema file org.atsc.notify-captionDisplayPrefs.json.
Note that the semantics of the caption display preferences, "cta708", are defined in Section 9.2.5.1
while the IMSCI [48] attributes, "imsc1", (as defined in A/343 [7]) as specified in Section 9.2.5.2.
The IMSCI attributes are defined by text in Section 9.2.5.2 but are intended to be an integral part
of the JSON schema in this section.

Table 9.40 Caption Display Preferences Change Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "captionDisplayPrefs"

cta708 0.1 object See semantic definition in Section 9.2.5.1
imscl 0.1 object See semantic definition in Section 9.2.5.2

For example, the Receiver notifies the Broadcaster Application that the user has changed their
caption display preferences to red text on gray background. All the available 708 parameters along
with two IMSC1 parameters are included in this example:

<==
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "captionDisplayPrefs",
"cta708": {
"characterColor": "#FF0000",
"characterOpacity": 0.5,
"characterSize": 100,
"fontStyle": "MonospacedSerifs",
"backgroundColor": "#808080",
"backgroundOpacity": 0.25,
"characterEdge": "Raised",
"characterEdgeColor": "#000000",
"windowColor™: "#000000",
"windowOpacity": O
}y

"imscl": {
"region textAlign": "center",
"content fontWeight": "bold"

}
}
}

9.3.7 Audio Accessibility Preference Change Notification API

The Audio Accessibility Preference Change Notification is expected to be issued by the Receiver
to the currently executing Broadcaster Application if the user changes accessibility settings for
either video description service and/or audio/aural representation of emergency information (EI).

The Audio Accessibility Preference Change Notification semantics are defined in Table 9.41
and the syntax shall be as defined in the schema file org.atsc.notify-
audioAccessibilityPref.son. Additional semantic definitions of parameters follow the table.

82

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-captionDisplayPrefs.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-audioAccessibilityPref.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-audioAccessibilityPref.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.41 Audio Accessibility Preference Change Notification Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
method 1 string "org.atsc.notify"
msgType 1 enum "audioAccessibilityPref"
videoDescriptionService [0..1
enabled 0..1 boolean Indicates whether or not a video description service
is enabled
Tanguage 0.1 string The preferred language of the video description
service
audioEIService 0..1
enabled 0..1 boolean Indicates whether or not emergency information
audio is enabled
Tanguage 0.1 string The preferred language of the emergency
information audio

videoDescriptionService.enabled — A Boolean value representing the new state of video
description service (VDS) rendering.

videoDescriptionService.language — A string indicating the preferred language of VDS
rendering, coded according to BCP 47 [21]. This property shall be present in the notification
when videoDescriptionService.enabled is equal to true and the preferred language of
VDS rendering is available at the Receiver. If videoDescriptionService.enabled is equal
to true and the preferred language of VDS rendering is not available, the Receivers shall not
include the videobDescriptionService.language property.

audioEIService.enabled — A Boolean value representing the new state of audio/aural
representation of emergency information rendering.

audioEIService.language — A string indicating the preferred language of audio/aural
representation of emergency information rendering, coded according to BCP 47 [21]. This
property shall be present in the notification when audioEIService.enabled is equal to true
and the preferred language of audio/aural representation of emergency information rendering
is available at the Receiver. If audioEIService.enabled is equal to true and the preferred
language is not available, the Receivers shall not include the audioEIService.language
property.
For example, if the user has changed the video description service's accessibility preference to

ON, the Receiver notifies the Broadcaster Application the current state of video description service

and the VDS language preference (when present) as shown below:

83

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<--{
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "audioAccessibilityPref",
"videoDescriptionService": {
"enabled": true,
"language": "en"

}

9.3.8 Alerting Change Notification API

The Alerting Change Notification is expected to be issued by the Receiver to the currently
executing Broadcaster Application if there is a change to the version of the AEAT or OSN alerting
data structure and the Broadcaster Application has subscribed to receive such notifications via the
API specified in Section 9.3.1. Note that the receipt of a new alerting object without a previous
receipt is considered a version change. The Alerting Change Notification may also be issued if
alerting event filtering has been changed resulting in a change to the filtered events list.

The notification message contains a list of new or updated alerting fragments.

The Alerting Change Notification semantics are defined in Table 9.42 and the syntax shall be
as defined in the schema file org.atsc.notify-alertingChange.json. Additional semantic
definitions of parameters follow the table.

Table 9.42 Alerting Change Notification Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
method 1 string "org.atsc.notify"
msgType 1 enum "alertingChange"
alertList 1 array A list containing the new or updated alerting
fragments
items 0..N
alertingType 1 enum "AEAT" or "OSN"
alertingFragment 1 string (xml) The XML fragment of the associated alerting type
receiveTime 0..1 string (date- If alertingType = "OSN", the date and time when
time) the fragment was received
filteredEventList |0..1 array Provides an array of AEA IDs which have been
filtered out by the Receiver
| 7tems 1.N string

alertList — A required array containing a list of new or updated alerting fragments. This
notification is not expected to occur if the array is empty, that is, there is no change.

alertingType — A required parameter containing one of "AEAT" or "osN". The corresponding
alertingFragment shall contain the XML fragment corresponding to the alertingType.

alertingFragment — A required string shall contain the alerting XML fragment for the associated
alertingType. The AEAT XML and OSN XML fragments are extracted from their respective
LLS tables which are described in A/331 [1].

84

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-alertingChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

receiveTime — The date and time when the OSN fragment was received. This value shall be
provided when the alertingType is "OSN" and is optional otherwise. (Note: The OSN table
includes a Notification Duration field which is the duration of the KeepScreenClear message
starting from the time the OSN was received. Thus, the time the OSN was received is necessary
for the Broadcaster Application to fully utilize the OSN information.) The date-time JSON data
type shall be formatted as defined in the JSON Schema specification [19].

filteredEventList — Provides a list of AEA events that have been filtered out by the Receiver.
The Receiver may elect to filter out an event for a variety of reasons based on user preferences,
location or some other criteria. If an AEA event is filtered out, the corresponding
AEAT .AEA@aeald shall appear in the filteredEventList property. If an AEA event is not filtered
out, the corresponding AEAT.AEA@aeaId shall not appear in the list. An empty or absent
filteredeventList indicates that no events have been filtered out by the Receiver. This
property is only applicable when the alertingType is "aEaT". AEA events that have been
"filtered out" are those that have been handled or processed by the Receiver and need not be
processed by the Broadcaster Application.
Note that if the filtering criteria change due to, for example, the Receiver moving, or the user
changing preferences, previously filtered out events may become unfiltered and events that
were previously unfiltered may now be filtered out. In this case, the Alerting Change
Notification shall be issued by the Receiver with a new filteredeventList. The Broadcaster
Application may need to take alternative actions based on the new list of events.
For example, the Receiver may indicate that a new AEAT has been received by issuing this

JSON-RPC command:

<-- {
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "alertingChange",
"alertList": [
{ "alertingType": "AEAT",
"alertingFragment": "<AEAT>..</AEAT>" }

As a further example, the Receiver may indicate that anew AEAT and OSN have been received
by issuing this JSON-RPC command:

85

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<--{
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "alertingChange",
"alertList": [
{ "alertingType": "AEAT",
"alertingFragment™: "<AEAT>..</AEAT>" },
{ "alertingType": "OSN",
"alertingFragment™: "<OSN>..</OSN>",
"receiveTime": "2017-01-01T23:54:59.590z2" }

}

9.3.9 Content Change Notification API

The Content Change Notification is expected to be issued by the Receiver to the currently
executing Broadcaster Application if a new signed package or new version of a signed package
has been received and the Broadcaster Application has subscribed to receive such notifications via
the API specified in Section 9.3.1. Note that a signed package is considered "received" if the
contained files are available through the Receiver Web Server.

The notification message contains a list of URIs referencing the received packages.

The Content Change Notification semantics are defined in Table 9.43 and the syntax shall be
as defined in the schema file org.atsc.notify-contentChange.json. Additional semantic
definitions of parameters follow the table.

Table 9.43 Content Change Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "contentChange"

packageList 1 array A list containing newly received package URIs

items 0..N string (uri) The package URI of a specific package delivered

over ROUTE whose files are now available in the
Application Context Cache

packageList — An array of packages whose contents have been received, checked for signing and
are now available for Broadcaster Application access. The package URI of a specific package
delivered over ROUTE shall be obtained from the value signaled in the EFDT.FDT-

Instance.File@Content-Location attribute according to A/331 [3]. Broadcaster Applications

may use these package URIs to determine which collection of files have been received or

updated.

For example, to notify the Broadcaster Application that new versions of various content files
from a particular package have been received, the content signing has been verified and the files
are now available through the Receiver Web Server, the Receiver may issue the following JSON-
RPC command:

86

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-contentChange.json
mailto:EFDT.FDT-Instance.File@Content-Location
mailto:EFDT.FDT-Instance.File@Content-Location

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<--{
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "contentChange",
"packageList": ["http://192.168.1.10/items/zz/content"]

The Broadcaster Application may elect to reload itself or any portion of itself when such a
notification is received.

9.3.10 Service Guide Change Notification API

The Service Guide Change Notification is expected to be issued by the Receiver to the currently
executing Broadcaster Application if there is a change to some portion of the service guide data
structures and the Broadcaster Application has subscribed to receive such notifications via the API
specified in Section 9.3.1. Note that the receipt of a new service guide fragment without a previous
receipt is considered a version change.

The notification message contains a list of URLs referencing the new or updated service guide
XML fragments.

The Service Guide Change Notification semantics are defined in Table 9.44 and the syntax
shall be as defined in the schema file org.atsc.notify-serviceGuideChange.json. Additional
semantic definitions of parameters follow the table.

Table 9.44 Service Guide Change Notification Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
method 1 string "org.atsc.notify"
msgType 1 enum "serviceGuideChange"
urlList 1 array Lists the set of service guide URLs pointing to
newly changed service guide fragments
items 0..N
sgType 1 enum "Service", "Schedule" or "Content"
squrl 1 string (uri) The XML fragment of the associated service guide
type
Service 1 string (uri) The URI of the service related to the service guide
type.
content 0..1 string (uri) When the sgType = "Content", this parameter is
used to provide the unique ID of the content, if
available

urlList — A required array containing a list of URLs to new or updated service guide fragments.
This notification is not expected to occur if the array is empty, that is, there has been no change.

The semantics of the properties sgType, sgUrl, service and content shall be as speciﬁed in
Section 9.2.9 Query Service Guide URLs API response.

For example, the Receiver may indicate that a new schedule has been received by issuing this
JSON-RPC command:

87

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-serviceGuideChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<--{
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "serviceGuideChange",
"urlList": [
{ "sgType": "Schedule",
"sgUrl": "http://127.0.0.1:8080/wmbc.appctx/Schedule.xml",
"service": "https://doi.org/10.5239/8A23-2BOB" }

Note that the URLs provided are examples only. The actual URLs used, including the file
names, are completely dependent on the Receiver implementation and how it chooses to make the
ESG files available through its HTTP server.

As a further example, the Receiver may indicate that a new service information and associated
schedule and content have been received by issuing this JSON RPC command:

<--{
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "serviceGuideChange",
"urlList": [
{ "sgType": "Service",
"sgUrl": "http://127.0.0.1:8080/wmbc.appctx/Service.xml",
"service": "https://doi.org/10.5239/8A23-2BOB" },
{ "sgType": "Schedule",
"sgUrl": "http://127.0.0.1:8080/wmbc.appctx/Schedule.xml",
"service": "https://doi.org/10.5239/8A23-2B0OB" },
{ "sgType": "Content",
"sgUrl": "http://127.0.0.1:8080/wmbc.appctx/Content.xml",
"servict": "https://doi.org/10.5239/8A23-2B0OB",

"content": "urn:eidr:10.5240:7791-8534-2C23-9030-8610-5" }

The prefixes shown in these examples are informative only. The Broadcaster Application
should make no assumptions regarding the path and should simply use it to access the fragment
data directly.

The referenced service guide files, in this example, Service.xml, Schedule.xml and
Content.xml, shall contain the service, schedule and content XML fragments as described in
A/332 [4], respectively. The Receiver is expected to extract each XML fragment from the binary
SGDU structure before making it available to the Broadcaster Application.

To associate ESG files with Broadcaster Applications, the corresponding Application Context
Identifiers shall be provided in the Extended FDT (EFDT) element,
FDT-Instance@appContextIdList defined when sending the ESG files in the LCT channel of the
ESG Service ROUTE session. Descriptions of the FDT extensions can be found in A/331 [3] and

88

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

the ESG Service in A/332 [4]. Application Context Identifiers need not be included in the EFDT
if the ESG data is not needed by the Broadcaster Application.

9.3.11 Signaling Data Change Notification API

The Signaling Data Change Notification is expected to be issued by the Receiver to the currently
executing Broadcaster Application if a new version of any LLS table or SLS fragment is received
since either the Broadcaster Application subscribed to receive such update notifications for tables
listed via the API specified in Section 9.3.1 or a version was previously notified. The Broadcaster
Application may respond to the notification of a change to the signaling data by using the Query
Signaling Data API specified in Section 9.2.10 to fetch a new copy.

Note that this notification is issued whenever any LLS change is detected, including the AEAT
and OSN signaling. This signaling is independent of the Alerting Change Notification API
(Section 9.3.8), that is, if the Broadcaster Application subscribes to both the Signaling Data
Change and Alerting Change Notifications, then both notifications are expected to be issued when
a new or changed AEAT or OSN fragment is detected.

The Signaling Data Change Notification semantics are defined in Table 9.45 and the syntax
shall be as defined in the schema file org.atsc.notify-signalingData. json.

Table 9.45 Signaling Data Change Notification Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
method 1 string "org.atsc.notify"
msgType 1 enum "signalingData"
objectList 0..1 array Lists the signaling tables that have changed
resulting in this notification
items 0..N
name 1 string or integer |See names definition in Section 9.2.10
version 1 integer The version of the signaling element
group 0.1 integer Required for LLS tables. Provides the LLS group
ID.
table 1 string (XML or | The signaling table data
JSON or
Base64)
encoding 0.1 string The content encoding if not UTF-8

objectList — The semantics of this optional property are defined in the property of the same name
in the Query Signaling Data response API in Section 9.2.10. It is recommended that the
Receiver include any tables that have changed as part of the notification objectList to avoid
potential timing issues that could occur when the Broadcaster Application uses the Query
Signaling Data API in response to the notification.
The following is an example notification:

89

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-signalingData.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "signalingData",
"objectList": [
{ "name": 1,
"version": 23,
"group": 1,
"table": "<SLT ... </SLT>" 1},
{ "name": "MPD",
"version": 65,
"table": "<MPD .. </MPD>" }

}

9.3.12 Dialog Enhancement Preference Change Notification API

The Dialog Enhancement Preference Change Notification is expected to be issued by the Receiver
to the currently executing Broadcaster Application if the user changes his or her preferences on
dialog enhancement processing and the Broadcaster Application has subscribed to receive such
notifications via the API specified in Section 9.3.1.

The Dialog Enhancement Preference Change Notification semantics are defined in Table 9.46
and the syntax shall be as defined in the schema file org.atsc.notify-
dialogEnhancementPrefChange.json. Additional semantic definitions of parameters follow the
table.

Table 9.46 Dialog Enhancement Preference Change Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "dialogEnhancementPrefChange"

dialogEnhancementPref 1 integer The user's new dialog enhancement preference
gain value in dB

dialogEnhancementPref — This required property shall conform to the semantics described for
the property with the same name in the Query Dialog Enhancement Preference response API
(see Section 9.2.11).
For example, if the user changes Dialog Enhancement processing to a gain value of 9 dB in his
or her preference settings, the Receiver would send the following notification:

90

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-dialogEnhancementPrefChange.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-dialogEnhancementPrefChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-- {
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "dialogEnhancementPrefChange",
"dialogEnhancementPref": 9

}

9.3.13 Dialog Enhancement Limit Change Notification API

The Dialog Enhancement Limit Change Notification is expected to be issued by the Receiver to
the currently executing Broadcaster Application if the limit for dialog enhancement processing is
changed in the currently decoded audio stream and the Broadcaster Application has subscribed to
receive such notifications via the API specified in Section 9.3.1.

The Dialog Enhancement Limit Change Notification semantics are defined in Table 9.47 and
the syntax shall be as defined in the schema file org.atsc.notify-
dialogEnhancementLimitChange.json. Additional semantic definitions of parameters follow
the table.

Table 9.47 Dialog Enhancement Limit Change Notification Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
method 1 string "org.atsc.notify"
msgType 1 enum "dialogEnhancementLimitChange"
dialogEnhancementLimit |1
max 1 integer The maximum allowed dialog enhancement gain
value in dB
min 1 integer The minimum allowed dialog enhancement gain
value in dB

dialogEnhancementLimit — The range of allowed gain value in dB for the Dialog Enhancement
processing to be applied in the audio decoder.

max — The maximum allowed gain value in dB for the Dialog Enhancement processing to be
applied in the audio decoder.

min — The minimum allowed gain value in dB for the Dialog Enhancement processing to be applied
in the audio decoder.
For example, if the decoded audio stream restricts Dialog Enhancement processing to a range

of 0 dB to 6 dB in audio streams metadata, the Receiver would provide the following notification:

91

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-dialogEnhancementLimitChange.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-dialogEnhancementLimitChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<--{
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "dialogEnhancementLimitChange",
"dialogEnhancementLimit": {
"max": 6,
"min": O

}

9.3.14 RF Signal Change Notification API

The RF Signal Change Notification is expected to be issued by the Receiver to the currently
executing Broadcaster Application if any of the properties listed in Table 9.48 change in the
currently tuned RF channel and the Broadcaster Application has subscribed to receive such
notifications via the API specified in Section 9.3.1.

The RF Signal Change Notification semantics are defined in Table 9.48 and the syntax shall
be as defined in the schema file org.atsc.notify-rfSignalChange.json. Additional semantic
definitions of the parameters follow the table.

Upon subscription, the Receiver is expected to promptly issue an initial notification. There
should not be notifications more than once per second. The calculation of the field values is
Receiver dependent.

Table 9.48 RF Signal Change Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "rfSignalChange"

rfchannel 1 integer The RF channel number

frequency 1 integer The frequency in Hertz

signalQuality 1 enum "lost", "weak" or "strong"

signalstrength 0..1 integer (O ... Signal strength represented as a percentage 0 to
100) 100

gainLevel 0.1 integer (O ... Gain level represented as a percentage 0 to 100
100)

bootstrapLock 0..1 boolean Indicates successful bootstrap symbol acquisition

alpLock 0.1 boolean Indicates successful ALP data acquisition

rfChannel — This required property shall contain the RF channel number of the currently tuned
RF channel.

frequency — This required property shall contain the center frequency in Hz of the currently tuned
RF channel.

signalouality— This required property shall provide a simplified overall RF quality aligned with
the Android Media TV onsignalstrengthupdated API [52]. The available values are "lost",
"weak" or "strong".

signalstrength — This optional property shall provide the received signal strength reported as a
percentage. The available values are in the range zero to 100, inclusive.

92

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-rfSignalChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

gainLevel — This optional property shall provide the average signal gain level of the tuner
reported as a percentage. The available values are in the range zero to 100, inclusive.

bootstrapLock — This optional Boolean property shall confirm, if "true", the A/321 defined
symbol acquisition [1]. A "false" value shall indicate that bootstrap symbol acquisition
cannot be confirmed.

alpLock — This optional Boolean property shall confirm, if "true", the A/330 ATSC Link-Layer
Protocol (ALP) data acquisition [2]. A "false" value shall indicate that ALP data acquisition
cannot be confirmed.
For example, the Receiver might provide the following notification:

== |
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "RFSignalChange",

"rfChannel": 15,
"frequency": 479000000,
"signalQuality": "strong",
"signalStrength": 75,
"gainLevel": 50,
"bootstrapLock": true,
"alpLock": true

}

9.4 Cache Request APIs

The Cache Request APIs may be used by the currently executing Broadcaster Application to
request that the Receiver download one or more objects from a broadband server and place them
into a specified location in the Application Context Cache. Files may be identified individually by
URL, or a DASH MPD or Period may be specified, in which case all the media files referenced by
the MPD or Period are requested.

9.4.1 Cache Request API

The Broadcaster Application can use the Cache Request API to request that the Receiver download
one or more indicated files. The Broadcaster Application might request to download ad content
via broadband before the time of an ad replacement to avoid playback problems that might occur
due to network congestion if the ad were to be streamed in real time.

The Receiver's response to the Cache Request API indicates whether or not the indicated files
are already present in the Application Context Cache. Thus, the API may also be used to check
whether or not the one or more indicated files are present in the Application Context Cache. The
status check function works for files that might have arrived by either the broadcast or the
broadband delivery path.

As stated in Section 6.2, storage capability and management of the Application Context Cache
are Receiver-specific, so that files requested via this API might or might not be stored, depending
on the status of the Application Context Cache. However, the Broadcaster Application can use the
Query Cache Usage API defined in Section 9.5 to check how much storage quota of Application
Context Cache is assigned for the Application Context ID. The Mark Unused API defined in
Section 9.8 can be used to indicate to the Application Context Cache system that cached file(s) are

93

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

unused. If the currently executing Broadcaster Application is terminated, the Receiver may cancel
all in-progress file retrieval processes and release all cached files requested by this APL

Note that the method name, "org.atsc.CacheRequest", starts with a capital "C" inconsistent
with the method naming in other parts of this standard. The reader is cautioned to use the method
name verbatim to avoid issues.

The Cache Request Request semantics are defined in Table 9.49 and the syntax shall be as
defined in the schema file org.atsc.CacheRequest-request.json. Additional semantic
definitions of parameters follow the table.

Table 9.49 Cache Request Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.CacheRequest"

sourceur] 0.1 string (uri) The base URL from which files are to be retrieved

targetur] 0..1 string (uri- The target URL where files are to be placed in the
reference) Application Context Cache

URLS 1

items 0..N string (uri- Relative URLs of files to either be retrieved or to

reference) provide status for (see description)

sourceURL — When sourceURL is present, this API requests the Receiver to retrieve the files
referenced in the provided UrRLs array, where sourceURL is the base URL of each file. When
sourceURL is present, it shall include the https protocol identifier. When sourceURL is absent,
the API shall indicate a request for the Receiver to return information about the presence or
absence of the identified files within the Application Context Cache.

targetURL — This relative URL shall indicate the location within the Application Context Cache
relative to its base where the files are to be placed. When sourceURL is not present, the
targetURL shall indicate the location within the Application Context Cache relative to its base
where the Receiver should look for the files given in the UrLs array and reply with an indication
of whether or not all the files are present. When sourceURL is present and targetURL is not
present, the files shall be stored under each URL relative to the root of the Application Context
Cache.

URLs — When sourceURL is present, the URLs array shall represent an array of one or more strings
which contain relative URLs of files to be retrieved and stored in the Application Context
Cache. Each URL string in UrLs shall be a relative URL. The effective URL for retrieval of
the file from the broadband server shall be a concatenation of the sourceurL and the URL
string of the file. When sourceURL is not present, each URL string shall refer to a file that may
be present in the Application Context Cache as the concatenation of the targetURL and the
URL of the file, and the response to the API shall indicate whether or not all referenced files
are present in the cache.

The Cache Request Response semantics are defined in Table 9.50 and the syntax shall be as
defined in the schema file org.atsc.query.CacheRequest-response.json. Additional
semantic definitions of parameters follow the table.

94

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.CacheRequest-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.CacheRequest-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.50 Cache Request Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful request otherwise the error
structure is returned

cached 1 boolean Indicates whether or not the requested files have

been cached

error oneOf X See Section 8.3.3

cached — This required Boolean result shall indicate, when "true" that all the files referenced in
the URLSs are present in the Application Context Cache and that none are expired. When "false",
cached shall indicate that one or more files are not present or are expired.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e -4 —The requested content could not be found.

e -5—No broadband connection is available to honor the request.

e -15—The URL format specified in sourceURL or targetURL of the request is illegal.

e -16—The URL format specified in one or more URLs of the request is illegal.

e -37—The request has exceeded available memory.

For example, the Broadcaster Application may wish to request the download of three PNG
files from a broadband server at https://foo.com/servicel and to store these files in the
Application Context Cache in specified subdirectories at or below an images/ subdirectory. The
source and destinations for each of these three files are as follows:

1. File1:

= Source: https://foo.com/servicel/A/big-imagel.png
= Target location in App Context Cache: images/A/big-imagel.png

= Source: https://foo.com/servicel/B/big-image2.png
= Target location in App Context Cache: images/B/big-image2.png

= Source: https://foo.com/servicel/C/big-image3.png

= Target location in App Context Cache: images/C/big-image3.png
To accomplish the download, the Broadcaster Application could issue the following API:

95

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

——> {
"jsonrpc": "2.0",
"method": "org.atsc.CacheRequest",
"params": {
"sourceURL": "https://foo.com/servicel/",
"targetURL": "images/",
"URLs": ["A/big-imagel.png", "B/big-image2.png","C/big-image3.png"]
}’
"id": 37
}

In this example, the first PNG file is fetched wusing the URL
https://foo.com/servicel/A/big-imagel.png and placed into the Application Context
Cache at a subdirectory images/A/big-imagel.png.

Upon successfully beginning the retrieval process, if the files had not been retrieved
previously, the Receiver would respond with:

<-- {
"jsonrpc": "2.0",
"result": {"cached": false},
"id": 37

Note that cached is "false", indicating that these files are not already present. If all the files
had already been present in the Application Context Cache and none had expired, cached would
have returned "true"; otherwise, the Receiver would begin to re-download the files.

If the Cache Request Response returns an error code "-37" then the operation requested has
exceeded the available cache memory. The Receiver is expected to retain all the files that were
completely downloaded and to discard the file that resulted in the cache overflow. The Broadcaster
Application may review the files in the cache to determine which files completed download. Note
that the Broadcaster Application is not expected to attempt to re-download any additional files
from the original request when the cache memory limit has been reached.

If the Broadcaster Application wishes later to check to see whether or not the first two of these
files have been successfully downloaded, it could issue the following API to the Receiver:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.CacheRequest",
"params" {
"targetURL": "images/",
"URLs": ["A/big-imagel.png", "B/big-image2.png"]
b
"id": 38
}

If both of the indicated files are present and not expired, the Receiver may respond with:

96

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"result": {"cached": true},
"id": 38

}

9.4.2 Cache Request DASH API

The Cache Request DASH API may be used by the currently executing Broadcaster Application
to indicate to the Receiver that certain files should be retrieved via broadband and stored in the
Application Context Cache. Instead of listing each URL individually, using this API, files are
specified either in an MPEG DASH period XML fragment or in a complete DASH MPD. If a
complete DASH MPD is specified, the MPD file and the MPEG DASH segments specified in the
MPD file shall be retrieved via broadband and stored. The URL of each MPEG DASH segment
file shall be generated according to the MPEG DASH specification [29]. In response to the XLink
Resolution Notification API (9.15.1), the Broadcaster Application can provide the same DASH
period XML fragment.

The Cache Request DASH API may also be used to check whether or not the files indicated in
the DASH pPeriod or MPD are present in the Application Context Cache and not expired. The
status check function works for files that might have arrived by either the broadcast or the
broadband delivery path.

This API does not wait for resources to be cached. The Broadcaster Application is expected to
repeatedly call this API until cached = "true". When the Receiver determines that one or more
resources cannot be cached (e.g., Internet lost, HTTPS returns 404, etc.) it returns an error.

Note that the method name, "org.atsc.CacheRequestDASH", starts with a capital "C"
inconsistent with the method naming in other parts of this standard. The reader is cautioned to use
the method name verbatim to avoid issues.

The Cache Request DASH Request semantics are defined in Table 9.51 and the syntax shall
be as defined in the schema file org.atsc.CacheRequestDASH-request.json. Additional
semantic definitions of parameters follow the table.

Table 9.51 Cache Request DASH Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer
method 1 string "org.atsc.CacheRequestDASH"
object A oneOf X Used to specify a Period request
sourceurl 0..1 string (uri) The base URL from which Period-referenced
segment files will be retrieved
targetur] 1 string (uri- The target URL where files are to be placed in the
reference) Application Context Cache
Period 1 string (xml) A DASH Period XML fragment whose referenced
segments are requested to be cached
object B oneOf X Used to specify an MPD request
sourceur] 0.1 string (uri) The base URL from which MPD-referenced
segment files will be retrieved
targetur] 0..1 string (uri- The target URL where files are to be placed in the
reference) Application Context Cache

97

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.CacheRequestDASH-request.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

mpdFileName 1 string A DASH MPD file whose referenced segments are
requested to be cached

When the API is used with a DASH Period:

sourceURL — When sourceURL is present, this API requests the Receiver to retrieve the
media files referenced in the provided DASH period XML fragment, where
sourceURL 1S the base URL of the files specified in the URLs in the period. When
sourceURL is present, it shall include the https protocol identifier. When sourceURL is
absent, the API shall indicate a request for the Receiver to return information about the
presence or absence of the identified files within the Application Context Cache.

targetURL — This relative URL shall indicate the location within the Application Context
Cache relative to its base where the files are to be placed. When sourceURL is not
present, the targetURL shall indicate the location within the Application Context
Cache relative to its base where the Receiver should look for the files referenced by the
Period and reply with an indication of whether or not all the files are present and not
expired. When sourceURL is present and targetURL is not present, the files shall be
stored under each URL relative to the root of the Application Context Cache.

period — The Period shall represent an XML fragnent defined as a period of MPEG
DASH compliant with A/331 [3]. Each Media Segment and Initialization Segment
URL is constructed using the processing rules of MPEG DASH [29] subclause 5.6. The
Period shall use only relative URL references. The Period@duration attribute shall be
present. When sourceURL is included, the URLSs in the period shall resolve to media
files present on the referenced broadband server.

When the API is used with a DASH MPD:

sourceURL — This API requests the Receiver to retrieve the media files referenced in the
DASH MPD identified by mpdFileName, where sourceURL is the URL of the
broadband server from which the MPD may be retrieved. When sourceURL is present,
it shall include the nttps protocol identifier. When sourceURL is absent, the API shall
indicate a request for the Receiver to return information about the availability of the
files identified by the referenced MPD within the Application Context Cache. When
sourceURL is absent, the response to the request shall indicate "cached": false if the
MPD itself is not present in the Application Context Cache, or if any of the files it
references are not present or are expired.

targetURL — When sourceURL is present, the API requests the Receiver to retrieve and
place the files associated with the indicated MPD, and the MPD itself, into the
Application Context Cache. In that case, the targetURL shall indicate the location
within the Application Context Cache relative to its base where the files are to be
placed. The Receiver is expected to also retrieve the MPD and place it at the location
in the Application Context Cache given by targetURL. When sourceURL is not
present, the targetURL shall indicate the location within the Application Context
Cache relative to its base where the Receiver should look for the MPD and the files
referenced by the MPD and reply with an indication of whether or not the MPD and
all the files it references are present and not expired. When sourceURL is present and
targetURL 1s not present, the files shall be stored under each URL relative to the root
of the Application Context Cache.

98

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

mpdFileName — The required mpdrileName shall represent the filename of an MPEG
DASH MPD that is compliant with A/331[3]. The URL of each Media Segment and
Initialization Segment referenced in the indicated MPD is constructed using the
processing rules of MPEG DASH [29] subclause 5.6. The referenced MPD shall
include only relative URLs. When sourceURL is included, the URLs in the MPD shall
resolve to media files present on the referenced broadband server, and the MPD itself
shall be present at the server location indicated in sourceURL with the filename given
in mpdFileName.

According to MPEG DASH [29] subclause 5.6.4, "URLs at each level of the MPD are resolved
according to RFC 3986 with respect to the BaseuRrL element specified at that level of the document
or the level above in the case of resolving base URLs themselves (the document 'base URI' as
defined in RFC 3986 [25] Section 5.1 is considered to be the level above the MPD level)." For this
API, the sourceURL is the document "base URI" on the broadband server, and the targetURL is
the document "base URI" in the Application Context Cache.

The Cache Request DASH Response semantics are defined in Table 9.52 and the syntax shall
be as defined in the schema file org.atsc.query.CacheRequestDASH-response. json.
Additional semantic definitions of parameters follow the table.

Table 9.52 Cache Request DASH Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful request otherwise the error
structure is returned

cached 1 boolean Indicates whether or not the requested files have

been cached

error oneOf X See Section 8.3.3

cached — This Boolean result shall indicate, when "true", that all the files referenced in the Period
or MPD are present in the Application Context Cache at the indicated location and that none
are expired. When "false", cached shall indicate that one or more files are expired or not
present. When sourceURL is present in the request, a result of "true" shall be returned in the
case that the indicated files are already present in the Application Context Cache, and none are
expired.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e -4 — Content not found.
e -5—No broadband connection is available.
e -11—The indicated MPD cannot be accessed.
e -15—-The URL format specified in sourceURL or targetURL of the request is illegal.
e -17 — The format of the MPEG DASH fragment specified in the Period is illegal.
e -18 — The referenced MPD segment file cannot be found.
e -37 —The request has exceeded available memory.

For example, if the Broadcaster Application wishes to request from a broadband server the
fetching of MPEG DASH media segment files corresponding to one Period from a broadband

99

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.CacheRequestDASH-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

server at https://wxyz.com/svcd.4/content/, and place them into the Application Context
Cache at advertisingl/ it could issue the following API:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.CacheRequestDASH",
"params": {
"sourceURL": "https://wxyz.com/svcd.4/content/",
"targetURL": "advertisingl/",
"Period": "<Period start='PT9H' duration='PT30S'>
<AdaptationSet mimeType='video/mp4d"'/>
<SegmentTemplate timescale='9000' media='video/xbc$Numbers$.mpdv'
duration='90000"' startNumber='32401"' /><Representation id='v2'
width='1920"'" height='1080"'/></Period>"
}y
"id": 38

The resulting video Media Segment files would be retrieved and stored in the Application
Context Cache in the advertisingl/video/ subdirectory. Upon successfully beginning the
retrieval process, if the files had not been retrieved previously the Receiver would respond with:

<-= {
"jsonrpc": "2.0",
"result": {"cached": false},
"id": 38
}

The cached value of "false" in the response indicates that the requested files are not all already
present in the cache. If all the files had already been present in the Application Context Cache and
none were expired, cached would have returned "true", otherwise the Receiver would begin to re-
download the files.

If the Cache Request DASH Response returns an error code "-37" then the requested files have
exceeded the available cache memory. All files associated with the requested MPD or Period are
discarded and the Receiver is not expected to attempt to re-download the files.

If the Broadcaster Application wishes later to check to see whether or not the files associated
with the indicated DASH period have been successfully downloaded, it could issue the following
API to the Receiver:

100

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.CacheRequestDASH",
"params": {
"targetURL": "advertisingl/",
"Period": "<Period start='PT9H' duration='PT30S'>
<AdaptationSet mimeType='video/mp4"'/>
<SegmentTemplate timescale='9000' media='video/xbc$Numbers$.mpdv'
duration='90000"' startNumber='32401' />
<Representation id='v2' width='1920"' height='1080"'/></Period>"
b
"id": 37
}

If all of the indicated Media Segment files are present, including Initialization Segments, the
Receiver may respond with:

<= {
"jSOnrpC": "2'0",
"result": {"cached": true},
"id": 37

}

If any of the indicated Media Segment files or Initialization Segments are missing, the Receiver
may respond with:

<-- {
"jsonrpc": "2.0",
"result": {"cached": false},
"id": 37

9.5 Query Cache Usage API
If the Broadcaster Application wishes to know the total quota size of the cache assigned to the
Application Context ID with which it is associated and the total current usage of the cache in the
Application Context ID hierarchy, the Query Cache Usage API can be used.

The Query Cache Usage Request semantics are defined in Table 9.53 and the syntax shall be
asdeﬁnedintheschmnafﬂeorg.atsc.query.cacheUsage—request.jsom

Table 9.53 Query Cache Usage Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.cacheUsage"

The Query Cache Usage Response semantics are defined in Table 9.54 and the syntax shall be
as defined in the schema file org.atsc.query.cacheUsage-response. json. Additional
semantic definitions of parameters follow the table.

101

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.cacheUsage-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.cacheUsage-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.54 Query Cache Usage Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
usageSize 1 integer The total number of bytes used in the current
Application Context Cache
quotaSize 1 integer The total number of bytes allocated to the current
Application Context Cache
error oneOf X See Section 8.3.3

usagesize — The total usage byte size of the cache associated with the Application Context ID of
the Broadcaster Application.
quotasize — The total size in bytes of the quota allocated for the Application Context ID of the
Broadcaster Application.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e None — There are no errors specific to this API.
For example, if the Broadcaster Application wishes to query the status of cache usage, it could
do as follows:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.query.cacheUsage",
"id": 39

If the usage size of cache equals 8,475,337 bytes and the quota size available to the Application
Context ID equals 209,715,200 bytes, the Receiver might respond with:

<--{
"jsonrpc": "2.0",
"result": {
"usageSize": 8475337,
"quotaSize": 209715200
b
"id": 39
}

9.6 Event Stream APlIs

Events intended for Broadcast Applications can be encountered in broadcast media, either as Event
Message ('emsg' or 'evti') Boxes in-band with the media, or as static EventStream elements at
the period level in a DASH MPD, obtained via broadband from a signaling server or content
recovery server, or detected in decoded video content from a video watermark. These Events may
initiate interactive actions on the part of a Broadcast Application, or they may indicate that new
versions of files are being delivered, or various other things. Specification of the delivery of events

102

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

for ATSC 3.0 applications and synchronization of these application events with underlying content
can be found in the A/337 standard [6].

In the case of AMP media playback, parsing and processing of Events is expected to be
performed by the Broadcaster Application. In the case of RMP media playback, three APIs are
needed to support this function:

e Subscribe to an Event Stream
e Unsubscribe from an Event Stream
e Receive an Event from a subscribed Event Stream

9.6.1 Event Stream Subscribe API

A Broadcaster Application that is currently subscribed to Event Stream notifications is expected
to be notified when certain Event Stream events are encountered during RMP playback in the MPD
or the Media Segments. For MPEG DASH, the Event Message Box ('emsg') box contains in-band
events, and the MPD may include static events in an EventStream element at the period level.
Events in MMT-based Services may be carried in 'evti' boxes in MPUs [6]. A Broadcaster
Application that wishes to be notified when a particular type of event occurs may register for that
type of event using a schemexduri and optionally an accompanying value parameter.

The Event Stream Subscribe Request semantics are defined in Table 9.55 and the syntax shall
be as defined in the schema file org.atsc.eventStream.subscribe-request.json. Additional
semantic definitions of parameters follow the table.

Table 9.55 Event Stream Subscribe Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.eventStream.subscribe"

schemeIduri 1 string (uri) The event stream scheme ID that is requested to
be sent to the Broadcaster Application

value 0..1 string A specific event to be detected

dispatchmode 0..1 string Sets the relative timing of the event notification

schemeIdUri — The schemexduri URI string associated with the Event Stream event of interest to
the Broadcaster Application. The syntax of the schemeIduri is expected to comply with the

syntax of AEI.EventStream@schemeIdUri as defined in [6].
value — An optional string used to identify a particular Event Stream event.
dispatchMode — An optional string specifying when an event is set. The values are as follows:

onReceive — (default value). If set to this value, or if the dispatchMode property is not present,

events shall be dispatched as soon as practical after they are received (and not when they
are due to start).

onstart — If set to this value, events shall be dispatched at the moment when the event is due

to start.

For more details regarding this operation, see DASH-IF Events Reference Model in [42].The
Event Stream Subscribe Response semantics are defined in Table 9.56 and the syntax shall be as
defined in the schema file org.atsc.eventStream.subscribe-response.json. Additional
semantic definitions of parameters follow the table.

103

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.eventStream.subscribe-request.json
mailto:AEI.EventStream@schemeIdUri
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.eventStream.subscribe-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.56 Event Stream Subscribe Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Empty object on successful subscription. The error
structure is returned if unsuccessful
error oneOf X See Section 8.3.3 as extended below
code 1 integer The error code indicating what problem occurred
message 1 string A concise message describing the error
data 0..1 object Required if code = -38
maximumEvents 1 integer The maximum number of events allowed to be
subscribed

result — On successful subscription, the result structure shall contain no elements. In JSON,
this is represented as "result": {}.
maximumEvents — Provides the total number of events that are allowed to be subscribed when the
-38 error occurs indicating the limit has been reached.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e -16 — Indicates that the schemeIduri property contains a malformed URI.
e -38 —Indicates that the request exceeds the number of Event Stream subscriptions allowed.
The Broadcaster Application should consider un-subscribing from some events.
For example, if the Broadcaster Application wishes to register for Event Stream events
associated with schemeIduri "urn:uuid:1AD2F3EF-87C8-46B4-BD1D-94C174C278EE", it could
subscribe as follows:

—_> {

"jsonrpc": "2.0",

"method": "org.atsc.eventStream.subscribe",

"params": {"schemeIdUri": "urn:uuid:1AD2F3EF-87C8-46B4-BD1D-
94C174C278EE"},

"id": 22
}

The Receiver might respond with:

<-- {
"jsonrpc": "2.0",
"result": {},
"id": 22

}

The Receiver would then be set to communicate any Event Stream events tagged with
schemeIduri "urn:uuid:1AD2F3EF-87C8-46B4-BD1D-94C174C278EE" to the Broadcaster
Application using the Event Stream Event API defined in Section 9.6.3 below.

104

ATSC A/344:2026-02

ATSC 3.0 Interactive Content 18 February 2026

If the Broadcaster Application were only interested in Event Stream events associated with this
schemexduri when the accompanying value = "17", it could subscribe while including the value

parameter:
-—> {
"jsonrpc": "2.0",
"method": "org.atsc.eventStream.subscribe",
"params": {
"schemeIdUri": "urn:uuid:1AD2F3EF-87C8-46B4-BD1D-94C174C278EE",
"value": "17"
by
"id": 23
}

The Receiver might respond with:

<= {
"jsonrpc":
"result":
"id": 23

"2'0"’
{1,

The Receiver would then be set to communicate any Event Stream event tagged with
schemeIduri "urn:uuid:1AD2F3EF-87C8-46B4-BD1D-94C174C278EE" and value ="17" to the
Broadcaster Application using the notification API defined in Section 9.6.3 below. The
Broadcaster Application would not be notified of Event Stream events tagged with unsubscribed
values of schemexduri or those with a subscribed schemexduri but not matching any specified
value.

The Broadcaster Application may subscribe to multiple different Event Stream events (with
different schemeIduri values, or different schemeIduri/value combinations).

Once subscribed, the Broadcaster Application may unsubscribe using the API described in
Section 9.6.2.

9.6.2 Event Stream Unsubscribe API
If a Broadcaster Application has subscribed to an Event Stream using the Event Stream Subscribe
API defined in Section 9.6.1, it can use the Event Stream Unsubscribe API defined here to request
that the Receiver discontinue notifications pertaining to the identified event.

The Event Stream Unsubscribe Request semantics are defined in Table 9.57 and the syntax
shall be as defined in the schema file org.atsc.eventStream.unsubscribe-request.json.
Additional semantic definitions of parameters follow the table.

Table 9.57 Event Stream Unsubscribe Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.eventStream.unsubscribe"

schemeIduri 1 string (uri) The event stream scheme ID that is requested to
be sent to the Broadcaster Application

value 0..1 string A specific event to be detected

105

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.eventStream.unsubscribe-request.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

schemeIdUri — The scheme1duri URI string associated with the Event Stream event for which
the Broadcaster Application would like to remove the subscription. The syntax of the
schemeIdUri shall comply with the syntax of AEI.EventStream@schemeIdUri as defined in
[6].
value — An optional string used to identify a particular Event Stream event from which to remove
the subscription.
The Event Stream Unsubscribe Response semantics are defined in Table 9.58 and the syntax
shall be as defined in the schema file org.atsc.eventStream.unsubscribe-response. json.
Additional semantic definitions of parameters follow the table.

Table 9.58 Event Stream Unsubscribe Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Empty object on successful subscription removal.
The error structure is returned if unsuccessful.

error oneOf X See Section 8.3.3

result — On successful unsubscribe request, the result structure is expected to contain no
elements. In JSON, this is represented as "result": {}.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e -16 — Indicates that the schemeIduri property contains a malformed URI.

e -24: The Broadcaster Application was not subscribed to any of the requested notifications

For example, if the Broadcaster Application wishes to unsubscribe to all Event Stream events
associated with schemeIduri "urn:uuid:1AD2F3EF-87C8-46B4-BD1D-94C174C278EE",
regardless of the value of the value parameter, it could use the following API:

-——> {
"jsonrpc": "2.0",
"method": "org.atsc.eventStream.unsubscribe",
"params": {"schemeIdUri": "urn:uuid:1AD2F3EF-87C8-46B4-BD1D-
94C174C278EE"},
"id": 26
}

If the operation was successful, the Receiver would respond with:

<-- {
"jsonrpc": "2.0",
"result": {1},
"id": 26

}

If the Broadcaster Application had subscribed to this same schemexduri using value="47" and
value="48", and now wished to unsubscribe to the latter, it could use the following API:

106

mailto:AEI.EventStream@schemeIdUri
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.eventStream.unsubscribe-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

"jsonrpc": "2.0",

"method": "org.atsc.eventStream.unsubscribe",

"params": {
"schemeIdUri": "urn:uuid:1AD2F3EF-87C8-46B4-BD1D-94C174C278EE",
"value": "48"

}I

"id": 29

}

If the operation were successful, the Receiver would respond with:

<-- {
"jsonrpc": "2.0",
"result": {1},
"id": 29

}

9.6.3 Event Stream Event API

The Event Stream Event is expected to be issued by the Receiver to the currently executing
Broadcaster Application during RMP playback if an event is encountered in the content of the
currently selected Service or currently playing content that matches the value of schemeIduri
(and accompanying value, if it was provided in the subscription) provided in a prior Event Stream
Subscription.

The Event Stream Event semantics are defined in Table 9.59 and the syntax shall be as defined
in the schema file org.atsc.eventStream.event-notification.json. Additional semantic
definitions of parameters follow the table.

Table 9.59 Event Stream Event Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.eventStream.event"

schemeIduri 1 string (uri) Identifies the source event stream from which this
event originated

value 0.1 string Defined by scheme

currentTime 0..1 number (>=0) | The current offset on the media timeline in floating
point seconds

eventTime 1 number (>=0) | The media presentation time when this event
occurred in floating point seconds

duration 0..1 number (>=0) | The duration of the event in floating point seconds

id 0..1 integer (O ... The relative 1D of this event

4294967295)

data 0.1 string The data set from the event, optionally encoded
with the contentEncoding method

contentEncoding 0.1 string Identifies an encoding applied to the data property

schemeIdUri — A required string identifying the Event Stream with which the Event is associated.
The syntax of the schemerduri shall comply with the syntax of
AEI.EventStream@schemeIdUri as defined in [6].

107

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.eventStream.event-notification.json
mailto:AEI.EventStream@schemeIdUri

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

value — An optional string with semantics as defined by the owners of the Event Stream scheme
identified by schemeIduri.

currentTime — An optional floating-point number representing the current time on the RMP
media presentation timeline, expressed as an offset in seconds from the startbate (as

specified in Query RMP Media Time API, Section 9.13.1).
eventTime — A required floating-point number representing the presentation time at which the

event starts on the RMP media presentation timeline, expressed as an offset in seconds from

the startbate (as specified in Query RMP Media Time API, Section 9.13.1).
duration — An optional floating-point number representing the duration of the event in seconds.
id — An optional number indicating the relative id of this event.
data — An optional string or object representing additional data associated with this event, with

semantics as defined by the owners of the Event Stream scheme identified by schemeIduri.

The contentEncoding property indicates an encoding that has been applied to the data. When

a content encoding is indicated, it is the responsibility of the Broadcaster Application to decode

the data.
contentEncoding — An optional string specifying a content encoding that has been applied by the

Receiver to the data. The only supported value for the contentEncoding property is

"base64", indicating that the data parameter value is base64 encoded [27]. Absence of a

specified encoding is indicated by absence of the contentEncoding property from the

response.

The start time of the event on the RMP presentation timeline is when currentTime (as
provided in Query RMP Media Time API, Section 9.13.1) is equal to eventTime of the Event.

For MPD Events [41], the Receiver shall populate the data property of the Event Stream Event
response with the un-decoded value of the Event@messageData parameter of the MPD Event (i.e.,
without applying the decoding identified by Event@contenttEncoding, if any) or, if no
Event@messageData attribute is present in the MPD Event, the un-decoded value of the Event
element of the MPD Event. The Receiver shall populate the contentEncoding property of the
response with the Event@contenteEncoding parameter of the MPD Event, if present.

For AEI events [6], the Receiver shall populate the data property of the Event Stream Event
response with the Event parameter of the AEI event and the contentEncoding property of the
response shall be absent.

For events delivered via 'emsg' box [6], 'evti' box [6], or Dynamic Event Message [5] and
where the received event data is not UTF-8-compliant, the Receiver shall apply base64 encoding
[27] to the received event data, populate the data property of the Event Stream Event response with
the encoded event data, and populate the contentEncoding property of the response with the
value "base64". Receivers shall not apply an encoding to received event data that is UTF-8
compliant. (Efficient methods for establishing the UTF-8 compliance of stream event data are
widely available to Receiver manufacturers [51].)

Note that it is the responsibility of the Broadcaster Application to base64 decode the data
property of the Event Stream Event response, regardless of anticipated binary or UTF-8 payload
assumptions, if the Receiver indicates "base64" in the contentEncoding property.

An example Event Stream notification message that might occur if the Broadcaster Application
had registered for Event Stream events using a schemeIdUri of tag:xyz.org:evt:xyz.aaa.9:

108

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<--{
"jsonrpc": "2.0",
"method": "org.atsc.eventStream.event",
"params": {
"schemeIdUri": "tag:xyz.org:evt:xyz.aaa.9",
"value": "ev47",
"currentTime": 1460.2,
"eventTime": 1450.6,
"id": 60,

"data": "d8a0c98£fs08-d9df0809s"

Note in this example that if the Broadcaster Application had included a value parameter in the
subscription, and that parameter had not been "ev47", this particular event would not be forwarded
to the Broadcaster Application.

9.7 Request Receiver Actions
9.7.1 Acquire Service API

The current service may be changed by two entities, the Broadcaster Application via request to the
Receiver, or the user via the Receiver directly. This may be within the same or different RF
channel. Depending on the information sent in the Broadcaster Application signaling, the Receiver
performs the actions described in Section 6.3, Broadcaster Application Lifecycle.

The reason why a Broadcaster Application might request the Receiver to change the service
selection might be to jump to another service of the same broadcaster for content that might be of
interest to the user. The Receiver processes the request and if it can, it changes the service selection.

The Acquire Service Request semantics are defined in Table 9.60 and the syntax shall be as
defined in the schema file org.atsc.acquire.service-request.json. Additional semantic
definitions of parameters follow the table.

Table 9.60 Acquire Service Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.acquire.service"

SVCToAcquire 1 string (uri) The globalsServiceID of the service to be
acquired

svcToAcquire — This required string shall correspond to the globalserviceld (as defined in
SLT.Service@globalservicelID; see A/331 [3] Section 6.3) of the service to acquire.
The Acquire Service Response semantics are defined in Table 9.61 and the syntax shall be as
defined in the schema file org.atsc.acquire.service-response.json. Additional semantic
definitions of parameters follow the table.

109

https://atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.acquire.service-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.acquire.service-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.61 Acquire Service Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Empty object on successful acquisition. An error
structure is returned if unsuccessful.

error oneOf X See Section 8.3.3

result — If the service acquisition is successful, the Receiver shall respond with a JSON-RPC
response object with an empty, " {}", result object.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e -6 — Service not found
e -7 —Service not authorized
For example, if the Broadcaster Application requests access to a service represented by

globalserviceID "https://doi.org/10.5239/8A23-2BOB", it can issue this request to the
Receiver:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.acquire.service",
"params": {"svcToAcquire": "https://doi.org/10.5239/8A23-2B0B"},
"id": 59
}

The Receiver would respond, if acquisition were successful with:

<= {
"jsonrpc": "2.0",
"result": {1},
"id": 59

}

If globalservicelID "https://doi.org/10.5239/8A23-2B0B" is unknown to the Receiver,
the response would be:

<=
"jsonrpc": "2.0",
"error": {"code": -6, "message": "Service not found"},
"id": 59

}

9.7.2 Video Scaling and Positioning API

A Broadcaster Application in an application-enhanced Service (e.g., playing within the video plane
that is positioned on top of the video produced by the Receiver Media Player) can use the video
scaling and positioning JSON-RPC method to request that the RMP render its video at less than
full-scale (full screen), and to position it at a specified location within the display window.

110

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The Video Scaling and Positioning Request semantics are defined in Table 9.62 and the syntax
shall be as defined in the schema file org.atsc.scale-position-request.json. Additional
semantic definitions of parameters follow the table.

Table 9.62 Video Scaling and Positioning Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.scale-position"

scaleFactor 1 number (10.0 ... | The percentage to scale the video from 10.0% to
100.0) 100.0%

XPos 1 number (0.0 ... |The X-axis location to position the video as a
100.0- percentage of full screen width
scaleFactor)

yPos 1 number (0.0 ... |The Y-axis location to position the video as a
100.0- percentage of full screen height

scaleFactor)

scaleFactor — This required number value in the range 10.0 to 100.0 shall represent the video
scaling parameter, where 100.0 represents full-screen (no scaling).

xPos — This required number value in the range 0.0 to 100.0-scaleFactor shall represent the X-
axis location of the left side of the RMP's video window, represented as a percentage of the
full width of the screen. A value of 0.0 indicates the left side of the video window is aligned
with the left side of the display window. A value of 50.0 indicates the left side of the video
window is aligned with the vertical centerline of the display window, etc.

yPos — This required number value in the range 0.0 to 100.0-scaleFactor shall represent the Y-
axis location of the top of the RMP's video window, represented as a percentage of the full
height of the screen. A value of 0.0 indicates the top of the video window is aligned with the
top of the display window. A value of 50.0 indicates the top of the video window is aligned
with the horizontal centerline of the display window, etc.

The zero axis of the coordinate system shall be the upper left corner, as with CSS.

The parameter values shall be set such that no portion of the video window would be rendered
outside the display window.

With a successful Video Scaling and Positioning Request, it is expected that scaling using the
scaleFactor value is applied before positioning using the xPos and yPos values to perform the
transform of the video window. With any additional successful Video Scaling and Positioning
Request, it is expected that the transform is applied to a reset full-screen video window and not the
already transformed video window from a previous successful Video Scaling and Positioning
Request.

The Video Scaling and Positioning Response semantics are defined in Table 9.63 and the
syntax shall be as defined in the schema file org.atsc.scale-position-response.json.
Additional semantic definitions of parameters follow the table.

111

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.scale-position-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.scale-position-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.63 Video Scaling and Positioning Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Empty object on successful video scaling and
positioning. The error structure is returned if
unsuccessful.
error oneOf X See Section 8.3.3 as extended below
code 1 integer The error code indicating what problem occurred
message 1 string A concise message describing the error
data 0..1 object
minimumScaleFactor 0.1 number (10.0 |Minimum scaleFactor supported by the Receiver.
... 100.0)

result — Ifthe video scaling and positioning request is successful, the Receiver shall respond with

a JSON-RPC response object with an empty, "{}", result object.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e -8 —Failed to scale/position the video.

In this case, the Receiver may optionally include the minimumScaleFactor as a property of
the error data object.

minimumScaleFactor — Provides the minimum scaleFactor supported by the Receiver. See
the scaleFactor semantics defined above.

For example, if the Broadcaster Application wished to scale the displayed video to 25% of full
screen, and position the left edge of the display horizontally at 10% of the screen width and the
top edge of the display vertically at 15% of the screen height, it would issue this JSON-RPC API
to the Receiver:

-——> {
"jsonrpc": "2.0",
"method": "org.atsc.scale-position",
"params": {
"scaleFactor": 25.0,
"xPos": 10.0,
"yPos": 15.0
b
"id": 589
}

If scaling/positioning were successful, the Receiver would respond with:

112

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"result": {},
"id": 589

If scaling and/or positioning were not successful, the Receiver would respond with a JSON
object including an "error" object:

<--
"jsonrpc": "2.0",
"error": {
"code": -8,
"message": "Video scaling/position failed",
"data": {
"minimumScaleFactor": 30.0
}
}I
"id": 589
}

9.7.3 Set RMP URL API

The Broadcaster Application may choose to use the Receiver Media Player (RMP) to play video
content originating from an alternate source (e.g., broadband or locally cached content) instead of
the broadcast-delivered content. In this way, the Broadcaster Application can take advantage of an
optimized media player provided by the Receiver. The Broadcaster Application may use the Set
RMP URL API to request the Receiver to use its RMP to play content originated from a URL
provided by the Broadcaster Application. Once the Receiver is notified to play content from the
application-provided URL, the RMP stops rendering the broadcast content (or the content being
rendered at the time of the request) and begins rendering the content referenced by the new URL.

The content presented via the specified MPD is considered to be a part of the currently selected
Service. The effects of changing this URL are temporary and if the Service is re-selected (e.g., by
the Broadcaster Application via the Acquire Service API), then the RMP is expected to process
the endoperation function. Note that the Broadcaster Application may use the stopRMP operation
to stop the current RMP playback, but selecting a service overrides this operation.

The Broadcaster Application may request that the RMP synchronize the requested operations
to a future time on the current presentation timeline. This explicit synchronization is needed in the
scenario where the currently playing content is being delivered by an alternate transport such as
what might be found in redistribution. The RMP is not expected to be capable of queuing more
than one such pending request at a time. Synchronization is indicated through use of the
rmpSyncTime parameter as specified in the following paragraphs.

If the Set RMP URL API is called by a Broadcaster Application and a startRMP operation is
specified, then:

e ifno rmpSyncTime value is specified in the current request, then the Receiver is expected
to cancel any pending Set RMP URL request and immediately begin playback of the MPD
given in the current request;

e if the RMP is currently playing the content specified in service-level signaling and if an
rmpSyncTime value is specified in the current request, then the Receiver is expected to

113

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

cancel any pending Set RMP URL request and to begin the playback of the MPD given in
the current request when the presentation time specified by rmpSyncTime is reached;

if the RMP is currently playing an MPD specified in a prior Set RMP URL request and if
rmpSyncTime has the value -1.0 specified in the current request, then the Receiver is
expected to cancel any pending Set RMP URL request and to begin the playback of the
MPD given in the current request when the end of the presentation currently being played
by the RMP is reached;

Otherwise, the Receiver is expected to ignore the current request and continue to play the
current content.

If the Set RMP URL API is called by a Broadcaster Application and a stopRMP operation is
specified, then:

if the RMP is currently playing the content specified in service-level signaling or an MPD
specified in a prior Set RMP URL request and if no rmpsyncTime value is specified in the
current request, then the Receiver is expected to cancel any pending Set RMP URL request
and immediately stop the presentation of the RMP;

if the RMP is currently playing the content specified in service-level signaling or an MPD
specified in a prior Set RMP URL request and if an rmpSyncTime value is specified in the
current request, then the Receiver is expected to cancel any pending Set RMP URL request
and to continue playback of the current content until the presentation time indicated by
rmpSyncTime is reached, at which time it is expected to stop the presentation of the RMP;
and

if the RMP playback is currently stopped, then the Receiver is expected to ignore the
current request.

If the Set RMP URL API is called by a Broadcaster Application and a resumeService
operation is specified, then:

if the RMP is currently either playing an MPD specified in a prior Set RMP URL request
or stopped by a stoprmp operation of a prior Set RMP URL request and if no rmpSyncTime
is specified in the current request, then the Receiver is expected to cancel any pending Set
RMP URL request and process the endoperation function;

if the RMP is currently playing an MPD specified in a prior Set RMP URL request and if
an rmpSyncTime is specified in the current request, then the RMP is expected to
immediately cancel any pending Set RMP URL request and to continue playback of the
currently playing MPD until the presentation time indicated by rmpSyncTime is reached,
at which time it is expected to process the endoperation function;

Otherwise, the Receiver is expected to ignore the current request and continue to play the
current content.

If the Receiver determines that it is unable to perform the action as requested, it is expected to
return an error code and is not expected to perform the requested action.

At the time the RMP begins playback of the MPD given in a Set RMP URL request, the
Broadcaster Application can receive a notification via the Signaling Data Change Notification API
(Section 9.3.11). In any case, whenever an MPD change or update causes a discontinuity in the
presentation timeline, the RMP is expected to cancel any pending Set RMP URL requests.

The Broadcaster Application specifies the content to be played by the RMP by providing the
URL of an MPD. The MPD shall be constructed in accordance with A/331 [3].

114

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The URL may include an MPD Anchor identifying the entry point on the media presentation
timeline (e.g., an offset from the start of the MPD, an offset from the start of a named period, a
UTC time, or the "live edge") at which the RMP should begin playback. MPD Anchor shall be as
defined in MPEG DASH [29]. This allows flexibility for many use cases including bookmarking.
If the playback position indicated by a specified MPD Anchor is not available to the RMP, the
RMP is not expected to play the MPD at the given URL and an error code is expected to be
returned.

The Set RMP URL Request semantics are defined in Table 9.64 and the syntax shall be as
defined in the schema file org.atsc.setRMPURL-request . json. Additional semantic definitions
of parameters follow the table.

Table 9.64 Set RMP URL Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.setRMPURL"

operation 0.1 enum "startRmp", "stopRmp", "pauseRmp",

"resumeRmp", "fastForwardRmp", "rewindRmp",

"skipForwardRmp", "skipBackwardsRmp",

"resumeService"

rmpur] 0..1 string (uri) Provides the URI of the MPD to be played by the
RMP if "operation" = "startRmp"

rmpSyncTime 0..1 number Indicates the time offset when the operation
specified should occur

endOperation 0..1 enum "stopRmp", "pauseRmp", "resumeService"

operation — This optional string shall define the operation to be performed by the RMP. When

operation is absent, the Receiver shall cancel any pending Set RMP URL API request. The

meaning of the enumerated values shall be defined as follows:

"startRmp" indicates that the RMP shall start playing the URI provided by the rmpurl
property as described in the property description below.

"stopRmp" indicates that the RMP shall cease playback. For this operation, the rmpurl
property is not required and shall be ignored if present.

"pauseRmp" indicates that the RMP shall suspend playback, freeze-frame, and mark the
current position in the content.

"resumeRmp" indicates that the RMP shall continue playing from a previous pauseRmp
operation.

"fastForwardRmp" indicates that the RMP shall speed up playback. The initial speed and
sequential calls for this operation are Receiver-dependent.

"rewindRmp" indicates that the RMP shall playback in reverse. The initial speed and sequential
calls for this operation are Receiver-dependent.

"skipForwardrRmp" indicates that the RMP shall skip forward and resume playback. The time
skipped is Receiver-dependent.

"skipBackwardsRmp" indicates that the RMP shall skip backward and resume playback. The
time skipped is Receiver-dependent.

115

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.setRMPURL-request.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

"resumeService" indicates that the RMP shall resume normal playback of the current Service.
For this operation, the "rmpur1" property is not required and shall be ignored if present.

rmpurl — When the operation value is set to startRmp, this string shall be specified and provide a
fully qualified URI referencing an MPD to be played by the RMP, whether referencing an
MPD over broadband or in the Application Context Cache. The URI shall be accessible to the
Receiver. The appropriate error code (see below) shall be returned if the URI cannot be
accessed. Note that for an MPD in the Application Context Cache, the full URI can be
constructed using the Base URI provided using the Query Receiver Web Server URI API as
described in Section 9.2.7.

rmpSyncTime — This optional floating-point number indicates a future time (i.e., later than
currentTime) on the media presentation timeline of the presentation currently being played
by the RMP (in seconds, relative to the media presentation time given by startDate as
specified in the Query RMP Media Time API, Section 9.13.1) at which the action specified by
operation should be performed. If rmpsyncTime is not specified, the action indicated by
operation should begin playing immediately. If rmpSyncTime has the value -1.0, the action
indicated by operation should be performed when the end of the presentation currently being
played by the RMP is reached. (The end of the presentation is considered to occur when no
further presentation description is indicated.)

endOperation — This optional string indicates what the RMP shall do when it reaches the end of
the MPD presentation. The values shall be as defined for the parameter, operation. If this
parameter is absent the default value shall be resumeservice.
The Set RMP URL Response semantics are defined in Table 9.65 and the syntax shall be as

defined in the schema file org.atsc.setRMPURL-response.json. Additional semantic

definitions of parameters follow the table.

Table 9.65 Set RMP URL Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X An empty structure is returned on successful
request otherwise the error structure is returned

error oneOf X See Section 8.3.3

result —Ifthe set RMP URL is successful, the Receiver shall respond with a JSON-RPC response
object with an empty, " {}", result object.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e -5—No broadband connection is available.

-11 — The indicated MPD cannot be accessed.

e -12 — The content cannot be played.

-13 — The requested MPD Anchor cannot be reached.

-15 — Indicates that the provided rmpurl property value is an illegal URL.

-19 —The synchronization specified by rmpSyncTime cannot be achieved.

-21 — Changing RMP playback from the current source is not supported.

116

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.setRMPURL-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

e -36 — The requested operation is not supported.

For example, if the Broadcaster Application requests the RMP to play content from a
broadband source at a DASH server located at https://stream.wxyz.com/33/program.mpd, it
can issue a command to the Receiver as follows:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.setRMPURL",
"params": {"operation": "startRmp",
"rmpurl": "https://stream.wxyz.com/33/program.mpd"},
"id": 104
}

Upon success, the Receiver would respond:

<--{
"jsonrpc":
"result":
"id": 104

"2.0ll,
{1,

If the Receiver's RMP cannot play the content, the Receiver might respond:

<=
"jsonrpc": "2.0",
"error": { "code": -12, "message": "The content cannot be played"},
"id": 104

}

Furthering the example, the user interacts with a Broadcaster Application, which now wishes
to display a full-screen video on demand selection screen with no video. The Broadcaster
Application makes the following request to the Receiver:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.setRMPURL",
"params": {"operation": "stopRmp"},
"id": 113

}

Upon success, the RMP would cease displaying video and the Receiver would respond:

<--{
"jsonrpc":
"result":
"id": 113

"2.0ll,
{1,

Finally, the user exits from the video on demand scenario and now wants to return to watching
broadcast services. The Broadcaster Application would make the following request:

117

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

-_> {
"jsonrpc": "2.0",
"method": "org.atsc.setRMPURL",
"params": {"operation": "resumeService"},
"id": 106
}

Upon success, the Receiver would resume normal playback operations and would respond:

Sl
"jsonrpc": "2.0",
"result": {},
"id": 106

}

As a fourth example, if the currentTime as provided by the Query RMP Media Time API is
1740 seconds past the startbate, no MPD given in a prior Set RMP URL request is being played,
and the Broadcaster Application wants the RMP to begin the playback of the MPD located at
https://stream.wxyz.com/33/program.mpd when the currentTime of the presentation
currently being played by the RMP reaches 1800 seconds with an entry point into the specified
MPD that is 5 minutes from its beginning, the application can issue a command to the Receiver as
follows:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.setRMPURL",
"params": {"operation": "startRmp",
"rmpurl": "https://stream.wxyz.com/33/program.mpd#t=5:00",
"rmpSyncTime": 1800.00},
"id": 107
}

Upon successfully scheduling the pending MPD playback, the Receiver would respond:

Sl
"jsonrpc": "2.0",
"result": {},
"id": 107

}

If the Receiver's RMP cannot accept the request for scheduled playback of the content (e.g.,
because the specified synchronization time has passed or is too soon for the RMP to prepare), the
Receiver might respond:

118

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<--{

"jsonrpc": "2.0",

"error": { "code": -19,

"message": "The synchronization specified by rmpSyncTime cannot be
achieved"},

"id": 107
}

As a fifth example, if the RMP is playing an MPD per a prior Set RMP URL API request and
the currentTime is 10 seconds past the startDate as provided by the Query RMP Media Time
API, and the Broadcast Application wants the RMP to resume the playback of the content specified
in service-level signaling when the currentTime of the presentation currently being played
reaches 60 seconds, it can issue a request to the Receiver as follows:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.setRMPURL",
"params": {"operation": "resumeService",
"rmpSyncTime": 60.00},
"id": 108
}

Upon successfully scheduling the requested playback of the content specified in the service-
level signaling, the Receiver would respond:

<-- {
"jsonrpc": "2.0",
"result": {1},
"id": 108

}

As a sixth example, if the RMP is playing content specified in the service-level signaling (or
an MPD specified in a prior Set RMP URL API), the currentTime is 10 seconds past the
startDate as provided by the Query RMP Media Time API, then the Broadcaster Application
can request the Receiver to stop the current playback when the currentTime reaches 30 seconds

with the following request:

-——> {
"jsonrpc": "2.0",
"method": "org.atsc.setRMPURL",
"params": {"operation": "stopRmp",
"rmpSyncTime": 30.00},
"id": 109
}

Upon successfully scheduling the requested stop of the current playback, the Receiver would
respond:

119

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"result": {},
"id": 109

}

9.7.4 Audio Volume API

By default, the audio output of the Receiver Media Player and that of the User Agent are mixed.
The Broadcaster Application may set and get the volume of the HTMLS5 media element using the
.volume property. It may wish to set and get the audio volume of the Receiver Media Player. For
example, the Broadcaster Application might mute the audio output of broadcast service when the
user chooses to watch broadband content rendered with an HTMLS media element. The Audio
Volume API may be used for such a case.

Figure 9.1 illustrates audio processing in an example Receiver in which the audio output of the
User Agent is mixed with the audio output of the Receiver Media Player for presentation to the
user. The Broadcaster Application controls the volume of its output using the .volume property of
the HTMLMed1iaETement. Analogously, the Audio Volume API defined here may be used to set the
volume of the Receiver Media Player, shown as "V1" in the figure. Note that the API changes only
the RMP volume ("V1"). The overall Receiver Volume Control is not manageable from the
Broadcaster Application and control of this audio volume is not in the scope of the present
document.

HTMLMediaElement.volume

User Agent
e ;
Speakers
Receiver
Volume
RMP Control

V1

Figure 9.1 RMP audio volume.

If a volume element is provided in the request, the Receiver processes the request to set the
RMP volume. The Receiver's response provides the current volume in either case.

The Audio Volume Request semantics are defined in Table 9.66 and the syntax shall be as
defined in the schema file org.atsc.audiovolume-request.json.

120

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.audioVolume-request.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.66 Audio Volume Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.audioVolume"

audiovolume 0..1 number (0.0 ... |If present, the requested audio volume in the range
1.0) 0.0 (muted) to 1.0 (full volume)

audiovolume — This optional floating-point number in the range O to 1, when present, shall
correspond to a value of audio volume to be set in the Receiver Media Player. The value of the
number shall be in the range of 0.0 (minimum or muted) to 1.0 (full volume). The encoding is
the same as the .volume property of the HTMLS5 media element. If volume is not specified in
the request, the volume is not changed by this request. This can be used to determine the current
volume setting.
The Audio Volume Response semantics are defined in Table 9.67 and the syntax shall be as

defined in the schema file org.atsc.audioVolume-response.json. Additional semantic

definitions of parameters follow the table.

Table 9.67 Audio Volume Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
audiovolume 1 number (0.0 ... |The current audio volume in the range 0.0 (muted)
1.0) to 1.0 (full volume)
error oneOf X See Section 8.3.3

audiovolume — This floating-point number in the range 0.0 to 1.0 shall indicate the current audio
volume of the Receiver Media Player, where 0 indicates minimum volume or muted, and 1.0
indicates full volume.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e None — There are no errors specific to this API.
For example, if the Broadcaster Application wishes for the Receiver Media Player set the audio
volume to half volume (50%):

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.audioVolume",
"params": {"audioVolume": 0.5},

"id": 239

If the request is processed successfully, the Receiver might respond with:

121

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.audioVolume-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"result": {"audioVolume": 0.5},
"id": 239

}

9.7.5 Dialog Enhancement API

By default, the audio decoder in the Receiver's Receiver Media Player applies Dialog
Enhancement processing as configured by the user in his or her preference settings. The
Broadcaster Application may wish to provide an interface to get or set the amount of processing,
or to release a setting previously made by a Broadcaster Application. The Dialog Enhancement
API may be used for this case.

It is anticipated that once the user changes his or her desired Dialog Enhancement processing
level in the Receiver preferences, these changes should be applied immediately. Therefore, the
Broadcaster Application-initiated preference setting is expected to be superseded, and the Receiver
is expected to use the gain value from the preference settings again. Simultaneously, the
Broadcaster Application may get informed about this change through the Dialog Enhancement
Preference Change Notification API and consequently can act accordingly upon this event.

The Receiver processes the request and if it can, changes the amount of processing. The
settings in the user's preferences are not expected to be changed.

The Dialog Enhancement Request semantics defined in Table 9.68 and the syntax shall be as
defined in the schema file org.atsc.dialogEnhancement-request.json.

Table 9.68 Dialog Enhancement Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.dialogEnhancement”

dialogEnhancementGain 0or integer If present, the requested dialog enhancement gain
oneOf X in dB

dialogEnhancementReset |[0Qor boolean If present and "t rue", resets the dialog
oneOf X enhancement value set by the Broadcast

Application

dialogEnhancementGain — This optional integer number specifies, when present, the gain value
in dB of the Dialog Enhancement processing to be applied in the audio decoder. A value of 0
shall disable the Dialog Enhancement processing. A value of dialogEnhancementGain thatis
outside the allowed value range of Dialog Enhancement processing as indicated by metadata
in the currently decoded audio stream shall be restricted by the Receiver.
If neither this value nor the dialogEnhancementReset is specified in the request, the amount
of processing is not changed by this request. This can be used to determine the current amount
and limits of processing applied by the audio decoder since these values are returned in the
response.

dialogEnhancementReset — If set to "true", this optional Boolean value shall release the
Broadcaster Application-controlled dialog enhancement processing. The Receiver is expected
to revert to dialog enhancement processing as configured by the user in the preference settings.
If absent or set to "false", the state and amount of dialog enhancement processing remains

122

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.dialogEnhancement-request.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

unchanged.

If neither this value nor the dialogEnhancementGain is specified in the request, the amount
of processing is not changed by this request. This can be used to determine the current amount
and limits of processing applied by the audio decoder since these values are returned in the
response.

Note: The user's preferences may be obtained by using the Query Dialog
Enhancement Preferences API specified in Section 9.2.11.

The Dialog Enhancement Response semantics are defined in Table 9.69 and the syntax shall
be as defined in the schema file org.atsc.dialogEnhancement-response.json. Additional
semantic definitions of parameters follow the table.

Table 9.69 Dialog Enhancement Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the
error structure is returned
dialogEnhancementGain |1 integer The current dialog enhancement gain value in dB
dialogEnhancementLimit|1 Provides the current-audio-stream-signaled dialog
enhancement limits
max 1 integer Upper limit of the allowed Dialog Enhancement
processing gain value in dB
min 1 integer Lower limit of the allowed Dialog Enhancement
processing gain value in dB
error oneOf X See Section 8.3.3

dialogEnhancementGain — This required integer number shall indicate the Dialog Enhancement
gain value in dB as configured to be applied in the audio decoder. If the desired gain value is
outside the range of allowed gain values, the currently applied gain value is clipped towards
the nearest specified limit.
dialogEnhancementLimit — This required object supplies information on the signaled limits of
Dialog Enhancement processing signaled in the currently decoded audio stream.
max — This required integer shall provide the currently signaled upper limit of the allowed Dialog
Enhancement processing gain value in dB.
min — This required integer shall provide the currently signaled lower limit of the allowed Dialog
Enhancement processing gain value in dB.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e -22: Dialog Enhancement failed
For example, if the Broadcaster Application wishes for the Dialog Enhancer in the Receiver
Media Player's audio decoder to apply processing at a gain value of 8 dB it would submit the
following request:

123

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.dialogEnhancement-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.dialogEnhancement",
"params": {"dialogEnhancementGain": 8},
"id": 192

}

If the request is processed successfully, the Receiver would respond with:

<--{

"jsonrpc": "2.0",

"result": {
"dialogEnhancementGain": 8,
"dialogEnhancementLimit": {

"max": 12,
"min": O
}

}y
"id": 192

If the request is not successful, the Receiver may respond with error code -22:

<--{
"jsonrpc": "2.0",
"error": {"code": -22, "message": "Dialog Enhancement failed"},
"id": 192

}

9.7.6 Launch Broadcaster Application API
This API enables the currently executing Broadcaster Application to start a new Broadcaster
Application from the HELD.

The @app1d string of the calling Broadcaster Application is included as a parameter on the
entry point call. See Section 8.2.

The Launch Broadcaster Application Request semantics are defined in Table 9.70 and the
syntax shall be as defined in the schema file org.atsc.launchApp-request.json. Additional
semantic definitions of parameters follow the table.

124

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.launchApp-request.json

ATSC A/344:2026-02

ATSC 3.0 Interactive Content 18 February 2026

Table 9.70 Launch Broadcaster Application Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.launchApp"

app1d 1 string (uri) The appId of the Broadcaster Application to
launch

parameters 0..1 string Opaque text string from the calling Broadcaster
Application to the launched Broadcaster
application

appId — This required string is the app1d as defined in A/331 [3] Section 7.1.8.

parameters — This optional string of text that is passed from the calling Broadcaster Application
to the launched Broadcaster Application. The syntax and semantics are private between the

two Broadcaster Applications.

Note that the app1d and parameters strings are passed on via the query string defined in

section &.2.

The Launch Broadcaster Application Response semantics are defined in Table 9.71 and the
syntax shall be as defined in the schema file org.atsc.launchApp-response.json. There is no
return from this API if it is successful. If the request is unsuccessful, the error response defined
below is returned.

Table 9.71 Launch Broadcaster Application Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

id 1 integer Matches the request id value
error 1 See Section 8.3.3

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be

returned:

e -23 — appid not found in the HELD
e -25-—app1d found in the HELD but not available, or broadcast-only and not yet acquired
e -26— app1d found in the HELD, broadband-only, but no network connectivity

e -27 — Receiver does not support the required capabilities
In the following example, the Broadcaster Application launches another Broadcaster

Application:

125

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.launchApp-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

"jsonrpc": "2.0",
"method": "org.atsc.launchApp",
"params": {
"appId": "pbs.org/kids/1"
}I
"id": 42
}

Upon success, the Receiver is not expected to respond since the new Broadcaster Application
will have been started. Upon failure, the Receiver is expected to respond with an error if possible.

9.7.7 Media Track Selection API for DASH

The Broadcaster Application may request the Receiver's Receiver Media Player to select a
particular video stream available in the Service, for example an alternate camera angle.
Alternatively, it might request the Receiver Media Player to select an audio presentation other than
the one it would have chosen based on the user's preferences. The DASH Media Track Selection
API may be used for these cases.

The Receiver processes the request and if it can, it changes the selection.

The DASH Media Track Selection Request semantics are defined in Table 9.72 and the syntax
shall be as defined in the schema file org.atsc.track.selection-request.json. Additional
semantic definitions of parameters follow the table.

Table 9.72 DASH Media Track Selection Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.track.selection"
selectionid 1 integer The track ID to be selected

selectionId — This required integer shall correspond to a value of @id attribute in either an
Adaptationset in the current Period, or alternatively, for complex audio presentations
involving pre-selection, the DASH period.Preselection@id value of the current Period. For
unambiguous selection of one track or audio presentation, all id values within the Period should
be unique.
The DASH Media Track Selection Response semantics are defined in Table 9.73 and the
syntax shall be as defined in the schema file org.atsc.track.selection-response.json.
Additional semantic definitions of parameters follow the table.

Table 9.73 DASH Media Track Selection Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Empty object on successful track selection. The
error structure is returned if unsuccessful.

error oneOf X See Section 8.3.3

126

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.track.selection-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.track.selection-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

result — If the media track selection request is successful, the Receiver shall respond with a

JSON-RPC response object with an empty, "{}", result object.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e -10— The specified track cannot be selected.

For example, if the Broadcaster Application wishes for the Receiver Media Player to find and
select a video Adaptationset with an id value of 5506, it could send the following WebSocket
message:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.track.selection",
"params": {"selectionId": 5506},
"id": 329

}

If the requested Adaptationset was successfully selected, the Receiver would respond with:

<-= {
"jsonrpc": "2.0",
"result": {1},
"id": 329

}

If the requested track cannot be selected, the Receiver is expected to respond with error code -
10:

<= {
"jsonrpc": "2.0",
"error": {"code": -10, "message": "Track cannot be selected"},
"id": 329

}

9.7.8 Graphics Display Regions API

The Broadcaster Application might need to provide the regions of the screen that would be
occupied by the graphical layout that it plans to present. The Receiver might use such information
to make adjustments to other display components that are being rendered for purposes such as
mitigating potential display conflict. The graphics display regions layout and numbering for use
with the Graphics Display Regions API are illustrated in Figure 9.2.

127

ATSC A/344:2026-02

ATSC 3.0 Interactive Content

18 February 2026

10
1 2 3 4 5
0.8
6 7 8 9 10
0.6
screen height 11 12 13 14 15
0.4
16 17 18 19 20
0.2
21 22 23 24 25
0.0 0.2 0.4 06 0.8

screen width

Figure 9.2 Graphics Display Regions Layout and Numbers.

1.0

The Graphics Display Regions Request semantics are defined in Table 9.74 and the syntax
shall be as defined in the schema file org.atsc.graphicsDisplayRegions-request.json.

Table 9.74 Graphics Display Regions Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.graphicsDisplayRegions"

occupiedRegions 1 integer (O ... Provides each graphics display regions number

33554431) that would be occupied by the broadcaster

application graphical layout as indicated by the
appropriate bit set in an integer. (Note:
33,554,431 =225 - 1)

occupiedRegions - The bits set to '1' in this required integer indicates which display regions in
the 5x5 display grid shown in Figure 9.2 above are occupied, even partially, by the graphical
layout that the Broadcaster Application has prepared to present for display. The least
significant bit of the integer set to '1' indicates that the Broadcaster Application plans to present
a graphical layout that will occupy display region number 1 shown in Figure 9.2, the next
significant bit set to '1' indicates display region number 2, and so on. The 5x5 display grid has
25 display regions so only the first 25 bits of the integer might be set to 'l'. Therefore, the
seven most significant bits shall be set to '0'.
The Graphics Display Regions Response semantics are defined in Table 9.75 and the syntax

shall be as defined in schema file org.atsc.graphicsDisplayRegions-response.json.

128

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.graphicsDisplayRegions-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.graphicsDisplayRegions-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.75 Graphics Display Regions Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

result oneOf X Returned on successful request otherwise the error
structure is returned

error oneOf X

result — If the graphics display regions request is successful, the Receiver shall respond with a
JSON-RPC response object with an empty, "{}", result object.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e None — There are no errors specific to this API.

9.7.9 Media Asset Selection API for MMT
The Broadcaster Application may request the Receiver's Receiver Media Player to select a
particular video asset available in the Service, for example an alternate camera angle, or to select
an audio asset other than the one it would have chosen based on the user's preferences in an MMT
stream. The MMT Media Asset Selection API may be used for these cases.

The Request semantics are defined in Table 9.76 and the syntax is defined in the schema file
org.atsc.asset.selection-request.json. Additional semantic definitions of parameters
follow the table.

Table 9.76 MMT Media Asset Selection Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.asset.selection”
assetld 1 string The asset ID to be selected

assetId— This required string is expected to correspond to a value of the asset ID in the MP Table
[30]. Asset ID may have a UUID (Universally Unique Identifier), or a URI (Uniform Resource
Identifier) scheme and the type is the byte array with a length of 32 bits.
The MMT Media Asset Selection Response semantics are defined in Table 9.77 and the syntax
shall be as defined in the schema file org.atsc.asset.selection-response.json. Additional
semantic definitions of parameters follow the table.

Table 9.77 MMT Media Asset Selection Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Empty object on successful asset selection. The
error structure is returned if unsuccessful.

error oneOf X See Section 8.3.3

129

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.track.selection-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.track.selection-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

result — If the MMT media asset selection request is successful, the Receiver is expected to
respond with a JSON-RPC response object with an empty, "{}", result object.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e -33 —The specified asset cannot be selected.

9.8 Mark Unused API
The Mark Unused API may be used by the currently executing Broadcaster Application to indicate
to the Application Context Cache that an element within the cache is unused. The Receiver may
then perform the appropriate actions to reclaim the resources used by the unused element.

The Mark Unused Request semantics are defined in Table 9.78 and the syntax shall be as
defined in the schema file org.atsc.cache.markUnused-request.json. Additional semantic
definitions of parameters follow the table.

Table 9.78 Mark Unused Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.cache.markUnused"

elementuri 1 string (uri- The relative path within the Application Context
reference) Cache of the element to be marked unused

elementUri — This required URI shall be the path of an element within the Broadcaster
Application's Application Context Cache that is to be marked unused.
The Mark Unused Response semantics are defined in Table 9.79 and the syntax shall be as
defined in the schema file org.atsc.markUnused-response.json. Additional semantic
definitions of parameters follow the table.

Table 9.79 Mark Unused Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Empty object on successful request. The error
structure is returned if unsuccessful.

error oneOf X See Section 8.3.3

result — If the mark unused request is successful, the Receiver shall respond with a JSON-RPC

response object with an empty, " {}", result object.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e -4 — Content not found

For example, the Broadcaster Application may wish to indicate that a particular replacement
ad was not needed anymore after it had been used. The files comprising the replacement ad, that
is the period XML fragment and the associated audio and video segments, would be sent in a
particular directory hierarchy labeled "ads/16" for this example. The Broadcaster Application would

130

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.cache.markUnused-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.cache.markUnused-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

mark the period XML fragment file as unused, and all segments referenced by the period XML
fragment file as unused as well. Note that the Broadcaster Application would be responsible for
marking all of the resources of the ad as unused, the Receiver is not responsible for processing the
period XML fragment file to discover referenced resources. Alternatively, the Broadcaster
Application could mark the entire directory, "ads/16", unused if the directory only contained the
replacement ad period XML fragment file and its associated segments.

The RPC request to mark the "ads/16" directory unused would be formatted as follows:

== {
"jsonrpc": "2.0",
"method": "org.atsc.cache.markUnused",
"params": {
"elementUri": "ads/16"
y
"id": 42
}

The Receiver might respond with the following on success:

<= {
"jsonrpc": "2.0",
"result": {1},
"id": 42

}

Similarly, to mark a single file unused, the Broadcaster Application could make the following
request:

"jsonrpc": "2.0",
"method": "org.atsc.cache.markUnused",
"params": {
"elementUri": "news/storyImages/photol2.png"
}I
"id": 42
}

The Receiver might respond with the following on success:

<-- {
"jsonrpc": "2.0",
"result": {1},
"id": 42

}

Standard HTTP failure codes are expected to be used to indicate issues with the formation of
the URI and that the file or directory referenced could not be marked as unused. If an element is
successfully marked as unused, future attempts to access that element have indeterminate results
in that some Receivers may not have made the element unavailable and thus respond positively to
the request while others may immediately respond with an error status.

131

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

9.9 Content Recovery APls
9.9.1 Query Content Recovery State API

A Broadcaster Application may wish to know whether it is being managed using content recovery
via watermarking and/or fingerprinting as specified in A/336 [5]. This allows the Broadcaster
Application to offer different functionality in content recovery scenarios than may be offered when
broadcast signaling is present and, in content recovery scenarios, it allows the application to
identify the presence of modifications that may be introduced by an upstream device (such as a
Set-Top Box (STB)) as discussed in Annex A of A/336 [5] on an ongoing basis during its execution
and alter its behavior accordingly.

The Query Content Recovery State Request semantics are defined in Table 9.80 and the syntax
shall be as defined in the schema file org.atsc.query.contentRecoveryState-request.json.

Table 9.80 Query Content Recovery State Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.contentRecoveryState"

The Query Content Recovery State Response semantics are defined in Table 9.81 and the
syntax shall be as defined in the schema file org.atsc.query.contentRecoveryState-
response. json. Additional semantic definitions of parameters follow the table.

Table 9.81 Query Content Recovery State Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful request otherwise the error

structure is returned

audiowatermark 0..1 integer (0 ... 2) |Indicates the audio watermark detection state
videowatermark 0..1 integer (0 ... 2) |Indicates the video watermark detection state
audioFingerprint 0..1 integer (0 ... 2) |Indicates the audio fingerprint detection state
videoFingerprint 0..1 integer (0 ... 2) |Indicates the video fingerprint detection state

error oneOf X See Section 8.3.3

audiowatermark — This integer value shall indicate one of the following states of audio
watermark detection:

0: 1if the Receiver is not employing both audio watermark detection and application
signaling recovered as specified in A/336 for application management;

1: if the Receiver is employing both audio watermark detection and application signaling
recovered as specified in A/336 for application management and the Receiver is not
currently detecting a VP1 Audio Watermark Segment as defined in A/336;

2: if'the Receiver is employing both audio watermark detection and application signaling
recovered as specified in A/336 for application management and the Receiver is
currently detecting a VP1 Audio Watermark Segment as defined in A/336.

132

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.contentRecoveryState-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.contentRecoveryState-response.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.contentRecoveryState-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

videoWatermark — This integer value shall indicate one of the following states of video
watermark detection:

0: if the Receiver is not employing both video watermark detection and application
signaling recovered as specified in A/336 for application management;

1: if the Receiver is employing both video watermark detection and application signaling
recovered as specified in A/336 for application management and the Receiver is not
currently detecting a VP1 Video Watermark Segment or any other video watermark
message as defined in A/336;

2: if'the Receiver is employing both video watermark detection and application signaling
recovered as specified in A/336 for application management and the Receiver is
currently detecting a VP1 Video Watermark Segment or any other video watermark
message as defined in A/336.

audioFingerprint — This integer value shall indicate one of the following states of audio
fingerprint recognition:

0: if the Receiver is not employing both audio fingerprint recognition and application
signaling recovered as specified in A/336 for application management;

1: if the Receiver is employing both audio fingerprint recognition and application
signaling recovered as specified in A/336 and the Receiver is not currently recognizing
an audio fingerprint;

2: if the Receiver is employing both audio fingerprint recognition and application
signaling recovered as specified in A/336 and the Receiver is currently recognizing an
audio fingerprint.

videoFingerprint — This integer value shall indicate one of the following states of video
fingerprint recognition:

0: if the Receiver is not employing both video fingerprint recognition and application
signaling recovered as specified in A/336;

1: if the Receiver is employing both video fingerprint recognition and application
signaling recovered as specified in A/336 and the Receiver is not currently recognizing
a video fingerprint;

2: if the Receiver is employing both video fingerprint recognition and application
signaling recovered as specified in A/336 and the Receiver is currently recognizing a
video fingerprint.

If a key/value pair is absent in the result, it indicates that the value of the key/value pair is 0
(i.e., the associated capability is not supported by the Receiver).

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.
For example, the Broadcaster Application makes a query:

133

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.query.contentRecoveryState",
"id": 122

If the Receiver supports application management using application signaling recovered from
both audio and video watermarks as specified in A/336 and both are currently being detected, the
Receiver is expected to respond:

<-= {
"jsonrpc": "2.0",
"result": {
"audioWatermark": 2,
"videoWatermark": 2
}I
"id": 122
}

9.9.2 Query Display Override API

A Broadcaster Application may wish to know if the Receiver is receiving "display override"
signaling obtained via watermarking (as defined in A/336 [5]) indicating that modification of the
video and audio presentation should not be performed, and whether the Receiver is actively
enforcing that signaling by suppressing access by the Broadcaster Application to presentation
resources ("resource blocking").

This information may be employed by the Broadcaster Application, for example, to:

e Ensure efficient utilization of Receiver and network resources (e.g., it may choose to not
request resources from a broadband server when those resources cannot be presented to the
user);

e Preserve an accurate representation of the user experience (e.g., to accurately report the
viewability of a dynamically inserted advertisement as may be required by an ad
viewability standard); or

e Comply with the requirements of the display override state, for example by halting any
audio or video modification, in the event that the Receiver is not performing resource
blocking.

The Query Display Override Request semantics are defined in Table 9.82 and the syntax shall

be as defined in the schema file org.atsc.query.displayOverride-request.json.

Table 9.82 Query Display Override Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.displayOverride"

The Query Display Override Response semantics are defined in Table 9.83 and the syntax shall
be as defined in the schema file org.atsc.query.displayOverride-response.json.
Additional semantic definitions of parameters follow the table.

134

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.displayOverride-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.displayOverride-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.83 Query Display Override Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
resourceBlocking 0.1 boolean "true" indicates that the Receiver is blocking the
output of the Broadcaster Application
displayoverride 0.1 boolean "true" indicates that a display override condition is
in effect
error oneOf X See Section 8.3.3

resourceBlocking — This optional Boolean value indicates if the Receiver is blocking the
Broadcast Application from presenting video and audio pursuant to an active display override
state as defined in A/336 [5].
displayoverride — This optional Boolean value shall be true if a display override condition is
currently in effect per a video watermark Display Override Message as specified in Section
5.1.9 of A/336 [5] or per an audio watermark display override indication as specified in
Sections 5.2.4 and 5.4.2 of A/336 [5]. Otherwise, the value shall be false.
If either or both key/value pairs are absent in the result, this shall indicate that the value of the
absent key/value pair is false.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e None — There are no errors specific to this API.
For example, the Broadcaster Application makes a query:

"jsonrpc": "2.0",
"method": "org.atsc.query.displayOverride",
"id": 62

}

If the display override condition is currently indicated via audio watermark as specified in
Section 5.2.4 of A/336 [5] and the Receiver is blocking the Broadcaster Application from
presenting video and audio, the Receiver would respond:

<--{

"jsonrpc": "2.0",

"result": {
"resourceBlocking": true,
"displayOverride": true

}I

"id": 62

}

9.9.3 Query Recovered Component Info API

When content recovery via watermarking or fingerprinting is employed, it is useful for the
Broadcaster Application to be able to determine which video or audio components of a service are
being received by the Receiver (e.g., as a result of selection by the user on an upstream device).

135

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

This can enable the Broadcaster Application to modify the on-screen placement or the language of
overlaid graphics or audio to conform to the characteristics of the received component.

During content recovery via watermarking or fingerprinting, the Receiver receives component
descriptors in a recovery file specified in Section 5.4.2 of A/336 [5]. This API provides a means
for the Broadcaster Application to access descriptors that were recovered for components that were
identified using watermarks or fingerprints.

The Query Recovered Component Info Request semantics are defined in Table 9.84 and the
syntax shall be as defined in the schema file org.atsc.query.recoveredComponentInfo-
request.json.

Table 9.84 Query Recovered Component Info Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.recoveredComponentinfo"

The Query Recovered Component Info Response semantics are defined in Table 9.85 and the
syntax shall be as defined in the schema file org.atsc.query.recoveredComponentInfo-
response. json. Additional semantic definitions of parameters follow the table.

Table 9.85 Query Recovered Component Info Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
component 1 array An array of recovered media components
items 1.N
mediaType 1 examples "audio", "video", "both"
componentID 0.1 string
descriptor 0.1 string
error oneOf X See Section 8.3.3

mediaType, componentID and descriptor are the data values associated with the media
components received by the Receiver, as given in the fields of the same name in a
componentDescription element of a recovery file as specified in Table 5.29 of A/336 [5].

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.
For example, the Broadcaster Application makes a query:

136

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.recoveredComponentInfo-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.recoveredComponentInfo-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.recoveredComponentInfo-response.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.recoveredComponentInfo-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.query.recoveredComponentInfo",
"id": 39

If a componentDescription element of the recovery file lists an audio component with the
componentID value "1" and the descriptor value "component descriptor string 1", and a video
component with the componentIDd value "2" and the descriptor value "component descriptor
string 2" associated with the components received by the Receiver, the Receiver might respond:

<-- {
"jsonrpc": "2.0",
"result": {"component": [
{
"mediaType": "audio",
"componentID": "1",
"descriptor": "component descriptor string 1"
b
{
"mediaType": "video",
"componentID": "2",
"descriptor": "component descriptor string 2"
}
1},
"id": 39

}

9.9.4 Content Recovery State Change Notification API

The Content Recovery State Change Notification is expected to be issued by the Receiver to the
currently executing Broadcaster Application if the content recovery state as defined in Query
Content Recovery State API in Section 9.9.1 changes from one state to another different state in
which at least one property value changes and the Broadcaster Application has subscribed to
receive such notifications via the API specified in Section 9.3.1.

The Content Recovery State Change Notification semantics are defined in Table 9.86 and the
syntax shall be as defined n the schema file org.atsc.notify-
contentRecoveryStateChange. json. Additional semantic definitions of parameters follow the
table.

Table 9.86 Content Recovery State Change Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "contentRecoveryStateChange"
audiowatermark 0..1 integer (0 ... 2) |Indicates the audio watermark detection state
videowatermark 0..1 integer (0 ... 2) |Indicates the video watermark detection state
audioFingerprint 0..1 integer (0 ... 2) |Indicates the audio fingerprint detection state
videoFingerprint 0..1 integer (0 ... 2) |Indicates the video fingerprint detection state

137

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-contentRecoveryStateChange.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-contentRecoveryStateChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

audioWatermark,videoWatermark,audioFingerprintandvideoFingerprintaredeﬁned
in the Query Content Recovery State API in Section 9.9.1.

If a key/value pair is absent in the params, it indicates that the value of the key/value pair is 0.

For example, if the user changes from a non-watermarked service to a new service marked
with both audio and video watermarks and both audio and video watermarks are detected and being
used for content recovery in the Receiver, the Receiver notifies the Broadcaster Application the
content recovery state change as shown below:

<==
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "contentRecoveryStateChange",
"audioWatermark": 2,
"videoWatermark": 2

}

9.9.5 Display Override Change Notification API
The Display Override Change Notification API is expected to be issued by the Receiver to the
currently executing Broadcaster Application if the display override state or resource blocking state
as defined in Query Display Override API in Section 9.9.2 changes from one state to another
different state and the Broadcaster Application has subscribed to receive such notifications via the
API specified in Section 9.3.1.

The Display Override Change Notification semantics are defined in Table 9.87 and the syntax
shall be as defined in the schema file org.atsc.notify-displayOverrideChange.json.
Additional semantic definitions of parameters follow the table.

Table 9.87 Display Override Change Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "displayOverrideChange"

resourceBlocking 0..1 boolean "true" indicates that the Receiver is blocking the
output of the Broadcaster Application

displayoverride 0..1 boolean "true" indicates that a display override condition is
in effect

resourceBlocking and displayOverride are defined in Query Display Override API in
Section 9.9.2.

If a key/value pair is absent in the params, it indicates that the value of the key/value pair is
false.

For example, if the display override state changes from inactive to active and the Receiver is
blocking the currently executing Broadcaster Application from presenting video and audio, the
Receiver notifies the Broadcaster Application the Display Override change as shown below:

138

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-displayOverrideChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-- {
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "displayOverrideChange",
"resourceBlocking": true,
"displayOverride": true

}

9.9.6 Recovered Component Info Change Notification API

The Recovered Component Info Change Notification API is expected to be issued by the Receiver
to the currently executing Broadcaster Application if the video or audio components of a service
being received by the Receiver change (e.g., as a result of selection by the user on an upstream
device) and the Broadcaster Application has subscribed to receive such notifications via the API
specified in Section 9.3.1.

The Recovered Component Info Change Notification semantics are defined in Table 9.88 and
the syntax shall be as defined in the schema file org.atsc.notify-

recoveredComponentInfoChange.json. Additional semantic definitions of parameters follow
the table.

Table 9.88 Recovered Component Info Change Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "recoveredComponentinfoChange"
mediaType 1 examples "audio", "video", "both"
componentID 0.1 string

descriptor 0..1 string

mediaType, componentID and descriptor are defined in the Query Recovered Component
Info API in Section 9.9.3.

For example, if the user at an upstream device of the Receiver changed from Spanish to English
audio track described by the componentip value "1" and descriptor value "component
description string 3", the Receiver notifies the Broadcaster Application of the recovered
component changed as shown below:

<--{

"jsonrpc": "2.0",

"method": "org.atsc.notify",

"params": {
"msgType": "recoveredComponentInfoChange",
"mediaType": "audio",
"componentID": "1",
"descriptor": "component description string 3"

139

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-recoveredComponentInfoChange.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-recoveredComponentInfoChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

9.10 Filter Codes APIs

The Receiver may use Filter Codes to selectively download NRT data files by comparing the stored
Filter Codes with the Filter Codes associated with the NRT data files in the EFDT. Refer to Section
6.5.3 for a complete description of filter code processing.

9.10.1 Set Filter Code Instances API
The Set Filter Code Instances API can be issued by a Broadcaster Application to notify the
Receiver to store the specified Filter Code Instances.

The Set Filter Code Instances Request semantics are defined in Table 9.89 and the syntax shall
be as defined in the schema file org.atsc.setFilterCodes-request . json. Additional semantic
definitions of parameters follow the table.

Table 9.89 Set Filter Code Instances Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.setFilterCodes"

filters 1 array A list of Filter Code Instance definitions

items 1..N Each item object describes a Filter Code Instance
filtercCode 1 integer The Filter Code value of the Filter Code Instance
expires 0..1 string (date- Indicates the date and time when the Filter Code
time) Instance expires

filters — A required array of Filter Code Instance definitions.

filterCode — An unsigned integer associated with personalization categories as determined by
the broadcaster. This attribute sets the value portion of the Filter Code Instance. It is the
broadcaster's responsibility to maintain a scope of uniqueness of values between Filter Code
Instances within an AppContextID.
expires — This string shall be represented by the date-time JSON data type as defined in the JSON
Schema specification [19] to indicate the expiry of a Filter Code Instance. Filter Code Instances
shall not be used after expiry. If the expires value is omitted, then no expiration is indicated,
and the Filter Code Instance shall expire when the Broadcaster Application terminates.
Note that populating this field using XML strings formatted as "xs:dateTime" should be
avoided since "xs:dateTime" has legal instances that are not compliant with JSON "date-
time" format.
The Set Filter Code Instances Response semantics are defined in Table 9.90 and the syntax
shall be as defined in the schema file org.atsc.setFilterCodes-response.json. Additional
semantic definitions of parameters follow the table.

Table 9.90 Set Filter Code Instances Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Empty object on successful set operation. The error
structure is returned if unsuccessful.

error oneOf X See Section 8.3.3 as extended below

140

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.setFilterCodes-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.setFilterCodes-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

code 1 integer The error code indicating what problem occurred
message 1 string A concise message describing the error
data 0..1 object Required if code = -38
maximumInstances 1 integer The maximum number of Filter Code Instances that
can be defined

result — If the set Filter Code Instances request is successful, the Receiver shall respond with a
JSON-RPC response object with an empty, "{}", result object.
maximumInstances — Provides the maximum number of Filter Code Instances that can be defined
when the -38 error occurs indicating the limit has been reached.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e -38 — Indicates that the request exceeds the number of Filter Code Instances allowed. The
Broadcaster Application should consider clearing some Filter Code Instances.
In the following example, the Broadcaster Application sets two Filter Code Instances for the
Receiver to use:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.setFilterCodes",
"params": {
"filters": [
{"filterCode": 101, "expires": "2016-07-17T09:30:47z2"},
{"filterCode": 102}]
b
"id": 57
}

Upon success, the Receiver would respond:

<-- {
"jsonrpc": "2.0",
"result": {1},
"id": 57

}

9.10.2 Clear Filter Code Instances API
The Clear Filter Code Instances API can be issued by a Broadcaster Application to notify the
Receiver to clear either all the defined Filter Code Instances or a set of specified Filter Code
Instances.

The Clear Filter Code Instances Request semantics are defined in Table 9.91 and the syntax
shall be as defined in the schema file org.atsc.clearFilterCodes-request.json. Additional
semantic definitions of parameters follow the table.

141

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.clearFilterCodes-request.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.91 Clear Filter Code Instances Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer
method 1 string "org.atsc.clearFilterCodes"
filters 0..1 array A list of Filter Code Instances to be cleared
items 0..N integer A Filter Code identifying a Filter Code Instance to
be cleared

filters — An optional list of unsigned integer Filter Codes that the Receiver shall use to remove
matching Filter Code Instances from processing. If the filters property is absent or empty,
all active Filter Code Instances shall be cleared. Note that Filter Code Instances cleared in this
way shall no longer be included in NRT file processing (see Section 6.5.3) regardless of any
defined expiration time.
The Clear Filter Code Instances Response semantics are defined in Table 9.92 and the syntax
shall be as defined in the schema file org.atsc.clearFilterCodes-response.json. Additional
semantic definitions of parameters follow the table.

Table 9.92 Clear Filter Code Instances Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Empty object on successful clear operation. The
error structure is returned if unsuccessful.

error oneOf X See Section 8.3.3

result — If the clear Filter Code Instances request is successful, the Receiver shall respond with

a JSON-RPC response object with an empty, "{}", result object.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e -28—One or more of the provided filter codes are unknown. All other requested filter codes

are expected to be cleared.

In the following example, the Broadcaster Application provides two Filter Codes for the

Receiver to clear:

—_> {
"jsonrpc": "2.0",
"method": "org.atsc.clearFilterCodes",
"params": {
"filters": [101, 102]
y
"id": 62
}

Upon success, the Receiver would respond:

142

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.clearFilterCodes-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"result": {},
"id": 62

}

9.11 Keys APlIs

The APIs in this section allow the Broadcaster Application, with the Receiver's permission, to
access certain specified remote-control keys. The Query Device Info API (Section 9.12) requires
a set of input keys to be defined, including the navigation keys, select key and Back key, that
may be requested by the Broadcaster Application. A key designated as the BaAappear key is also
defined by the Query Device Info API which provides a way for the Receiver to notify the
Broadcaster Application that the user wishes to interact. The expected use of the Baappear key is
described below. The Query Device Info API may also provide additional keys that the
Broadcaster Application may request. The APIs that allow the Broadcaster Application to manage
the input keys that are available are defined in this section.

It is necessary that the Broadcaster Application request any input keys from the Receiver that
it expects to handle as input from the user. Broadcaster Applications should only request input
keys applicable to the current user interaction and should avoid requesting input keys that are not
needed for the current interactive operations. This allows re-purposing of keys by the Receiver. If
keys beyond the Baappear key have not been requested, then any key listed by the Query Device
Info API response deviceInput object (see Section 9.12) and not in use by the Receiver may
result in a BAAppear key being issued to the Broadcaster Application.

For example, at startup, a Broadcaster Application should use the Query Device Info API to
determine what keys are available on the Receiver and map them to the keys necessary to provide
its intended user experience. In this example, the Broadcaster Application offers a variety of other
functions the user may be interested in such as weather, news or broadband-based VOD content.
To notify the user that the Broadcaster Application is present and available, the Broadcaster
Application should display the BaAappear text and image provided by the Query Device Info API
response.

Unless a user is already interacting with the Broadcaster Application, the Broadcaster
Application would request the Baappear input key. This is referred to as the launch screen. The
launch screen may become invisible after this depending on the Broadcaster Application design.
However, when invisible, the expectation is that any key passed to the Broadcaster Application
should bring visibility back if interactivity is available. The Broadcaster Application design may
choose to directly launch interactive features upon receipt of the Baappear input key. The
Broadcaster Application may choose to make the launch page visible at any time to let the user
know that interactivity is available.

On receipt of the Baappear input key, the Broadcaster Application would request the
appropriate input keys from the Receiver via the Request Keys API and begin showing dialogs for
the user to interact with the Broadcaster Application. As the user clicks keys on the remote control,
the Broadcaster Application is expected to respond appropriately, displaying new pages and
dialogs. Note that the Broadcaster Application may choose to request or relinquish keys as
enumerated by the Receiver in response to the Broadcaster Application's Query Device Info API
call. Receivers are not expected to re-purpose keys given to a Broadcaster Application via a
successful Request Keys API call. Similar to the launch screen, the Broadcaster Application in this

143

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

interactive context is expected to be visible when any key is provided to it by the Receiver. This
provides users the opportunity to navigate to the launch page and allows Receivers to re-purpose
relinquished keys as needed.

In some situations, the Receiver may display a dialog or other prompt for user input "in front
of" or "over" the Broadcaster Application taking focus away from the BA. This would happen if
the user requested a dialog to change Receiver settings, for example. Input from the user would
then be processed by the Receiver dialog even though the Broadcaster Application had requested
the same input keys. The Broadcaster Application can detect whether or not it currently is in focus
by using the W3C "onblur" event. See [UI Events] in CTA-5000-G [9].

Once the user has completed interacting with the Broadcaster Application, the Broadcaster
Application should dismiss all of its dialogs and visible pages and relinquish all of the requested
keys. As a reminder of the applicable BAappear key, the Broadcaster Application may display the
BAAppear text and image.

It is expected that the Broadcaster Application provides a path using the Back key, or
otherwise, to the launch page. It is expected that further Back key presses at a launch page should
make the Broadcaster Application invisible.

When at the launch page, Receivers may re-purpose keys except the BAappear key if needed.

9.11.1 Keycode Consistency

It is expected that the keycodes provided by the APIs in this section and Section 9.12 are consistent
across physical, virtual, and alternative methods for enabling user input. For example, keys from
a physical keyboard and a virtual keyboard on the display are expected to return the same codes
for the same keys.

9.11.2 Request Keys API

A Broadcaster Application can request to receive optional key presses that are typically used and
processed by Receivers. Note that "key press" in this context represents a user action of pressing
a key on a keypad or remote control and should not be confused with any W3C event mechanisms.
For example, numeric key presses on the remote control are typically used by the underlying
Receiver to tune directly to a specific channel. However, the Broadcaster Application may wish to
present a data entry UI to accept numeric data from the user in order to perform a specific action
or to solicit input from the viewer. In this case, the Broadcaster Application can request the
Receiver to temporarily re-route numeric key presses to itself. Based on the Receiver
manufacturer, the Receiver may reject this request, in which case, the Broadcaster Application
may choose to display a soft keyboard on the TV screen or resort to using other types of device
input.

The Request Keys Request semantics are defined in Table 9.93 and the syntax shall be as
defined in the schema file org.atsc.request.keys-request.json. Additional semantic
definitions of parameters follow the table.

144

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.request.keys-request.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.93 Request Keys Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer
method 1 string "org.atsc.request.keys"
keys 1 array A list of requested keys to be associated with the
Broadcaster Application
| items 1.N string A requested key name

keys — This required parameter shall be an array of strings, each representing a particular remote-
control key or type of key the Broadcaster Application would like the Receiver to forward. The
available key strings are defined as follows:

"Numeric" — Indicates the numeric keys 0-9.

"ArrowUp" — Indicates the "ArrowUp" input key.
"ArrowDown" — Indicates the "ArrowDown" input key.
"ArrowRight" — Indicates the "ArrowRight" input key.
"ArrowLeft" — Indicates the "ArrowLeft" input key.
"Back" — Indicates the "Back" input key.

"BAAppear" — Indicates that the input key dedicated to the Broadcaster Application. See
Section 9.12.

<other> — Indicates any of the strings in W3C "UI Events KeyboardEvent key Values,"
Section 3 [32].

Requested keys that are not known to the Receiver are expected to be ignored.

The Request Keys Response semantics are defined in Table 9.94 and the syntax shall be as
defined in the schema file org.atsc.request.keys-response.json. Additional semantic
definitions of parameters follow the table.

Table 9.94 Request Keys Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
accepted 1 A list of accepted keys
| 7tems 0..N string

error oneOf X See Section 8.3.3

accepted — The Receiver shall respond with a JSON-RPC response object including a "result"
object. The result object includes a string array indicating the keys for which the request was
successful. The strings supplied shall correspond to the strings allowed in the "keys" parameter
of the request operation above. It can be assumed that any requested keys that are not included
in the "accepted" array were not accepted.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

145

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.request.keys-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

e None — There are no errors specific to this API.
For example, if the Broadcaster Application requests receipt of numeric keys and Channel Up
and Channel Down arrows, it can issue this request to the Receiver:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.request.keys",
"params": {"keys": ["Numeric", "ChannelUp", "ChannelDown"]},
"id": 43

If the Receiver grants the numeric key presses but not the Channel Up and Channel Down key
presses, the Receiver could respond with:

€=
"jsonrpc": "2.0",
"result": {"accepted": ["Numeric"]},
"id": 43

}

9.11.3 Relinquish Keys API
A Broadcaster Application can relinquish previous requests for key presses. This would be used
after a request made via the Request Keys API (Section 9.11.2) to return the handling of key
presses to the Receiver.

The Relinquish Keys Request semantics are defined in Table 9.95 and the syntax shall be as
defined in the schema file org.atsc.relinquish.keys-request.json. Additional semantic
definitions of parameters follow the table.

Table 9.95 Relinquish Keys Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer
method 1 string "org.atsc.relinquish.keys"
keys 1 array A list of keys to be relinquished from the
Broadcaster Application
|items 0..N string A key name to be relinquished

keys — This required parameter is an array of strings, each representing a particular remote-control
key or type of key the Broadcaster Application no longer wishes to process and is relinquishing
to the Receiver. If the keys parameter is not provided, is equal to "aA11" or is an empty array,
then all keys previously requested for forwarding by the Broadcaster Application shall be
relinquished. Any specified key that was not previously requested or is not known to the
Receiver shall be ignored. Available key strings are defined in the keys property semantic
definition of the Request Keys API in Section 9.11.2.
The Relinquish Keys Response semantics are defined in Table 9.96 and the syntax shall be as

defined in the schema file org.atsc.relinquish.keys-response.json. Additional semantic

definitions of parameters follow the table.

146

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.relinquish.keys-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.relinquish.keys-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.96 Relinquish Keys Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Empty object if the keys were successfully
relinquished. The error structure is returned if
unsuccessful.

error oneOf X See Section 8.3.3

result — If the relinquish keys request is successful, the Receiver shall respond with a JSON-RPC
response object with an empty, " {}", result object.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e None — There are no errors specific to this API.
For example, the Broadcaster Application can issue this request to the Receiver:

—_> {
"jsonrpc": "2.0",
"method": "org.atsc.relinquish.keys",
"params": {
"keys": ["ChannelUp", "ChannelDown"]
}I
"id": 44
}

The Receiver might respond with:

<-- {
"jsonrpc": "2.0",
"result": {1},
"id": 44

}

9.11.4 Request Keys Timeout
To help avoid application misbehavior, the Receiver may force key requests to be relinquished by
a Broadcaster Application after a certain amount of time, defined by each Receiver manufacturer.
This is referred to as a request key timeout. Prior to a request key timeout, the Receiver sends a
warning notification to the Broadcaster Application to provide the application time to respond to
the timeout. The Broadcaster Application may, at this point, choose to issue another Request Keys
API call or it may allow the key request(s) to time out. If another Request Keys API call is issued,
it may or may not be accepted by the Receiver.

The Request Key Timeout Notification semantics are defined in Table 9.97 and the syntax
shall be as defined in the schema file org.atsc.notify-requestKeyTimeout . json. Additional
semantic definitions of parameters follow the table.

147

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-requestKeyTimeout.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.97 Request Key Timeout Notification Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
method 1 string "org.atsc.notify"
msgType 1 enum "requestKeyTimeout"
timeout 1 array Provides a list of keys about to be removed from
Broadcaster Application input
items 1..N
key 1 string The name of the key
time 1 integer The time in seconds when the key will no longer be
available to the Broadcaster Application

timeout — A required array that identifies each key that is nearing timeout along with the number
of seconds until timeout occurs.
key — This parameter is a string representing a particular remote-control key or type of key which
the Receiver wishes to take back from the Broadcaster Application. Available key strings are
defined in the keys property semantic definition of the Request Keys API in Section 9.11.2.
time — An integer number of seconds indicating the timeout for the given key or type of key. The
timeout value shall be a minimum of 3 seconds.
For example, the Receiver may send the following notification to indicate that Channel Up and
Channel Down key requests are expected to time out in 3 seconds:

<==
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgType": "requestKeyTimeout",
"timeout": [
{"key": "ChannelUp", "time": 3},
{"key": "ChannelDown", "time": 3}

9.12 Query Device Info API

The Query Device Info API provides an interface between a Broadcaster Application and the
Receiver to retrieve device-specific information. It is a generic conduit between the Receiver and
the Broadcaster Application to provide basic device information including make and model of
device, along with optional additional key/value pair information about the device. The format and
definition of the optional additional key/value pairs are manufacturer-specific and not specified
here. Specific parameters may be defined as part of a business relationship between a broadcaster
and a device manufacturer.

The two unique ID parameters (deviceId, advertisingId) in the response below are
expected to be initialized once by the Receiver to afford long-term persistence across all Services
and Receiver power cycles and to be provided by the Receiver depending on authorization granted
by the user. The ability to authorize the disclosure of either the unique devicerd or
advertisingId parameters, either per broadcaster, per Broadcaster Application or as a whole,
affords increased privacy to the user.

148

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The Query Device Info API request params object is optional. If params is omitted (or if
deviceInfoProperties is omitted or is an empty array), the Receiver is expected to respond with
only the device make and model and the deviceInput object. The Broadcaster Application can
then use the device make and model to determine which additional properties to query. The
deviceInfoProperties is an array of desired properties, and the Receiver provides the values of
these properties in the response.

The Query Device Info Request semantics are defined in Table 9.98 and the syntax shall be as
defined in the schema file org.atsc.query.deviceInfo-request.json. Additional semantic
definitions of parameters follow the table.

Table 9.98 Query Device Info Request Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer
method 1 string "org.atsc.query.devicelnfo"
deviceInfoProperties 0..1 array List of device properties to be returned
items 0..N string The name of a particular device property of interest
to the Broadcaster Application

deviceInfoProperties — This parameter is an array of strings, each representing a particular
aspect of the device about which the Broadcaster Application is interested.
The Query Device Info Response semantics are defined in Table 9.99 and the syntax shall be
as defined in the schema file org.atsc.query.deviceInfo-response.json. Additional
semantic definitions of parameters follow the table.

Table 9.99 Query Device Info Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
deviceMake 1 string A string containing the make of the device
deviceModel 1 string A string containing the model of the device
deviceInput 1 object A mapping of key names to values
ArrowUp 1 integer Provides the key code value for the ArrowUp key
ArrowDown 1 integer Prlz)vides the key code value for the ArrowDown
e
ArrowRight 1 integer Prov)i/des the key code value for the ArrowRight key
ArrowLeft 1 integer Provides the key code value for the ArrowLeft key
Select 1 integer Provides the key code value for the Select key
Back 1 integer Provides the key code value for the Back key
BAAppear 1 object Defines the Broadcaster Application "Launch" key
label 1 string Provides a recognizable name for the key, e.g.,
"NextGen App"

149

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.deviceInfo-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.deviceInfo-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

keycode 1 integer Provides the key code value for the "BAAppear"
key

img 0.1 string Provides an inline encoded image of the key or
label

<other> 0..N integer <other> is any of the strings in W3C "UI Events
KeyboardEvent key Values", Section 3 [32]
whose value provides the associated key code

deviceInfo 0.1 object A collection of key/value pairs defining specific
attributes of the device
deviceId 0..1 string A persistent, globally unique UUID associated with
the device
advertisingId 0.1 string A persistent, globally unique UUID associated with
advertising on the device
devicecCapabilities 0..1 string
deviceSupportedWebSocketAPIs | 0..1 array The set of A/344 APl methods supported
items 0..N items may be either strings or objects as described
below
anyOf string A/344 Methods supported, identified as fully
qualified method names (name only)
anyOf object Object describing method and revision supported
method 1 string A/344 Methods supported, identified as fully
qualified method names
rev 0.1 string Specific revision date of method supported
deviceSupportedbRMs 0..1 array The set of DRM system id URNs supported
items 0.N string
error oneOf X See Section 8.3.3

deviceMake — This required string indicates the manufacturer of the Receiver.

deviceModel — This required string indicates the model of the Receiver.

deviceInput — This required object defines the available user input key name and codes of the
Receiver user interface as well as a required "launch key" for the Broadcaster Application. The
deviceInput object contains a collection of input key/value pairs where the key is the user
input name, and the value is the associated integer code. The Receiver is expected to provide
all input keys and their associated values that the Broadcaster Application may request. The
Broadcaster Application may use the Key APIs defined in Section 9.11 to request any or all of
the keys defined in the deviceInput object. It is expected that the keycodes provided are
consistent across all input methods (see Section 9.11.1).
In addition to the collection of input keys, the deviceInput object shall contain a BAAppear
object as described below.

arrowUp — This key event is sent when the user triggers the up arrow directional key on the remote
control or through some equivalent action.

arrowDown — This key event is sent when the user triggers the down arrow directional key on the
remote control or through some equivalent action.

arrowRight — This key event is sent when the user triggers the right arrow directional key on the
remote control or through some equivalent action.

arrowLeft — This key event is sent when the user triggers the left arrow key on the remote control
or through some equivalent action.

150

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

select — This key event is sent when the user triggers a remote-control key signaling selection.
Examples of common remote-control keys that may provide a selection input include 'OK’,
'Enter', 'Select' and 'Return' keys. The Select event indicates that the user wishes the
Broadcaster Application to take an action based on the current focus. For example, if an icon
is highlighted, the Select key code indicates that the user wishes to engage with the associated
function.

Back — This key event is sent when the user triggers a remote-control key signaling the desire to
move back a step, depending on the current Broadcaster Application state. For example, the
Back event may indicate to the Broadcaster Application that activities on the current display
are completed and the user wishes to return to a previous display.

BAAppear — This required object defines the Broadcaster Application "launch key" label, keycode,
and an optional image encoding.

label — This required string contains text that is intended to be presented to the user that assists
in defining the "launch key" on the remote-control device.

keycode — This required integer is the keycode of the "launch key".

img — This optional string contains an encoding of an image to assist the user in locating the "launch
key" which may be virtual (i.e., not a key on the remote). The string shall conform to the data
URL scheme defined in IETF RFC 2397 [28] and the "base64" encoding defined in RFC 4648
[27]. The Receiver is required to support PNG, JPEG and GIF as provided in CTA-5000-G,
Section 3.6 [9].

<other>— These keys provide the mapping of the various key strings as described in in W3C "UI
Events KeyboardEvent key Values", Section 3 [32] to the corresponding key code. Note that
any keys explicitly specified in Table 9.99 (e.g., "select") shall not be included again. Any
input key included in this mapping shall be available for request as described in Section 9.11.

deviceInfo — This optional object includes key/value pairs. The deviceInfo is included in the
response if the request includes one or more deviceInfoProperties strings corresponding to
information the Receiver can supply.

deviceld — This optional string returns a globally unique UUID as defined in RFC 4122 [26]
using the urn:uuid syntax when authorized for the particular Broadcaster Application. When
absent, it is not supported by the Receiver. When present and all zeros ("urn:uuid:00000000-
0000-0000-0000-000000000000"), the value of the user setting to provide this identifier is
disabled for the given service indicating that the user has explicitly not authorized provision of
the value.

advertisingId — This optional string returns a globally unique UUID as defined in RFC 4122
[26] using the urn:uuid syntax when authorized for the particular Broadcaster Application.
When absent, it is not supported by the Receiver. When present and all zeros
("urn:uuid:00000000-0000-0000-0000-000000000000"), the value of the user setting to
provide this identifier is disabled for the given service indicating that the user has explicitly
not authorized provision of the value.

deviceCapabilities — This optional string describes the capabilities, or features, of the Receiver
and shall conform to A/332, Section 5.2.2.3.3.2 "Device Capabilities Syntax and Semantics"
[4]. This is, in essence, a standardized version of the deviceInfo string.

deviceSupportedWebSocketAPTIs — This optional array of objects identifies the A/344
WebSocket API methods that the Receiver supports as described in this standard, using fully-
qualified method names (e.g., "org.atsc.query.deviceInfo"). The objects in the array shall

151

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

be strings, "method" / "rev" objects, or a combination of strings and "method" / "rev"
objects. When it is a string, each is a fully qualified method name, in which case the method
supported is as described in the revision of this standard as described in Section 8.2. The
"method" / "rev" objects in the array shall consist of "method" and optionally "rev" described
below.
method — A method that the Receiver supports as described in this standard (or another, see "rev"
below), using a fully-qualified method name.
rev — This optional field identifies that the method is supported per a specific revision of A/344,
formatted as described in Section 8.2 Interface Bindings, the "rev=" structure. If this field is
not present, the identified version is as described in Section 8.2, in the "rev=" parameter.
deviceSupportedDRMs — This optional array of strings identifies the DRM systems that the
Receiver supports. Each string shall be a DRM system id URN in the form of
"urn:uuid:<uuid>", such as described in "Protection System-Specific Identifiers" at [43].
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e None — There are no errors specific to this API.
For example, a query from the Broadcaster Application may look like this:

"jsonrpc": "2.0",
"method": "org.atsc.query.deviceInfo",
"id": 92

}

A Receiver manufactured by the "Acme" company with model number "A300" might respond
with:

152

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<--{
"jsonrpc": "2.0",
"result": {
"deviceMake": "Acme",
"deviceModel": "A300",
"deviceInput": {
"ArrowUp": 38,
"ArrowDown": 40,
"ArrowRight": 39,
"ArrowLeft": 37,
"Select": 13,
"Back": 461,
"BAAppear": {
"label": "NextGen App",
"keycode": 500,
"img": "]/4AAQSkZIJRGABAQAAAQARAAD=="
}
b
"deviceSupportediWebSocketAPIs": [
"org.atsc.query.ratingLevel",
{"method": "org.atsc.query.service", "rev": "20190502"},
{"method": "org.atsc.scale-position"}
1y
"deviceSupportedDRMs": [
"urn:uuid:edef8ba9-79d6-4ace-a3c8-27dcd51d21ed",
"urn:uuid:e2719d58-a985-b3c9-781a-b030a£f78d30e"
]
b
"id": 92

If the Broadcaster Application recognizes this make and model, it might know that additional
information about this Receiver may be retrieved by indicating specific device properties in the
request. Note that not all Receivers would be expected to recognize the deviceInfoProperties
strings given in this example:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.query.deviceInfo",
"params": {"deviceInfoProperties": ["numberOfTuners", "yearOfMfr"]},
"id": 93

This Receiver might respond with:

153

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<--{
"jsonrpc": "2.0",
"result": {
"deviceMake": "Acme",
"deviceModel": "A300",
"deviceInput": {
"ArrowUp": 38,
"ArrowDown": 40,
"ArrowRight": 39,
"ArrowLeft": 37,
"Select": 13,
"Back": 461,
"BAAppear": {
"label": "NextGen App",
"keycode": 500,
"img": "]/4AAQSkZIJRGABAQAAAQARAAD=="
}
b
"deviceInfo": {
"numberOfTuners": 1,
"yearOfMfr": 2017
b
"deviceSupportedWebSocketAPIs": [
"org.atsc.query.ratingLevel",
{"method": "org.atsc.query.service", "rev": "20190502"},
{"method": "org.atsc.scale-position"}
1y
"deviceSupportedDRMs": [
"urn:uuid:edef8ba9-79d6-4ace-a3c8-27dcd51d21led",
"urn:uuid:e2719d58-a985-b3c9-781a-b030af78d30e"
]
b
"id": 93
}

9.13 RMP Content Synchronization APIs

The RMP Content Synchronization APIs defined in this section provide similar functionality to
the APIs available for the W3C HTMLMediaETlement as provided in [9]. Readers are encouraged to
review the HTMLMediaETement APIs to obtain background information on the semantics behind the
RMP APIs described here.

The times used in the APIs within this section are essential to the proper operation of
controlling the RMP. The relationships between the startbDate and currentTime parameters used
in the APIs and the media time are shown in Figure 9.3. See the detailed definitions of the
startDate and currentTime parameters in Section 9.13.1 Query RMP Media Time API.

154

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

At this frame:
— — * TVl'scurrentTime = 14.0

2023-11-20 -11- .
V1 startbate = 3,00 . 0s V2 startDate = 292310207 + TV2'scurrentTime = 6.0
currentTime = 0.0 currentTime = 0.0 * Both TV’s Media time = 2023-11-207
12:00:14.0z
Media time = startDate + currentTime Media time = startDate + currentTime
TV1 RMP starts displaying this frame. TV2 RMP starts displaying this frame.
v v v
2023-11-20T 2023-11-20T 2023-11-20T 2023-11-20T 2023-11-20T 2023-11-20T 2023-11-20T
12:00: (.02 12:00:04.02 12:00:06.02 12:00:08.02 12:00:10.0z 12:00:12.02 12:00:14.0z
| | | | | | | >
>
Media time (1SO 8601)

Figure 9.3 RMP Media Time Representation

In this representation, the wall-clock time equals the media time plus the broadcast chain delay
plus the distribution delay plus the Receiver internal delay. Each TV may be presenting a given
media time at a different wall-clock time.

9.13.1 Query RMP Media Time API

A Broadcaster Application may wish to know the current presentation time of the broadcast
content being presented by the Receiver. This enables the Broadcaster Application to present
supplemental content that is synchronized to the broadcast content. For example, a Broadcaster
Application may display a graphical overlay at a particular moment during the presentation.

The Query RMP Media Time Request semantics are defined in Table 9.100 and the syntax
shall be as defined in the schema file org.atsc.query.rmpMediaTime-request.json.

Table 9.100 Query RMP Media Time Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.rmpMediaTime"

The Query RMP Media Time Response semantics are defined in Table 9.101 and the syntax
shall be as defined in the schema file org.atsc.query.rmpMediaTime-response.json.
Additional semantic definitions of parameters follow the table.

Table 9.101 Query RMP Media Time Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
currentTime 1 number (>=0.0) | The current presentation time of the RMP
startDate 0.1 string (date- The start time of the media timeline
time)
error oneOf X See Section 8.3.3

155

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.rmpMediaTime-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.rmpMediaTime-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

currentTime — This required floating-point number value shall represent the current presentation
time of the content being presented by the RMP, expressed as an offset, in seconds, to
startDate. It shall have the same meaning as the @currentTime attribute of the
HTMLMediaETlement given in [9] that represents the official playback position of the content.

startDate — This optional date-time value represents an absolute time reference for the start (i.e.,
the zero time) of the media timeline of the content being presented by the RMP. It has the same
meaning as "timeline offset" in [9] (i.e., the value provided from the getStartbpate() method
of an HTMLMediaElement). The date-time JSON data type shall be formatted as defined in the
JSON Schema specification [19].
When the RMP is presenting content compliant with [41], the following requirements apply to

the reported values of startDate and currentTime:

e The value of startbate represents the sum of MPD@availablilitystartTime in the MPD
that was in use by the RMP when it began playing or recording the presentation and the
time offset on the DASH Media Presentation timeline at which the RMP began playing or
recording the presentation. When content delivered via broadband allows the RMP to seek
to a position in the presentation earlier than the time at which RMP began playing or
recording the content (e.g., live time-shift), the time offset on the DASH Media
Presentation timeline shall be the earliest seek-able time offset in the content. Note that the
media format of the recorded content is Receiver specific.

e When recorded content is being presented, both the startbate and the currentTime
values shall have the same respective values as the startDate and the currentTime values
applied during presentation of the live version of the recorded content.

If no explicit date and time is available for the content being present (e.g., the downloaded
content), startDate shall be absent in the response. Otherwise, startbate shall be present in the
response.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.

For example, if the Broadcaster Application makes a query:

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.query.rmpMediaTime",
"id": 61

The Receiver might respond:

156

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"result": {"currentTime": 3600.033,
"startDate": "2019-01-01T23:59:59.590z"
}I
"id": o6l
}

9.13.2 Query RMP UTC Time API DEPRECATED
This API has been deprecated. Broadcaster Applications needing the current time of day should
use the W3C Date.now() method available in the User Agent.
A Broadcaster Application may wish to know the UTC time being used by the RMP. This time
should be used when working with the UTC presentation timeline instead of the JavaScript API,
e.g., Date.now() of the User Agent.

The Query RMP UTC Time Request semantics are defined in Table 9.102 and the syntax shall
be as defined in the schema file org.atsc.query. rmpUTCTime-response. json.

Table 9.102 Query RMP UTC Time Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.rmpUTCTime"

The Query RMP UTC Time Response semantics are defined in Table 9.103 and the syntax
shall be as defined in the schema file org.atsc.query. rmpUTCTime-response.json. Additional
semantic definitions of parameters follow the table.

Table 9.103 Query RMP UTC Time Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
utcTime 1 string (date- The current UTC time
time)

error oneOf X See Section 8.3.3

utcTime — This required date-time value shall be the current UTC time, which is the PTP time
signaled in the broadcast PLP 11D time fields converted to UTC (adjusted by the LLS
SystemTime fields). The date-time JSON data type shall be formatted as defined in the JSON
Schema specification [19].
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e None — There are no errors specific to this API.
For example, if the Broadcaster Application makes a query:

157

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.rmpUTCTime-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.rmpUTCTime-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

"jsonrpc": "2.0",
"method": "org.atsc.query.rmpUTCTime",
"id": 62

The Receiver might respond:

<-= {
"jsonrpc": "2.0",
"result": {"utcTime": "2019-01-01T23:59:56.3202"},
"id": 62

}

9.13.3 Query RMP Playback State API

A Broadcaster Application may wish to know the playback state of the content being presented or
prepared for presentation by the RMP. This allows the application to make adjustments in
presenting supplemental content based on the playback state of the content. For example, the
application may suspend presentation of supplemental content if playback of the presentation is
paused due to content buffer underflow ("buffering") or user input or stopped due to reaching the
end of a VOD content stream.

The Query RMP Playback State Request semantics are defined in Table 9.104 and the syntax
shall be as defined in the schema file org.atsc.query.rmpPlaybackState-request.json.

Table 9.104 Query RMP Playback State Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.rmpPlaybackState"

The Query RMP Playback State Response semantics are defined in Table 9.105 and the syntax
shall be as defined in the schema file org.atsc.query.rmpPlaybackState-response. json.
Additional semantic definitions of parameters follow the table.

Table 9.105 Query RMP Playback State Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
playbacksState 1 integer (-1 ... 3) |The current RMP playback state
error oneOf X See Section 8.3.3

playbackstate — This integer value shall indicate one of the following playback states of the
RMP:

158

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.rmpPlaybackState-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.rmpPlaybackState-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

e -1 if'the content is initializing, connecting and the state cannot be determined, for example
there is a time window between changing the channel, accessing the SLT, MPD and
initializing the channel where the state is unclear;

e 0 if the content is actively playing, and if encrypted, there are necessarily also valid DRM
licenses and the CDM is decrypting the content;

o [ifthe playback is paused for any reason and has not ended (e.g., seeking or stalled, paused
for user interaction, waiting for user input, stopped due to errors);

e 2 if the playback has ended (e.g., the end of the content is reached).

e 3 ifthe content is encrypted and not viewable (i.e., there are no valid keys and the CDM is
not decrypting the content).

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be

returned:

e None — There are no errors specific to this API.

For example, the Broadcaster Application makes a query:

__> {
"jsonrpc": "2.0",
"method": "org.atsc.query.rmpPlaybackState",
"id": 63

}

And if the RMP is playing back content, the Receiver would respond:

== |
"jsonrpc": "2.0",
"result": {"playbackState": 0},
"id": 63

}

9.13.4 Query RMP Playback Rate API
A Broadcaster Application may wish to know the speed at which the content is being presented by
the RMP. This allows the application to make adjustments in presenting supplemental content
based on the playback speed of the content. For example, the application may choose to suspend
presentation of supplemental content during trick-play mode.

The Query RMP Playback Rate Request semantics are defined in Table 9.106 and the syntax
dﬁﬂlbeasdeﬁnedintheschenutﬁk:org.atsc.query.rmpPlaybackRate—request.json

Table 9.106 Query RMP Playback Rate Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.query.rmpPlaybackRate"

The Query RMP Playback Rate Response semantics are defined in Table 9.107 and the syntax
shall be as defined in the schema file org.atsc.query.rmpPlaybackRate-response. json.
Additional semantic definitions of parameters follow the table.

159

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.rmpPlaybackRate-request.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.query.rmpPlaybackRate-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.107 Query RMP Playback Rate Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful request otherwise the error
structure is returned
playbackrate 1 number The current RMP playback rate
error oneOf X See Section 8.3.3

playbackRate — This required floating-point value indicates the playback speed of the content
currently being presented by the RMP with the same meaning as the attribute playbackRate
of HTMLMed1iaETement as given in [9].
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:
e None — There are no errors specific to this API.
For example, the Broadcaster Application makes a query:

__> {
"jsonrpc": "2.0",
"method": "org.atsc.query.rmpPlaybackRate",
"id": 65

}

And if the RMP is playing back content at the normal speed, the Receiver would respond:

== |
"jsonrpc": "2.0",
"result": {"playbackRate": 1.0},
"id": 65

}

9.13.5 RMP Media Time Change Notification API

The RMP Media Time Change Notification API is expected to be issued by the Receiver to the
currently executing Broadcaster Application if the current playback position of the content being
presented by the RMP changed. This API has the same meaning functionally as the timeupdate
event of HTMLMediaElement as given in [9]. The Receiver notifies the Broadcaster Application
using this API when the official playback position of the RMP changes as part of normal or trick
playback.

The RMP Media Time Change Notification semantics are defined in Table 9.108 and the
syntax shall be as defined in the schema file org.atsc.notify-rmpMediaTimeChange.json.
Additional semantic definitions of parameters follow the table.

Note that although data is included in a single notification that is needed for modifying or

replacing a Period, there is still the risk of a race condition on use of the state of these or related
fields.

160

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-rmpMediaTimeChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.108 RMP Media Time Change Notification Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
method 1 string "org.atsc.notify"
msgType 1 enum "rmpMediaTimeChange"
currentTime 1 number (>= 0.0) | The current presentation time of the RMP
startDate 0..1 string The start time of the media timeline
(xs:timeDate)
playbacksState 0..1 number As defined in Section 9.13.3.
refClock 0..1 string Current reference time derived from the L1D
(xs:timeDate) preamble and modified by LLS SystemTime table.
adaptationId_video 0..1 string Space-separated list of
MPD.Period.AdaptationSet.AdaptationSet@id
adaptationId_audio 0..1 string Space-separated list of
MPD.Period.AdaptationSet.AdaptationSet@id
adaptationId_text 0..1 string MPD.Period.AdaptationSet.AdaptationSet@id
periodid 0..1 string MPD.Period@id
periodstart 0..1 string Start time of the current Period.
(xs:timeDate)
duration 0..1 number (>0) Duration in seconds of the current Period.
source 0..1 array id, uriType and sourceType of the media playback
for each adaptationld.
items 0..N
id 1 string Adaptation set id of the element
uriType 1 enum "GSID", "XLinkURN" or "RMPURL"
sourceType 1 enum As defined in Table 9.109

currentTime and startDate are defined in Query RMP Media Time API in Section 9.13.1.

If the startpate key/value is absent in the params, it indicates that the value of the key/value

pair is unchanged.

playbackState — Shall be as defined in Section 9.13.3.

refClock — Shall be the current reference time derived from the L1D preamble and modified by
LLS SystemTime table [3]. If playbackstate is present, this parameter shall be present.

adaptationId video — Shall be the space-separated list of actively rendering
MPD.Period.Adaptationset@id of video. If playbackstate is present, this parameter shall
be present.

adaptationId audio — Shall be the space-separated list of actively rendering
MPD.Period.Adaptationset@id of the audio. If playbackstate is present, this parameter
shall be present.

adaptationId text — Shall be the actively rendering MPD. Period.AdaptationsSet@id of the text.
If playbackstate is present, this parameter shall be present.

periodId — Shall be the MPD. Period@id of the current Period. If playbackstate is present, this
parameter shall be present.

periodStart — Shall be the MPD.Period@start of the current Period. If playbackState is
present, this parameter shall be present.

161

mailto:MPD.Period.AdaptationSet@id
mailto:MPD.Period.AdaptationSet@id
mailto:MPD.Period.AdaptationSet@id
mailto:MPD.Period@id
mailto:MPD.Period@start

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

duration — Shall be the duration of the current Period. If playbackState is present and the
duration is known, this parameter shall be present.

source — Shall be an array of objects comprised of id, uriType and sourceType parameters
defining the current playing media. If playbackstate is present this array shall be present and
contain elements describing each of the adaptation sets present in the current playing media.

id — Shall contain the adaptation set id.

uriType — Shall be one of: "GsID", "XxLinkURN" or "RMPURL" according to setRMPUr1 in Section
9.7.3. "Gs1D" shall be a globalserviceID associated with the service as given in the SLT in
SLT.Service@globalserviceID. See A/331 [3] Section 6.3.

sourceType — Shall provide a sourceType according to Table 9.109 using the first mediaType
that applies from top to bottom in the table. If playbackstate is present, this shall be present.

Table 9.109 sourceType Definition

sourceType Type of RMP Source

" . | Ifthe RMP is playing broadcast stream and the current Period has not been replaced by an XLink
broadcast resolution

" « | Ifthe RMP is playing a broadband stream and the current Period has not been replaced by an
broadband . .
XLink resolution.

"setrmpurl" If the RMP is playing a stream set using se tRMPURL.

nselink” If the RMP is playing any stream type and the current Period has been replaced via XLink
resolution.

"other" If the RMP is playing out from a source not known in advance or not been configured to playout any
stream.

For a basic example, the Receiver may notify the Broadcaster Application of the media time
change every 250 to 500 msec during the normal playback of the current service. A notification

provided shortly after the previous notification which contained a currentTime value 3600.033
might be:

=
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {

"msgType": "rmpMediaTimeChange",
"currentTime": 3600.283

A more complex example when playbackState is present and the service contains two audio
tracks (one of which is delivered over broadband) is as follows:

162

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {
"msgtype": "rmpMediaTimeChange",
"currentTime": 350.424,
"startDate": "2019-01-01T23:59:59.590z",
"playbackState": O,
"refClock": "2019-01-01T23:59:53.590z",
"adaptationId video": "2",
"adaptationId audio": "1 4",
"adaptationId text": "3",
"periodId": "P1",
"periodStart": "2019-01-01T23:50:30.000z",
"duration": 600,
"source": [
{
"id".: "2",
"uriType": "GSID",
"sourceType": "broadcast"
bo
{
"id": "1",
"uriType": "GSID",
"sourceType": "broadcast"
bo
{
"id": "4",
"uriType": "GSID",
"sourceType": "broadband"
bo
{
"id": "3",
"uriType": "GSID",
"sourceType": "broadcast"
}
]
b
"id": 913
}

9.13.6 RMP Playback State Change Notification API

The RMP Playback State Change Notification API is expected to be issued by the Receiver to the

currently executing Broadcaster Application if the playback state of the RMP as defined in Query

RMP Playback State API in Section 9.13.3 changes from one value to another different value.
The RMP Playback State Change Notification semantics are defined in Table 9.110 and the

syntax ~ shall be as defined in the schema file org.atsc.notify-

rmpPlaybackStateChange.json. Additional semantic definitions of parameters follow the table.

163

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-rmpPlaybackStateChange.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-rmpPlaybackStateChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.110 RMP Playback State Change Notification Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "rmpPlaybackStateChange"
playbackState 1 integer (-1 ... 3) | The new RMP playback state

playbackstate — This integer value shall indicate the new playback state that is one of the
playback states defined in the Query Playback State API in Section 9.13.3.
For example, if the user at the Receiver pauses the playback of the time-shift broadcast content,
the Receiver notifies the Broadcaster Application of the playback state as shown below:

<-- {
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {

"msgType": "rmpPlaybackStateChange",
"playbackState": 1

}

9.13.7 RMP Playback Rate Change Notification API
The RMP Playback Rate Change Notification API is expected to be issued by the Receiver to the
currently executing Broadcaster Application if the playback speed as defined in the Query RMP
Playback Rate API in Section 9.13.4 changes from one value to another different value. This API
has the same meaning functionally as the ratechange event of HTMLMediaETement as given in [9].
The RMP Playback Rate Change Notification semantics are defined in Table 9.111 and the
syntax shall be as defined in the schema file org.atsc.notify-rmpPlaybackRateChange. json.
Additional semantic definitions of parameters follow the table.

Table 9.111 RMP Playback Rate Change Notification Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "rmpPlaybackStateChange"
playbackrate 1 number The new RMP playback rate

playbackRate shall be as defined in the Query RMP Playback Rate API in Section 9.13.4.

For example, if the user at the Receiver performs fast-forward playback of the time-shift
content at 2 times normal playback speed, the Receiver notifies the Broadcaster Application of the
playback speed changes as shown below:

164

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-rmpPlaybackRateChange.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

<-= {
"jsonrpc": "2.0",
"method": "org.atsc.notify",
"params": {

"msgType": "rmpPlaybackRateChange",
"playbackRate": 2

}

9.13.8 RMP Media Asset Change Notification API

The RMP Media Asset Change Notification API is expected to be issued by the Receiver to the
currently executing Broadcaster Application if the current playback position of the Asset being
presented by the RMP changed.

The RMP Media Asset Change Notification semantics are defined in Table 9.112 and the
syntax shall be as defined in the schema file org.atsc.notify-rmpMediaAssetChange.json.
Additional semantic definitions of parameters follow the table.

Table 9.112 RMP Media Asset Change Notification Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
method 1 string "org.atsc.notify"
msgType 1 enum "rmpMediaAssetChange"
currentTime 1 number (>= The current presentation time of the RMP
0.0)
startDate 0..1 |string The start time of the media timeline
(xs:timeDate)
assets 1.N |array List of Assets
items
assetId 1 string MP Table — Identifier_mapping() [30], 10.6.3 Identifier
mapping
assetType 0..1 |string The type of the Asset
presentationTime 1 string (date- Presentation time of the first MFU of the MPU
time)
duration 1 number (>0) Duration in seconds of the current Asset
sourceType 0..1 string broadcast or broadband
packageId 1 string a unique identifier of the Package [30], 6.2 Package

currentTime and startDate are defined in Query RMP Media Time API in Section 9.13.1.

If the startpate key/value is absent in the params, it indicates that the value of the key/value

pair is unchanged.

assetId — This required integer shall correspond to the value of the asset ID in the MP Table. The
assetId may have a UUID (Universally Unique Identifier), or URI (Uniform Resource
Identifier) scheme and the type is the byte array with a length of 32 bits.

assetType — This value, if provided, shall be the four-character code ("4CC") type registered in
MP4REG (http://www.mp4ra.org) [30], 10.3.9 MP table.

presentationTime — Shall be the presentation time of the first AU in the designated MPU [30],

10.5.2 MPU timestamp descriptor represented by the date-time JSON data type as defined in
the JSON Schema specification [19].

165

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-rmpMediaTimeChange.json
http://www.mp4ra.org/

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

duration — Shall be the Asset duration.
sourceType — Shall provide a sourceType according to Table 9.109
packageId — Shall be the package id of the package including the assets.

9.14 DRM APIs

The APIs in this section can be used by the Broadcaster Application to support the RMP or AMP
handling of encrypted content. Two generic APIs are defined. A "notification" API is used by the
Receiver to pass a message associated with an identified DRM System to the Broadcaster
Application. An "operation" API is used by the Broadcaster Application to pass a message
associated with an identified DRM System to the Receiver. These APIs support the needs of both
the AMP and the RMP.

Refer to the ATSC A/362 Recommended Practice on Digital Rights Management (DRM) [39]
for details on DRM operations within an ATSC 3.0 Receiver environment.

9.14.1 DRM Notification API

The DRM Notification API may be issued by the Receiver to the Broadcaster Application in order
to deliver a DRM-related notification. A Broadcaster Application which receives this notification
can use the DRM Operation API, defined in Section 9.14.2, to exchange a message with the
Receiver's underlying content protection system, ultimately resulting in the delivery of the
license/key required by the RMP or AMP for decryption of protected content.

The DRM Notification semantics are defined in Table 9.113 and the syntax shall be as defined
in the schema file org.atsc.notify-DRM.json. Additional semantic definitions of parameters
follow the table.

Table 9.113 DRM Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "DRM"

systemId 1 string The identifier of the DRM system sending the
notification

message 1 array An array of DRM-system-proprietary JSON objects
that are dependent on the systemld

| tems 0..N object

msgType — This required string shall be set to "DRM" to identify this notification APIL

systemId — This string shall be set to a DRM system identifier, @schemeIduri, as defined in the
DASH-IF IOP, Section 7.6 [41]. For example, the UUID string value "1077efec-c0b2-4d02-
ace3-3cle52e2fb4b" corresponds to the common system ID of W3C EME. In the case of
DASH, the value corresponds to the value of @scheme1duri of the ContentProtection descriptor
of the MPD. In the case of MMT, the value corresponds to the value of the system vuID of
the security property descriptor of the MPU specified in A/331 Section 7.2.4 [3].

message — This shall be the message passed from the content protection system formatted as an
array of JSON objects.

166

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-DRM.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

The DRM Notification API may be used by the Receiver to notify the Broadcaster Application
that a particular DRM license object that had been requested via the DRM Operation API (Section
9.14.2) has been retrieved from the broadcast.

It is out of scope of the present specification how a Broadcaster Application interacts with a
license server and the exact format of messages passed from the content protection system to the
Broadcaster Application using this DRM Notification API. The format of messages passed across
the interface defined in this API depends on the content protection system used by the broadcaster.

9.14.2 DRM Operation API

The DRM Operation API can be issued by a Broadcaster Application to pass a message to the
Receiver in order to play protected content as defined by Section 5.7 of [8]. This API can be used
along with the DRM Notification API as defined in Section 9.14.1 which is issued by the Receiver
to notify a message to a Broadcaster application in order to inform information about content
protection.

Similar to W3C EME [31] which is an extension of the HTML5 media element, a Broadcaster
Application can communicate with a license server and pass messages for license/key exchange to
the underlying content protection system via this API. These APIs are simpler than W3C EME
since the APIs only provide a message exchange mechanism and the content of the messages
conveyed in the API, including any control such as installing/updating/removing licenses, are
specific to an underlying content protection system and thus not specified here. Note that a
Broadcaster Application needs to know the sequence of interactions with a broadcaster's web
server and a license server and also the procedure for exchange of messages with the underlying
content protection system of the Receiver.

The DRM Operation Request semantics are defined in Table 9.114 and the syntax shall be as
defined in the schema file org.atsc.drmOperation-request.json. Additional semantic
definitions of parameters follow the table.

Table 9.114 DRM Operation Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.drmOperation"

systemId 1 string The identifier of the DRM system for which the
message is intended

service 1 string (uri) Specifies the globalServicelID of the currently
selected service

message 1 array An array of DRM-system-proprietary JSON objects
that are dependent on the systemld

| 7tems 0..N object

systemId — This string shall be set to a DRM system identifier, @schemeIduri, as defined in the
DASH-IF, Section 7.6 [39].

service — This required string shall indicate the globalserviceID associated with the currently
selected service as given in the SLT in SLT.Service@globalserviceID to which this DRM
message is associated.

167

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.drmOperation-request.json
mailto:SLT.Service@globalServiceID

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

message — This shall be a message specific to the content protection system in use formatted as an
array of JSON objects.
The DRM Operation Response semantics are defined in Table 9.115 and the syntax shall be as
defined in the schema file org.atsc.drmOperation-response.json. Additional semantic
definitions of parameters follow the table.

Table 9.115 DRM Operation Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful operation otherwise the
error structure is returned

message 0.1 array A list of content protection system messages
items 0..N object A system proprietary JSON object that is

dependent on the systemld

error oneOf X See Section 8.3.3

message — This shall be the response to the command formatted as an array of JSON objects
specific to the content protection system in use.
In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e -6—The globalserviceID supplied by the service property cannot be not found.

e -14 — The DRM system identifier provided is not supported by or is not known to the
Receiver.

In the case of the AMP, when the DRM Operation API is used by the Broadcaster Application
to ask the Receiver to fetch a particular DRM license file from the broadcast Entitlement
Management service, the message object may include key/value pairs to specify the Content-
Location of the file.

9.15 XLink APIs

The APIs in this section provide a mechanism allowing the Broadcaster Application to replace a
DASH element marked with an XLink. Note that more than one element can be returned (e.g.
replacing a Period with more than one Period). There are two APIs defined:

e A XLink Resolution Notification API allowing the Receiver to notify the Broadcaster
Application that the RMP has detected an MPD element with an xTink:href attribute.
Notifications only occur if the Broadcaster Application has subscribed to the notification
(see Section 9.3.1.1). The Broadcaster Application may then provide an alternate element
using the XLink Resolved API.

e The XLink Resolved API is used by the Broadcaster Application to provide a replacement
MPD URL or inline text to be used by the RMP as an alternative to the element within
which the x1ink:href was detected. It is possible for the Receiver to ignore the XLink
Resolved request if the resource is not found, or it is too late to make the substitution.

9.15.1 XLink Resolution Notification API

An XLink Resolution Notification is expected to be issued by the Receiver to the currently
executing Broadcaster Application when the Receiver Media Player (RMP) encounters a

168

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.drmOperation-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

@xT1ink:href attribute in an element of the MPD. The Receiver may resolve any x11ink:href with
URL scheme, "https:", without notifying the Broadcaster Application. For all other URIs, the
Receiver is expected to notify the Broadcaster Application to resolve the x1ink:href, if the
Broadcaster Application is subscribed to the XLink Resolution Notification (see Section 9.3.1.1).
The Broadcaster Application is expected to respond by using the XLink Resolved API (see Section
9.15.2) to replace the element in which the x1ink:href appeared. There can be more than one
xTink:href in an MPD and if so, the Receiver is expected to call XLink Resolution Notification
multiple times.

The timing of x1ink:href resolution by the Receiver is controlled by x1ink:actuate which
should be set to "onLoad" to cause the Receiver to resolve the XLinks on receipt of the MPD. Note
that this is not the default. Therefore, x1ink:actuate="onLoad", should normally be present to
give the Broadcaster Application the maximum time to resolve the link.

The XLink Resolution Notification semantics are defined in Table 9.116 and the syntax shall
be as defined in the schema file org.atsc.notify-xlinkResolution. json. Additional semantic
definitions of parameters follow the table.

Table 9.116 XLink Resolution Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "xlinkResolution"

x1ink 1 string (uri) The x1ink:href URI detected in a DASH
element

elementType 0..1 string One of "MPD", "Period" or any other MPD element
name on which xlink is permitted

elementId 1 string The value of the element @i d.

x1link — The xTink:href string detected in a DASH element.

elementType — The name of the element type in the MPD, e.g., "MPD", "Period", etc. If this
property is omitted the default is "Period".

elementld — The value of the element’s @id associated with this XLink.

Once an XLink Resolution Notification is sent, the Broadcaster Application may decide to
provide alternate content using its own criteria or it may choose not to.

For example, the broadcast stream may contain advertisements that could be targeted at various
viewers based on a variety of criteria. The time span of the default advertisement and the associated
content would be described in a particular DASH element structure that would contain an
x1ink:href attribute. To accommodate the advertisement replacement, the Broadcaster
Application would subscribe to the XLink Resolution Notification API.

On detection of an element containing the x1ink:href, the Receiver is expected to issue the
following message:

169

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-xlinkResolution.json

ATSC A/344:2026-02

ATSC 3.0 Interactive Content 18 February 2026

<= {

}

"jsonrpc":

"method":

"params":
"msgType":
"xlink":
"elementType":
"elementId":

"org.atsc.notify",

"xlinkResolution",
"urn:rid:xbc4399FB77-3939EA47",

"Period",

"2"

9.15.2 XLink Resolved API

After the XLink Resolution Notification (Section 9.15.1) is received, the Broadcaster Application
determines which alternate content to replace the default content with and makes a request to the
Receiver using the XLink Resolved API. The Broadcaster Application provides either a URI of
the XML fragment of the alternate content or the actual element text in the request. The Receiver
is expected to process the replacement XML fragment URI or element text, as appropriate, to
replace the element with one or more alternate elements. If the Receiver is not able to replace the
default content, the returned disposition object is expected to contain the appropriate code and
description indicating the reason for the failure.

The XLink Resolved Request semantics are defined in Table 9.117 and the syntax shall be as
defined in the schema file org.atsc.xlinkResolution-request.json. Additional semantic
definitions of parameters follow the table.

Table 9.117 XLink Resolved Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.xlinkResolution"

x1ink 1 string(uri) The XLink value from the x1ink :href attribute in
the MPD element

mpdURL oneOf X |string (uri) The URI of a replacement MPD fragment
containing the XML element or elements to
replace the element Period containing the
xTink:href attribute

element oneOf X |string The inline text to replace the element containing the
x1ink:href attribute

status 0.1 integer The status of the Broadcaster Application’s action

elementType 0..1 string The type of XML element containing the
xTink:href

elementId 0..1 string The @i d of the element being replaced

x1ink — This required string shall be the value of the x1ink:href attribute on some element. This
string corresponds to the value received in the XLink Resolution Notification parameters (see

Section 9.15.1).

mpdURL — If provided as an alternative to element, this string shall provide the URI of an XML
fragment to replace the element containing the x1ink:href attribute. One of either the mpdurL
or element properties shall be provided. If this property is provided, it shall be a fully qualified
URI, whether referencing the XML element over broadband or in the Application Context

170

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.xlinkResolution-request.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Cache. Note that for an XML element in the Application Context Cache, the full URI can be
constructed using the Base URI provided using the Query Receiver Web Server URI API as
described in Section 9.2.7.

element — If provided as an alternative to mpdURL, this string shall contain the actual element text
to replace the element containing the x1link:href attribute. One of either the mpdurL or
element properties shall be provided.

status — The status of the Broadcaster Application reaction as follows:

0 - Element not replaced and Receiver is free to act on it

1 — Element replaced. Receiver is to attempt to replace the element

-1 — Element not replaced. Receiver is forbidden acting on it
elementType — The name of the element being replaced, e.g., "MPD", "Period", etc. The default is

"Period".
elementld — The @id of the element being replaced.

After receiving the XLink Resolved request, the Receiver may respond indicating that the
original default element was successfully replaced with either the requested XML element URI or
the supplied element. If the Receiver cannot successfully complete the request, an error code is
expected to be returned. The Receiver may choose to delay the response until after the element
was successfully replaced or may choose to respond with an error condition immediately.
Broadcaster Applications are expected to consider the difference in timing when handling the
XLink Resolved Response. The XLink Resolved Response semantics are defined in Table 9.118
and the syntax shall be as defined in the schema file org.atsc.xlinkResolution-
response. json. Additional semantic definitions of parameters follow the table.

Table 9.118 XLink Resolved Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Returned on successful request submission

otherwise the error structure is returned

elementType 1 string The name of the (MPD) element, e.g., "Period"
elementId 1 string The @Id of the elementType

error oneOf X See Section 8.3.3

elementType — The name of the element being replaced, e.g., "MPD", "Period", etc.
elementld — The @id of the element being replaced.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e -4 —Requested content cannot be found. For example, invalid URL.

e -30 — The request was not received in time to replace the default content.
e -31 —The provided elementType and/or elementId not found.

e -32 —The provided (MPD) element content is not valid.

As an example, the Broadcaster Application submits the following request, presuming that the
Base URIis "http://192.168.32.117:8182/s02gPkwzx141i0":

171

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.xlinkResolution-response.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.xlinkResolution-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

-—> {

"jsonrpc": "2.0",

"method": "org.atsc.xlinkResolution",

"params": {
"xlink": "urn:rid:xbc4399FB77-3939EA47",
"mpdURL": "http://192.168.32.117:8182/s02gPkwzx141i0",
"status": 1

bo

"id": 104

If the Receiver can replace the default content with the alternate XML element URI, it responds
and a disposition indicating successful replacement with the alternate element used as shown
below.

<-= {
"jsonrpc": "2.0"
"result": {
"elementType": "Period",
"elementId": "3"
}I
"id": 104

Alternatively, if the Receiver could not use the replacement XML element URI, as requested
by the Broadcaster Application, it returns a disposition indicating the reason for the failed request.

<== |
"jsonrpc": "2.0",
"error": {
"code": -30,
"message": "Too late"
}y
"id": 104

As a further example, the Broadcaster Application submits the following request containing
the actual alternate period text instead of an mpdurL:

172

http://192.168.32.117:8182/s02gPkwZx14iO

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.xlinkResolution",
"params": {
"x1ink": "urn:xbc4399FB77-3939EA47",
"element": "<Period start='PT0S'>
<AdaptationSet mimeType='video/mpd"' .. >
<SegmentTemplate timescale='90000"' ..
media='alt-S$Number$.mpdv' duration='90000"
startNumber="'32401"' />
<Representation id='v2' width='1920' height='1080"' .. />
</AdaptationSet>
</Period>",
"status": 1
b
"id": 105

If the Receiver can replace the default content with the alternate period, it responds with a
disposition indicating successful replacement with the alternate period used as shown below.

<--{
"jsonrpc": "2.0"
"result": {
"elementType": "Period",
"elementId": "3"
}I
"id": 105

9.16 Prepare for Service Change API

The API in this section provides a mechanism for the Receiver to request that the Broadcaster
Application prepare for a service change by releasing resources and performing other cleanup
preparing for the situation where the Broadcaster Application might or might not be torn down
during the service change.

The Prepare for Service Change API allows the Receiver to

¢ indicate to the Broadcaster Application that a service change is initiating,

¢ inform the Broadcaster Application to release resources generally, and

e optionally instruct the Broadcaster Application to release specific resources.

A Prepare for Service Change request, if implemented, is expected to be issued by the Receiver
to the currently executing Broadcaster Application when a service change is in process, and the
Receiver wishes the Broadcaster Application to release allocated resources to prepare for the
possibility that the Broadcaster Application could be terminated and torn down during the service
change. Optionally, the Receiver may enumerate specific resources to be released.

The Prepare for Service Change request semantics are defined in Table 9.119, and the syntax
shall be as defined in the schema file org.atsc.prepSvcChange-request.json. Additional
semantic definitions of parameters follow the table.

173

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.prepSvcChange-request.json

ATSC A/344:2026-02

ATSC 3.0 Interactive Content

18 February 2026

Table 9.119 Prepare for Service Change Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.prepSvcChange"

fromService 1 uri Specifies the globalServicelID of the current
service.

toService 0..1 uri Specifies the globalServiceID of the future
service.

resources 0.1 array An array of tokens describing specific resources to
be released.

| items 1.N string A requested resource token
fromService — This required URI shall indicate the globalserviceID associated with the

currently selected service as given in the SLT in SLT.Service@globalserviceID.

toservice — This optional URI, if present, shall indicate the globalserviceId associated with
the service to be acquired as given in the SLT in SLT.Service@globalservicelD.

resources — This optional array, if present, shall include tokens that indicate specific resources
to be released by the Broadcaster Application. Notwithstanding the presence or absence of any
particular token in this field, the Broadcaster Application is expected to release as many
resources as practicable. Values in this array shall be from Table 9.120.

Table 9.120 Service Change Resource Tokens

Token

Description

AMP

Any Application Media Player resources.

(other values)

Permitted for user-private or extension

The Prepare for Service Change Response semantics are defined in Table 9.121 and the syntax
shall be as defined in the schema file org.atsc.prepSvcChange-response.json. Additional

semantic definitions of parameters follow the table.

Table 9.121 Prepare for Service Change Response Semantics

Property Name Use Data Type Short Description
jsonrpc 1 string "2.0"
id 1 integer Matches the request id value
result oneOf X Returned on successful operation otherwise the
error structure is returned
resources 0..1 array An array of tokens describing specific resources
that were released
items 1.N string A requested resource token
error oneOf X See Section 8.3.3

resources — This optional array, if present, shall include tokens that indicate specific resources
that were released by the Broadcaster Application. Values in this array shall be from Table
9.120. For resources that the Broadcaster Application has not allocated, but were requested by
the Receiver to be released, the Broadcaster Application should include those resources in this

174

mailto:SLT.Service@globalServiceID
mailto:SLT.Service@globalServiceID
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.prepSvcChange-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

response. Note that if a Broadcaster Application fails to release (or to identify as released)

specific resources identified in the request, the Receiver might tear down the Broadcaster

Application without respect to any Broadcaster Applications associated with the toservice.

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e None — There are no errors specific to this API.

For example, if the Receiver is in the process of a service change, it would request release of
resources as follows:

—_> {
"jsonrpc": "2.0",
"method": "org.atsc.prepSvcChange",
"params": {
"fromService": "https://tv.atsc/0ldService",
"toService": "https://tv.atsc/NewService",
"resources": ["AMP"]
}I
"id": 22
}

The Broadcaster Application might respond:

€=
"jsonrpc": "2.0",
"result": {"resources": ["AMP"]},
"id": 22

}

9.17 MMT AssetLink APIs

The APIs in this section provide a mechanism allowing the Broadcaster Application to replace
Assets in MMT whose asset location is a URI as is the case when the 1ocation type value
in MMT general location info of the MPT, Section 7.2.3 is marked as "0x05" [30]. Figure 9.4
provides a diagram of the relationship between the MMT signaling structures.

175

https://tv.atsc/OldService

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

1. ISO/IEC 23008-1: Part 1: MMT 2. ISO/IEC 23008-1: Part 1: MMT
10.3.9 MP Table Table 56 - MMT_general_location_info syntax
[sytx | Noofbis | format [smax | No.ofBits | Format |
MP_Table() { MMT_general_location_info() {

table_id, wersion 8 uimsbf location_type 8 uimsbf

length 16 uimshf if (location_type == 0x00) {

........... packet_id 16 uimsbf

number_of_assets 8 UipAshf——————p else if (location_type == ‘0x05°) {

for (i=0; i< N3; i++) { length 16 uimshf
Identifier_mapping() for (i=0;i<N2; i++){
asset_type 32 ahar byte 8 uimshf
asset_location { 1

MMT_general_location_info() ———————————— ! 1

T I I —
}

3.1SO/IEC 23008-1: Part 1: MMT. Table 57 - Value of location_type

T ™

0x00 An Asset in the same MMTP packagt flow
0x01 MMTP packet flow over UDP/IP (version 4)
0x05 URL

Figure 9.4 Relationship of MMT signaling tables.

There are two APIs defined:

e An AssetLink Resolution Notification API allows the Receiver to notify the Broadcaster
Application that the RMP has detected an MMT Asset has an asset _location thatis a
URI. This Asset is termed the "target Asset" in this section. Notifications only occur if the
Broadcaster Application has subscribed to the notification (see Section 9.3.1). The
Broadcaster Application may then provide an alternate MMT Asset using the AssetLink
Resolved API. An MMT Asset is delivered in the external or internal URL not in the same
MMTP Over-the-Air packet flow and a single file containing the MMT Signaling Message
and MPU Media Data.

e The AssetLink Resolved API is used by the Broadcaster Application to provide a
replacement MMT Asset URL or inline text to be used by the RMP as an alternative to the
target Asset. It is possible for the Receiver to ignore the AssetLink Resolved request if the
resource is not found, or it is too late to make the substitution.

9.17.1 AssetLink Resolution Notification API

An AssetLink Resolution Notification is expected to be issued by the Receiver to the currently
executing Broadcaster Application when the Receiver Media Player (RMP) encounters an Asset
of the MPT with an asset location defined as a URI [30]. The Receiver may resolve any
asset location with a URL scheme, "https:", without notifying the Broadcaster Application.
For all other URISs, the Receiver is expected to notify the Broadcaster Application of an available
target Asset, if the Broadcaster Application is subscribed to the AssetLink Resolution Notification
(see Section 9.3.1). The Broadcaster Application is expected to respond by using the AssetLink
Resolved API (see Section 9.17.2) to inform the Receiver what action it will take regarding the
target Asset.

The AssetLink Resolution Notification semantics are defined in Table 9.122 and the syntax
shall be as defined in the schema file org.atsc.notify-assetLinkResolution.json. Additional
semantic definitions of parameters follow the table.

176

https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.notify-assetLinkResolution.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.122 AssetLink Resolution Notification Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

method 1 string "org.atsc.notify"

msgType 1 enum "assetLinkResolution"

assetLink 1 string (uri) The asset location from the target Asset
assetType 0.1 string The type of the target Asset.

assetId 1 string The ID value of the target Asset.

assetLink — The asset location provided in the target Asset.

assetType — This is described in a four-character code (“4CC”) type registered in MPAREG
(http:// www.mp4ra.org) [30], 10.3.9 MP table.

assetId — The value of the Asset associated with this assetLink.

Once an AssetLink Resolution Notification is sent, the Broadcaster Application may decide to
provide alternate content using its own criteria or it may choose not to. The Broadcaster
Application is expected to inform the Receiver of its decision using the AssetLink Resolved API
described in Section 9.17.2.

For example, on detection of a target Asset, the Receiver could issue the following message,
presuming that the target Asset asset location URI is
"http://192.168.32.117:8182/s02gPkwzx14i0":

<--{

"jsonrpc": "2.0",

"method": "org.atsc.notify",

"params": {
"msgType": "assetLinkResolution",
"assetLink": "http://192.168.32.117:8182/s02gPkwzZx14i0",
"assetType": "hevc",
"assetId": "550e8400-e29b-41d4-a716-446655440000"

}

9.17.2 AssetLink Resolved API

After the AssetLink Resolution Notification (Section 9.17.1) is received, the Broadcaster
Application determines what action to take regarding the target Asset and whether to replace the
content or do nothing. If it decides that the content can be replaced, it determines which alternate
content to replace the default content with and makes a request to the Receiver using the AssetLink
Resolved API. The Broadcaster Application provides either a URI of the alternate content or the
actual alterative content in the request. The Receiver is expected to process the replacement URI
or alternative content text, as appropriate, to replace the target Asset. If the Receiver is not able to
replace the default content, the API response is expected to contain the appropriate code and
description indicating the reason for the failure.

The AssetLink Resolved Request semantics are defined in Table 9.123 and the syntax shall be
defined as in the schema file org.atsc.assetLinkResolution-request.json. Additional
semantic definitions of parameters follow the table.

177

http://www.mp4ra.org/
http://192.168.32.117:8182/s02gPkwZx14iO
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.xlinkResolution-request.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.123 AssetLink Resolved Request Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer

method 1 string "org.atsc.assetLinkResolution"

assetLink 1 string (uri) The asset location from the target Asset

assetType 0.1 string The type of the target Asset.

assetId 1 string The ID value of the target Asset.

status 1 integer The status of the Broadcaster Application’s action

replacementURL oneOf X string (uri) The URI of a replacement MMT Asset File

replacementText oneOf X string The inline MMT Asset File encoded as Base64 to
replace the target Asset

assetLink — The asset location provided in the target Asset. This value is provided by the
assetLink parameter in the AssetLink Resolution Notification described in Section 9.17.1.

assetType — This is described in a four-character code ("4CC") type registered in MP4REG
(http://www.mp4ra.org) [30].
assetId — The value of the target Asset associated with the assetLink.
status — The status of the Broadcaster Application reaction to the notification as follows:
0 — Element not replaced, and Receiver is free to act on it
1 — Element replaced. Receiver is to attempt to replace the element
-1 — Element not replaced. Receiver is forbidden from acting on it
replacementURL — If provided as an alternative to the target Asset, this string is expected to
provide the URI referencing an MMT Asset File to replace the target Asset. If this property is
provided, it is expected to be a fully qualified URI, whether referencing the replacement MMT
Asset File over broadband or from the Application Context Cache. For the Application Context
Cache, the full URI can be constructed using the Base URI provided using the Query Receiver
Web Server URI API as described in Section 9.2.7.
replacementText — Provides the replacement MMT Asset File encoded as a Base64 string.
After receiving the AssetLink Resolved request, the Receiver may respond indicating that the
original target Asset was successfully replaced with either the requested asseturL URI or the
supplied element. If the Receiver cannot successfully complete the request, an error code is
expected to be returned. The Receiver may choose to delay the response until after the element
was successfully replaced or may choose to respond with an error condition immediately.
Broadcaster Applications are expected to consider the difference in timing when handling the
AssetLink Resolved Response. The AssetLink Resolved Response semantics are defined in Table
9.124 and the syntax shall be as defined in the schema file org.atsc.assetLinkResolution-
response. json. Additional semantic definitions of parameters follow the table.

178

http://www.mp4ra.org/
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.xlinkResolution-response.json
https://www.atsc-schemas.org/atsc3.0/a344/cs-20250508/org.atsc.xlinkResolution-response.json

ATSC A/344:2026-02 ATSC 3.0 Interactive Content 18 February 2026

Table 9.124 AssetLink Resolved Response Semantics

Property Name Use Data Type Short Description

jsonrpc 1 string "2.0"

id 1 integer Matches the request id value

result oneOf X Empty object on successful replacement. The error
structure is returned if the replacement was
unsuccessful.

error oneOf X See Section 8.3.3

In addition to the errors in Annex B Section 5.1, the following errors from Table 8.5 may be
returned:

e -4 —Requested content cannot be found. For example, invalid URL.

e -30 — The request was not received in time to replace the default content.
e -34—The provided assetLink, assetType and/or assetId not found.

e -35—The provided element content is not valid.

As an example, the Broadcaster Application submits the following request, presuming that the
target Asset URI is "http://192.168.32.117:8182/s02gPkwZx1410":

-—> {
"jsonrpc": "2.0",
"method": "org.atsc.assetLinkResolution",
"params": {
"assetLink": "http://192.168.32.117:8182/s02gPkwzZx14i0",
"assetType": "hevc",
"assetId": "550e8400-e29b-41d4-a716-446655440000",
"status": 1,
"replacementURL": "/replacement-ad.mpt",
b
"id": 104
}

If the Receiver can replace the target Asset with the alternate MMT Asset File referred to by
the URI, it responds with a successful result as shown below:

<-= {
"jsonrpc": "2.0",
"result": {1},
"id": 104

}

Alternatively, if the Receiver could not use the replacement MMT Asset File referenced by the
URI, as requested by the Broadcaster Application, it returns a disposition indicating the reason for
the failed request.

179

http://192.168.32.117:8182/s02gPkwZx14iO

ATSC A/344:2026-02

ATSC 3.0 Interactive Content

18 February 2026

<-={
"jsonrpc": "2.0",
"error": {
"code": -30,
"message": "Too late"
}I
"id": 104

180

ATSC A/344:2026-02 ATSC 3.0 Interactive Content, Annex A 18 February 2026

Annex A: Application Lifecycle Sequence
Diagram

Broadcast Application Lifecycle

viewer platform app

org.atsc.subscribe (serviceChange)

success: "msgType": [serviceChange]

time passes...)

I
I |
I I
I
|
Service [
Change [
|
|
org.atsc.prepSvcChange(toSvc,frSvc,[resources]) ».L
Release resources

I
| |
I
l
alt JL[Ncrmal case]

success: "result": {famp,etc]}

.
H
1
1
'
1]
'
1
L
1
'
1
'
'
'
1
1
1
1
'
1
'
1
'
1
1
1
'
1
1
1
1
1
1
1
1
'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i

L[Timeout]

Treated as error

PR

181

ATSC A/344:2026-02

ATSC 3.0 Interactive Content, Annex A

18 February 2026

time passes...

[Error]

Error, timeout,
H or requested resources
not released

unload app

PR

stream

HELD

service change initiated

< |

Begin acquiring/display
new service

PR

loop

[Through HELD entries]

break

[@capabilities not met]

If @capabilities not met
discard entry

|

182

j)

ATSC A/344:2026-02

ATSC 3.0 Interactive Content, Annex A

18 February 2026

break [Outside of validity period]

If outside of validity period
discard entry

< |

alt [Same appld & appContextld as current]

appld and appContextld same as current?
Select this entry & exit loop
(Candidate list = 1 entry)

|

[@default?]

HELD entry is @default="yes"
Select this entry & exit loop
(Candidate list = 1 entry)

PR

[Candidates identified]

Add to list of candidates

|

alt

Undefined Behavior <>1 entries]

Candidate list <> 1 entry
Result Undefined

PR

(7

elect the single entry]

Candidate list == 1 entry
(selected HELD entry)

183

ATSC A/344:2026-02 ATSC 3.0 Interactive Content, Annex A 18 February 2026

]
alt [Normal case & selected HELD entry same as current BA] |

org.atsc.notify(serviceChange)

....... }.--

[Normal case & new app]

Launch app

Service change
complete

———

184

ATSC A/344:2026-02 ATSC 3.0 Interactive Content, Annex B 18 February 2026

Annex B: JSON-RPC 2.0 Specification

The contents of this Annex were copied verbatim from http.//www.jsonrpc.org/specification [46]
on September 28, 2017 and cannot be modified.

Origin Date:

2010-03-26 (based on the 2009-05-24 version)
Updated:

2013-01-04
Author:

JSON-RPC Working Group <json-rpc@googlegroups.com>

1 Overview

JSON-RPC is a stateless, light-weight remote procedure call (RPC) protocol. Primarily this
specification defines several data structures and the rules around their processing. It is transport
agnostic in that the concepts can be used within the same process, over sockets, over http, or in
many various message passing environments. It uses JSON (RFC 4627) as data format.

It is designed to be simple!

2 Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119.

Since JSON-RPC utilizes JSON, it has the same type system (see http://www.json.org or RFC
4627). JSON can represent four primitive types (Strings, Numbers, Booleans, and Null) and two
structured types (Objects and Arrays). The term "Primitive" in this specification references any of
those four primitive JSON types. The term "Structured" references either of the structured JSON
types. Whenever this document refers to any JSON type, the first letter is always capitalized:
Object, Array, String, Number, Boolean, Null. True and False are also capitalized.

All member names exchanged between the Client and the Server that are considered for
matching of any kind should be considered to be case-sensitive. The terms function, method, and
procedure can be assumed to be interchangeable.

The Client is defined as the origin of Request objects and the handler of Response objects. The
Server is defined as the origin of Response objects and the handler of Request objects.

One implementation of this specification could easily fill both of those roles, even at the same
time, to other different clients or the same client. This specification does not address that layer of
complexity.

185

http://www.jsonrpc.org/specification
https://groups.google.com/forum/#!forum/json-rpc
http://www.json.org/
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc2119.txthttp:/www.ietf.org/rfc/rfc2119.txt
http://www.json.org/
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt

ATSC A/344:2026-02 ATSC 3.0 Interactive Content, Annex B 18 February 2026

3 Compatibility

JSON-RPC 2.0 Request objects and Response objects may not work with existing JSON-RPC 1.0
clients or servers. However, it is easy to distinguish between the two versions as 2.0 always has a
member named "jsonrpc” with a String value of "2.0" whereas 1.0 does not. Most 2.0 implementations

should consider trying to handle 1.0 objects, even if not the peer-to-peer and class hinting aspects
of 1.0.

4 Request object

A rpc call is represented by sending a Request object to a Server. The Request object has the
following members:
jsonrpc
A String specifying the version of the JSON-RPC protocol. MUST be exactly "2.0".
method
A String containing the name of the method to be invoked. Method names that begin with the
word rpc followed by a period character (U+002E or ASCII 46) are reserved for rpc-internal
methods and extensions and MUST NOT be used for anything else.
params

A Structured value that holds the parameter values to be used during the invocation of the
method. This member MAY be omitted.

An identifier established by the Client that MUST contain a String, Number, or NULL value
if included. If it is not included it is assumed to be a notification. The value SHOULD normally
not be Null' and Numbers SHOULD NOT contain fractional parts?

The Server MUST reply with the same value in the Response object if included. This
member is used to correlate the context between the two objects.

4.1 Notification

A Notification is a Request object without an "id" member. A Request object that is a Notification
signifies the Client's lack of interest in the corresponding Response object, and as such no
Response object needs to be returned to the client. The Server MUST NOT reply to a Notification,
including those that are within a batch request.

Notifications are not confirmable by definition, since they do not have a Response object to be
returned. As such, the Client would not be aware of any errors (like e.g., "Invalid params","Internal
error'").

4.2 Parameter Structures

"' The use of Null as a value for the id member in a Request object is discouraged, because this
specification uses a value of Null for Responses with an unknown id. Also, because JSON-
RPC 1.0 uses an id value of Null for Notifications this could cause confusion in handling.

2 Fractional parts may be problematic, since many decimal fractions cannot be represented exactly
as binary fractions.

186

ATSC A/344:2026-02 ATSC 3.0 Interactive Content, Annex B 18 February 2026

If present, parameters for the rpc call MUST be provided as a Structured value. Either by-position
through an Array or by-name through an Object.

e by-position: params MUST be an Array, containing the values in the Server expected
order.

e by-name: params MUST be an Object, with member names that match the Server
expected parameter names. The absence of expected names MAY result in an error
being generated. The names MUST match exactly, including case, to the method's
expected parameters.

5 Response object

When a rpc call is made, the Server MUST reply with a Response, except for in the case of
Notifications. The Response is expressed as a single JSON Object, with the following members:
jsonrpc
A String specifying the version of the JSON-RPC protocol. MUST be exactly "2.0".
result
This member is REQUIRED on success. This member MUST NOT exist if there was an error
invoking the method. The value of this member is determined by the method invoked on the
Server.
error
This member is REQUIRED on error. This member MUST NOT exist if there was no error
triggered during invocation. The value for this member MUST be an Object as defined in
section 5.1.

This member is REQUIRED. It MUST be the same as the value of the id member in the
Request Object. If there was an error in detecting the id in the Request object (e.g. Parse
error/Invalid Request), MUST be Null. Either the result member or error member MUST be
included, but both members MUST NOT be included.

5.1 Error object

When a rpc call encounters an error, the Response Object MUST contain the error member with a
value that is a Object with the following members:
code
A Number that indicates the error type that occurred. This MUST be an integer.
message
A String providing a short description of the error. The message SHOULD be limited to a
concise single sentence.
data
A Primitive or Structured value that contains additional information about the error. This may
be omitted. The value of this member is defined by the Server (e.g. detailed error information,
nested errors etc.).
The error codes from and including -32768 to -32000 are reserved for pre-defined errors. Any
code within this range, but not defined explicitly below is reserved for future use. The error codes

187

ATSC A/344:2026-02 ATSC 3.0 Interactive Content, Annex B 18 February 2026

are nearly the same as those suggested for XML-RPC at the following url: http://xmlrpc-
epi.sourceforge.net/specs/rfc.fault_codes.php

code message meaning

-32700 Parse error Invalid JSON was received by the server.
An error occurred on the server while parsing the JSON text.

-32600 Invalid Request The JSON sent is not a valid Request object.
-32601 Method not found | The method does not exist / is not available.
-32602 Invalid params Invalid method parameter(s).

-32603 Internal error Internal JSON-RPC error.

-32000 to -32099 | Server error Reserved for implementation-defined server-errors.

The remainder of the space is available for application defined errors.

6 Batch

To send several Request objects at the same time, the Client MAY send an Array filled with
Request objects.

The Server should respond with an Array containing the corresponding Response objects, after
all of the batch Request objects have been processed. A Response object SHOULD exist for each
Request object, except that there SHOULD NOT be any Response objects for notifications. The
Server MAY process a batch rpc call as a set of concurrent tasks, processing them in any order and
with any width of parallelism.

The Response objects being returned from a batch call MAY be returned in any order within
the Array. The Client SHOULD match contexts between the set of Request objects and the
resulting set of Response objects based on the id member within each Object.

If the batch rpc call itself fails to be recognized as an valid JSON or as an Array with at least
one value, the response from the Server MUST be a single Response object. If there are no
Response objects contained within the Response array as it is to be sent to the client, the server
MUST NOT return an empty Array and should return nothing at all.

7 Examples
Syntax:

--> data sent to Server
<-- data sent to Client

rpc call with positional parameters:

--> {"jsonrpc": "2.0", "method": "subtract", "params": [42, 23], "id": 1}
<-- {"jsonrpc": "2.0", "result": 19, "id": 1}
--> {"jsonrpc": "2.0", "method": "subtract", "params": [23, 42], "id": 2}

188

http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php
http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php

ATSC A/344:2026-02 ATSC 3.0 Interactive Content, Annex B 18 February 2026

<-- {"jsonrpc": "2.0", "result": -19, "id": 2}

rpc call with named parameters:
--> {"jsonrpc": "2.0", "method": "subtract", "params": {"subtrahend": 23, "minuend":
42}, "id": 3}

<-- {"jsonrpc": "2.0", "result": 19, "id": 3}

--> {"jsonrpc": "2.0", "method": "subtract", "params": {"minuend": 42, "subtrahend":
23}, "id": 4}

<-- {"jsonrpc": "2.0", "result": 19, "id": 4}

a Notification:

--> {"jsonrpc": "2.0", "method": "update", "params": [1,2,3,4,5]}
--> {"jsonrpc": "2.0", "method": "foobar"}

rpc call of non-existent method:

--> {"jsonrpc": "2.0", "method": "foobar", "id": "1"}

<-- {"jsonrpc": "2.0", "error": {"code": -32601, "message": "Method not found"}, "id":
nymy

rpe call with invalid JSON:

--> {"jsonrpc": "2.0", "method": "foobar, "params": "bar", "baz]

<-- {"jsonrpc": "2.0", "error": {"code": -32700, "message": "Parse error"}, "id":
null}

rpc call with invalid Request object:

--> {"jsonrpc": "2.0", "method": 1, "params": "bar"}
<-- {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":
null}
rpc call Batch, invalid JSON:
——> [
{"jsonrpc": "2.0", "method": "sum", "params": [1,2,4], "id": "1"},
{"jsonrpc": "2.0", "method"
]
<-- {"jsonrpc": "2.0", "error": {"code": -32700, "message": "Parse error"}, "id":
null}

rpc call with an empty Array:
-=> [

<-- {"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":
null}

rpc call with an invalid Batch (but not empty):
--> [1]
<=

189

ATSC A/344:2026-02 ATSC 3.0 Interactive Content, Annex B 18 February 2026

{"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":
null}

]

rpc call with invalid Batch:
--> [1,2,3]
==

{"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":
null},

{"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":
null},

{"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"}, "id":
null}

]
rpc call Batch:

-—> [
{"jsonrpc": "2.0", "method": "sum", "params": [1,2,4], "id": "1"},
{"jsonrpc": "2.0", "method": "notify hello", "params": [7]},
{"jsonrpc": "2.0", "method": "subtract", "params": [42,23], "id": "2"},
{"foo": "boo"},

{"jsonrpc": "2.0", "method": "foo.get", "params": {"name": "myself"}, "id":

"5"},

{"jsonrpc": "2.0", "method": "get data", "id": "9"}

]

<= [

{"jsonrpc": "2.0", "result": 7, "id": "1"},

{"jsonrpc": "2.0", "result": 19, "id": "2"},

{"jsonrpc": "2.0", "error": {"code": -32600, "message": "Invalid Request"},
"id": null},

{"jsonrpc": "2.0", "error": {"code": -32601, "message": "Method not found"},

"id": '|5'|},
{"jsonrpc": "2.0", "result": ["hello", 5], "id": "9"}
]

rpc call Batch (all notifications):

-—> [
{"jsonrpc": "2.0", "method": "notify sum", "params": [1,2,4]},
{"jsonrpc": "2.0", "method": "notify hello", "params": [7]}

]
<-- //Nothing is returned for all notification batches

190

ATSC A/344:2026-02 ATSC 3.0 Interactive Content, Annex B 18 February 2026

8 Extensions

Method names that begin with rpc. are reserved for system extensions, and MUST NOT be used
for anything else. Each system extension is defined in a related specification. All system extensions
are OPTIONAL.

Copyright (C) 2007-2010 by the JSON-RPC Working Group

This document and translations of it may be used to implement JSON-RPC, it may be
copied and furnished to others, and derivative works that comment on or otherwise explain
it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way.

The limited permissions granted above are perpetual and will not be revoked.

This document and the information contained herein is provided "AS IS" and ALL
WARRANTIES, EXPRESS OR IMPLIED are DISCLAIMED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

— End of Document —

191

	1. Scope
	1.1 Introduction and Background
	1.2 Organization

	2. References
	2.1 Normative References
	2.2 Informative References

	3. Definition of Terms
	3.1 Compliance Notation
	3.1.1 A/344-specific Terms

	3.2 Treatment of Syntactic Elements
	3.2.1 Reserved Elements

	3.3 Acronyms and Abbreviations
	3.4 Terms

	4. Overview
	4.1 Application Runtime Environment
	4.2 Receiver Media Player Display
	4.2.1 Rendering Model
	4.2.2 Closed Captioning

	5. ATSC Reference Receiver Model
	5.1 Introduction
	5.2 User Agent Definition
	5.2.1 HTTP Protocols
	5.2.2 XMLHttpRequest (XHR)
	5.2.3 Cross-Origin Resource Sharing (CORS)
	5.2.4 Mixed Content
	5.2.5 Transparency
	5.2.6 Full Screen
	5.2.7 Visibility and Focus

	5.3 Application Context Identifier, Base URI and Cache Path
	5.3.1 Application Context Identifier
	5.3.2 Origin Considerations
	5.3.3 Base URI

	6. Broadcaster Application Management
	6.1 Introduction
	6.2 Application Context Cache Management
	6.2.1 Signaling Intent for File Caching
	6.2.1.1 Boundary Header HTTP Attribute Definition

	6.2.2 Application Context Cache Hierarchy Definition
	6.2.3 Active Service Application Context Cache Priority
	6.2.4 Cache Expiration Time
	6.2.5 Advanced Emergency Alert Enhancement Content Considerations

	6.3 Broadcaster Application Lifecycle
	6.4 Broadcaster Application Events (Static / Dynamic)
	6.5 Broadcaster Application Delivery
	6.5.1 Broadcaster Application Packages
	6.5.2 Broadcaster Application Package Changes
	6.5.3 Content Caching Control via Filter Codes

	6.6 Security Considerations
	6.7 Companion Device Interactions

	7. Media Player
	7.1 Utilizing RMP
	7.1.1 Broadcast or Hybrid Broadband and Broadcast Live Streaming
	7.1.2 Broadband Media Streaming
	7.1.3 Downloaded Media Content
	7.1.4 Redistribution

	7.2 Utilizing AMP
	7.2.1 Broadcast or Hybrid Broadband and Broadcast Live Streaming
	7.2.2 Broadband Media Streaming
	7.2.3 Downloaded Media Content
	7.2.4 AMP Utilizing the Pushed Media WebSocket Interface

	8. ATSC 3.0 WebSocket Interface
	8.1 Introduction
	8.2 Interface Binding
	8.2.1 WebSocket Servers
	8.2.1.1 Initializing Pushed Media WebSocket Connections
	8.2.1.2 Media WebSocket Connection Operation

	8.3 Data Binding
	8.3.1 General JSON Property Considerations
	8.3.2 Cancel Request Command
	8.3.3 Error Handling

	9. Supported Methods
	9.1 API Revision Control
	9.2 Receiver Query APIs
	9.2.1 Query Content Advisory Rating API
	9.2.2 Query Closed Captions Enabled/Disabled API
	9.2.3 Query Service ID API
	9.2.4 Query Language Preferences API
	9.2.5 Query Caption Display Preferences API
	9.2.5.1 CTA 708 Semantics
	9.2.5.2 IMSC1 Extensions Semantics
	9.2.5.3 Caption Display Preferences Query Example

	9.2.6 Query Audio Accessibility Preferences API
	9.2.7 Query Receiver Web Server URI API
	9.2.8 Query Alerting Signaling API
	9.2.9 Query Service Guide URLs API
	9.2.10 Query Signaling Data API
	9.2.11 Query Dialog Enhancement Preferences API
	9.2.12 Query Display Components API
	9.2.13 Query Announcement Time Limit

	9.3 Asynchronous Notifications of Changes
	9.3.1 Integrated Subscribe / Unsubscribe API for Notifications
	9.3.1.1 Integrated Subscribe API
	9.3.1.2 Integrated Unsubscribe API

	9.3.2 Content Advisory Rating Block Change Notification API
	9.3.3 Service Change Notification API
	9.3.4 Caption State Change Notification API
	9.3.5 Language Preference Change Notification API
	9.3.6 Caption Display Preferences Change Notification API
	9.3.7 Audio Accessibility Preference Change Notification API
	9.3.8 Alerting Change Notification API
	9.3.9 Content Change Notification API
	9.3.10 Service Guide Change Notification API
	9.3.11 Signaling Data Change Notification API
	9.3.12 Dialog Enhancement Preference Change Notification API
	9.3.13 Dialog Enhancement Limit Change Notification API
	9.3.14 RF Signal Change Notification API

	9.4 Cache Request APIs
	9.4.1 Cache Request API
	9.4.2 Cache Request DASH API

	9.5 Query Cache Usage API
	9.6 Event Stream APIs
	9.6.1 Event Stream Subscribe API
	9.6.2 Event Stream Unsubscribe API
	9.6.3 Event Stream Event API

	9.7 Request Receiver Actions
	9.7.1 Acquire Service API
	9.7.2 Video Scaling and Positioning API
	9.7.3 Set RMP URL API
	9.7.4 Audio Volume API
	9.7.5 Dialog Enhancement API
	9.7.6 Launch Broadcaster Application API
	9.7.7 Media Track Selection API for DASH
	9.7.8 Graphics Display Regions API
	9.7.9 Media Asset Selection API for MMT

	9.8 Mark Unused API
	9.9 Content Recovery APIs
	9.9.1 Query Content Recovery State API
	9.9.2 Query Display Override API
	9.9.3 Query Recovered Component Info API
	9.9.4 Content Recovery State Change Notification API
	9.9.5 Display Override Change Notification API
	9.9.6 Recovered Component Info Change Notification API

	9.10 Filter Codes APIs
	9.10.1 Set Filter Code Instances API
	9.10.2 Clear Filter Code Instances API

	9.11 Keys APIs
	9.11.1 Keycode Consistency
	9.11.2 Request Keys API
	9.11.3 Relinquish Keys API
	9.11.4 Request Keys Timeout

	9.12 Query Device Info API
	9.13 RMP Content Synchronization APIs
	9.13.1 Query RMP Media Time API
	9.13.2 Query RMP UTC Time API DEPRECATED
	9.13.3 Query RMP Playback State API
	9.13.4 Query RMP Playback Rate API
	9.13.5 RMP Media Time Change Notification API
	9.13.6 RMP Playback State Change Notification API
	9.13.7 RMP Playback Rate Change Notification API
	9.13.8 RMP Media Asset Change Notification API

	9.14 DRM APIs
	9.14.1 DRM Notification API
	9.14.2 DRM Operation API

	9.15 XLink APIs
	9.15.1 XLink Resolution Notification API
	9.15.2 XLink Resolved API

	9.16 Prepare for Service Change API
	9.17 MMT AssetLink APIs
	9.17.1 AssetLink Resolution Notification API
	9.17.2 AssetLink Resolved API

	Annex A : Application Lifecycle Sequence Diagram
	Annex B : JSON-RPC 2.0 Specification
	1 Overview
	2 Conventions
	3 Compatibility
	4 Request object
	5 Response object
	6 Batch
	7 Examples
	8 Extensions

